1
|
Khayatan D, Zare K, Khanahmadi M, Momtaz S, Butler AE, Jamialahmadi T, Almahmeed W, Abdolghaffari AH, Sahebkar A. The role of natural products as PCSK9 modulators: A review. Phytother Res 2024; 38:4081-4098. [PMID: 38899632 DOI: 10.1002/ptr.8260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
A variety of mechanisms and drugs have been shown to attenuate cardiovascular disease (CVD) onset and/or progression. Recent researchers have identified a potential role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in modulating lipid metabolism and reducing plasma low density lipoprotein (LDL) levels. PCSK9 is the central protein in the metabolism of LDL cholesterol (LDL-C) owing to its major function in LDL receptor (LDLR) degradation. Due to the close correlation of cardiovascular disease with lipid levels, many in vivo and in vitro investigations are currently underway studying the physiological role of PCSK9. Furthermore, many studies are actively investigating the mechanisms of various compounds that influence lipid associated-disorders and their associated cardiovascular diseases. PCSK9 inhibitors have been shown to have significant impact in the prevention of emerging cardiovascular diseases. Natural products can effectively be used as PCSK9 inhibitors to control lipid levels through various mechanisms. In this review, we evaluate the role of phytochemicals and natural products in the regulation of PCSK9, and their ability to prevent cardiovascular diseases. Moreover, we describe their mechanisms of action, which have not to date been delineated.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
3
|
Liu B, Yan Y, Zhang L. Radix Actinidiae chinensis induces the autophagy and apoptosis in renal cell carcinoma cells. Eur J Med Res 2024; 29:291. [PMID: 38764054 PMCID: PMC11103827 DOI: 10.1186/s40001-024-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a malignant tumor. Radix Actinidiae chinensis (RAC) is the root of Actinidia arguta (Sieb. et Zucc) Planch. ex Miq. In clinical research, RAC was confirmed to have a certain anti-tumor effect, including liver cancer and cholangiocarcinoma. This study investigated the anticancer effect and mechanism of RAC in RCC cells. METHODS The 786-O and A498 cells were intervened with varying concentrations of RAC (0-100 mg/mL) to detect the half maximal inhibitory concentration (IC50) of RAC. The cells were then co-cultured with 0-50 mg/mL RAC for 0-72 h to assess the effect of RAC on cell viability using the cell counting kit-8. The effects on cell proliferation, cell cycle or apoptosis, migration or invasion, and autophagy were detected using cloning, flow cytometry, Transwell, AOPI assay and Western blot. The number of autophagolysosomes was quantified using a transmission electron microscope. PI3K/AKT/mTOR pathway-related proteins were detected by Western blot. Additionally, an autophagy inhibitor 3-MA was used to explore the underlying mechanism of RAC. RESULTS IC50 values of RAC in 786-O and A498 were 14.76 mg/mL and 13.09 mg/mL, respectively. RAC demonstrated the ability to reduce the cell malignant phenotype of RCC cells, blocked the S phase of cells, promoted apoptosis and autophagy in cells. Furthermore, RAC was observed to increase autophagy-related proteins LC3II/I and Beclin-1, while decreasing the level of P62. The expression of apoptosis-related proteins was increased, while the ratios of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, p-P38/P38 and p-ERK/ERK were reduced by RAC. However, the addition of 3-MA reduced the apoptosis and autophagy- promotion effects of RAC on RCC cells. CONCLUSION RAC induced the apoptosis and autophagy, to inhibit the progression of RCC cells. This study may provide a theoretical and experimental basis for clinical anti-cancer application of RAC for RCC.
Collapse
Affiliation(s)
- Biao Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Rd, Gongshu District, Hangzhou, 310014, Zhejiang, China.
| | - Yuanliang Yan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Rd, Gongshu District, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
4
|
Wang H, Zhang X, Zhang Y, Shi T, Zhang Y, Song X, Liu B, Wang Y, Wei J. Targeting PCSK9 to upregulate MHC-II on the surface of tumor cells in tumor immunotherapy. BMC Cancer 2024; 24:445. [PMID: 38600469 PMCID: PMC11007992 DOI: 10.1186/s12885-024-12148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.
Collapse
Affiliation(s)
- Hanbing Wang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Xin Zhang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Yipeng Zhang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Tao Shi
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Yue Zhang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Xueru Song
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Baorui Liu
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Yue Wang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China.
| | - Jia Wei
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China.
| |
Collapse
|
5
|
Waswa EN, Ding SX, Wambua FM, Mkala EM, Mutinda ES, Odago WO, Amenu SG, Muthui SW, Linda EL, Katumo DM, Waema CM, Yang JX, Hu GW. The genus Actinidia Lindl. (Actinidiaceae): A comprehensive review on its ethnobotany, phytochemistry, and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117222. [PMID: 37793579 DOI: 10.1016/j.jep.2023.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Actinidia Lindl. belongs to the family Actinidiaceae. Plants of this genus are popularly known as kiwifruits and are traditionally used to treat a wide range of ailments associated with digestive disorders, rheumatism, kidney problems, cardiovascular system, cancers, dyspepsia, hemorrhoids, and diabetes among others. AIM This review discusses the ethnobotanical uses, phytochemical profile, and known pharmacological properties of Actinidia plants, to understand their connotations and provide the scientific basis for future studies. MATERIALS AND METHODS The data were obtained by surveying journal articles, books, and dissertations using various search engines such as Google Scholar, PubMed, Science Direct, Springer Link, and Web of Science. The online databases; World Flora Online, Plants of the World Online, International Plant Names Index, and Global Biodiversity Information Facility were used to confirm the distribution and validate scientific names of Actinidia plants. The isolated metabolites from these species were illustrated using ChemBio Draw ultra-version 14.0 software. RESULTS Ten (10) species of Actinidia genus have been reported as significant sources of traditional medicines utilized to remedy diverse illnesses. Our findings revealed that a total of 873 secondary metabolites belonging to different classes such as terpenoids, phenolic compounds, alcohols, ketones, organic acids, esters, hydrocarbons, and steroids have been isolated from different species of Actinidia. These compounds were mainly related to the exhibited antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antiproliferative, anti-angiogenic, anticinoceptive, anti-tumor, and anticancer activities. CONCLUSION This study assessed the information related to the ethnobotanical uses, phytochemical compounds, and pharmacological properties of Actinidia species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Actinidia plants have great potential for applications in folklore medicines and pharmaceuticals due to their wide ethnomedicinal uses and biological activities. Traditional uses of several Actinidia species are supported by scientific evidences, qualifying them as possible modern remedies for various ailments. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of most Actinidia species. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xiong Ding
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Muema Wambua
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sara Getachew Amenu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Samuel Wamburu Muthui
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elive Limunga Linda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei University, Wuhan, 430011, China
| | | | | | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
6
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Liu H, Li X, Dong Y, Zhou C, Rezeng C. Lipid metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. J Cancer 2023; 14:2066-2074. [PMID: 37497413 PMCID: PMC10367916 DOI: 10.7150/jca.86683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Epidemiological data have shown a positive correlation between lipid levels and tumor occurrence, such as the correlation between tumor frequency and aggressiveness, and cardiovascular disease, obesity, type 2 diabetes mellitus, and hyperinsulinemia. Therefore, reducing fat accumulation or weakening lipid metabolism may affect the carcinogenic processes of cells. Many studies have shown that traditional Chinese Medicine (TCM) has obvious advantages over traditional therapies in terms of fewer side effects, lower toxicity, and lower economic burden. This paper reviews the mechanism by which TCM regulates lipid metabolism and its antitumor effect through this regulation, with the aim of elucidating the bioactive compounds in TCM with good efficacy and few side effects that can provide promising therapeutic drugs for targeting lipid metabolism reprogramming in cancer.
Collapse
Affiliation(s)
- Hui Liu
- Chengde Medical University, Chengde, China, Hebei 067000, China
| | - Xiuming Li
- Department of Urology, Affiliated Hospital of Chengde Medical University, Hebei 067000, China
| | - Yajie Dong
- Chengde Medical University, Chengde, China, Hebei 067000, China
| | - Changhua Zhou
- Department of Pediatrics, Chengde County Hospital of Traditional Chinese Medicine, Hebei 067000, China
| | - Caidan Rezeng
- School of Pharmacy, Qinghai University for Nationalities, Qinghai, 810000, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing 100029, China
| |
Collapse
|
8
|
Oza PP, Kashfi K. The evolving landscape of PCSK9 inhibition in cancer. Eur J Pharmacol 2023; 949:175721. [PMID: 37059376 PMCID: PMC10229316 DOI: 10.1016/j.ejphar.2023.175721] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Cancer is a disease with a significant global burden in terms of premature mortality, loss of productivity, healthcare expenditures, and impact on mental health. Recent decades have seen numerous advances in cancer research and treatment options. Recently, a new role of cholesterol-lowering PCSK9 inhibitor therapy has come to light in the context of cancer. PCSK9 is an enzyme that induces the degradation of low-density lipoprotein receptors (LDLRs), which are responsible for clearing cholesterol from the serum. Thus, PCSK9 inhibition is currently used to treat hypercholesterolemia, as it can upregulate LDLRs and enable cholesterol reduction through these receptors. The cholesterol-lowering effects of PCSK9 inhibitors have been suggested as a potential mechanism to combat cancer, as cancer cells have been found to increasingly rely on cholesterol for their growth needs. Additionally, PCSK9 inhibition has demonstrated the potential to induce cancer cell apoptosis through several pathways, increase the efficacy of a class of existing anticancer therapies, and boost the host immune response to cancer. A role in managing cancer- or cancer treatment-related development of dyslipidemia and life-threatening sepsis has also been suggested. This review examines the current evidence regarding the effects of PCSK9 inhibition in the context of different cancers and cancer-associated complications.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
9
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
10
|
Zulkapli R, Yusof MYPM, Abd Muid S, Wang SM, Firus Khan AY, Nawawi H. A Systematic Review on Attenuation of PCSK9 in Relation to Atherogenesis Biomarkers Associated with Natural Products or Plant Bioactive Compounds in In Vitro Studies: A Critique on the Quality and Imprecision of Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12878. [PMID: 36232177 PMCID: PMC9566180 DOI: 10.3390/ijerph191912878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
A systematic review was performed to identify all the related publications describing PCSK9 and atherogenesis biomarkers attenuation associated with a natural product and plant bioactive compounds in in vitro studies. This review emphasized the imprecision and quality of the included research rather than the detailed reporting of the results. Literature searches were conducted in Scopus, PubMed, and Science Direct from 2003 until 2021, following the Cochrane handbook. The screening of titles, abstracts, and full papers was performed by two independent reviewers, followed by data extraction and validity. Study quality and validity were assessed using the Imprecision Tool, Model, and Marker Validity Assessment that has been developed for basic science studies. A total of 403 articles were identified and 31 of those that met the inclusion criteria were selected. 13 different atherogenesis biomarkers in relation to PCSK9 were found, and the most studied biomarkers are LDLR, SREBP, and HNF1α. In terms of quality, our review suggests that the basic science study in investigating atherogenesis biomarkers is deficient in terms of imprecision and validity.
Collapse
Affiliation(s)
- Rahayu Zulkapli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Suhaila Abd Muid
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Seok Mui Wang
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Al’Aina Yuhainis Firus Khan
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
11
|
Sun H, Meng W, Zhu J, Wang L. Antitumor activity and molecular mechanism of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:643-658. [PMID: 35307759 DOI: 10.1007/s00210-022-02200-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proprotein convertase family of proteins that activate other proteins in cells. Functionally, PCSK9 binds to the receptor of low-density lipoprotein particles (LDL) to regulate cholesterol metabolism and lipoprotein homeostasis in human body. PCSK9 inhibition is a novel pharmacological strategy to control hypercholesterolemia and cardiovascular diseases. Recently accumulating evidence realizes that PCSK9 possesses other roles in cells, such as regulation of tissue inflammatory response, intratumoral immune cell infiltration, and tumor progression. This review discussed the advancement of PCSK9 research on its role and underlying mechanisms in tumor development and progression. For example, PCSK9 inhibition could attenuate progression of breast cancer, glioma, colon tumor, hepatocellular cancer, prostate cancer, and lung adenocarcinoma and promote apoptosis of glioma, prostate cancer, and hepatocellular cancer cells. PCSK9 deficiency could reduce liver metastasis of B16F1 melanoma cells by lowering the circulating cholesterol levels. PCSK9 gene knockdown substantially attenuated mouse tumor growth in vivo by activation of cytotoxic T cells, although PCSK9 knockdown had no effect on morphology and growth rate of different mouse cancer cell lines in vitro. PCSK9 inhibition thus can be used to control human cancers. Future preclinical and clinical studies are warranted to define anti-tumor activity of PCSK9 inhibition.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Wen Meng
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Jie Zhu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China.
| |
Collapse
|
12
|
Tao JH, Wang XT, Yuan W, Chen JN, Wang ZJ, Ma YB, Zhao FQ, Zhang LY, Ma J, Liu Q. Reduced serum high-density lipoprotein cholesterol levels and aberrantly expressed cholesterol metabolism genes in colorectal cancer. World J Clin Cases 2022; 10:4446-4459. [PMID: 35663062 PMCID: PMC9125299 DOI: 10.12998/wjcc.v10.i14.4446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract. Lipid metabolism, as an important part of material and energy circulation, is well known to play a crucial role in CRC.
AIM To explore the relationship between serum lipids and CRC development and identify aberrantly expressed cholesterol metabolism genes in CRC.
METHODS We retrospectively collected 843 patients who had confirmed CRC and received surgical resection from 2013 to 2015 at the Cancer Hospital of the Chinese Academy of Medical Sciences as our research subjects. The levels of serum total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), LDL-C/HDL-C and clinical features were collected and statistically analyzed by SPSS. Then, we used the data from Oncomine to screen the differentially expressed genes (DEGs) of the cholesterol metabolism pathway in CRC and used Gene Expression Profiling Interactive Analysis to confirm the candidate DEGs. PrognoScan was used to analyze the prognostic value of the DEGs, and Search Tool for the Retrieval of Interacting Genes was used to construct the protein–protein interaction network of DEGs.
RESULTS The serum HDL-C level in CRC patients was significantly correlated with tumor size, and patients whose tumor size was more than 5 cm had a lower serum HDL-C level (1.18 ± 0.41 mmol/L vs 1.25 ± 0.35 mmol/L, P < 0.01) than their counterparts. In addition, TC/HDL (4.19 ± 1.33 vs 3.93 ± 1.26, P < 0.01) and LDL-C/HDL-C (2.83 ± 1.10 vs 2.61 ± 0.96, P < 0.01) were higher in patients with larger tumors. The levels of HDL-C (P < 0.05), TC/HDL-C (P < 0.01) and LDL-C/HDL-C (P < 0.05) varied in different stages of CRC patients, and the differences were significant. We screened 14 differentially expressed genes (DEGs) of the cholesterol metabolism pathway in CRC and confirmed that lipoprotein receptor-related protein 8 (LRP8), PCSK9, low-density lipoprotein receptor (LDLR), MBTPS2 and FDXR are upregulated, while ABCA1 and OSBPL1A are downregulated in cancer tissue. Higher expression of LDLR (HR = 3.12, 95%CI: 1.77-5.49, P < 0.001), ABCA1 (HR = 1.66, 95%CI: 1.11-2.48, P = 0.012) and OSBPL1A (HR = 1.38, 95%CI: 1.01-1.89, P = 0.041) all yielded significantly poorer DFS outcomes. Higher expression of FDXR (HR = 0.7, 95%CI: 0.47-1.05, P = 0.002) was correlated with longer DFS. LDLR, ABCA1, OSBPL1A and FDXR were involved in many important cellular function pathways.
CONCLUSION Serum HDL-C levels are associated with tumor size and stage in CRC patients. LRP8, PCSK9, LDLR, MBTPS2 and FDXR are upregulated, while ABCA1 and OSBPL1A are downregulated in CRC. Among them, LDLR, ABCA1, OSBPL1A and FDXR were valuable prognostic factors of DFS and were involved in important cellular function pathways.
Collapse
Affiliation(s)
- Jin-Hua Tao
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Tong Wang
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia-Nan Chen
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Jie Wang
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun-Bin Ma
- Department of Abodominal Surgery, Beijing Sanhuan Cancer Hospital, Beijing 100122, China
| | - Fu-Qiang Zhao
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liu-Yuan Zhang
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
13
|
Hong Z, Lu Y, Ran C, Tang P, Huang J, Yang Y, Duan X, Wu H. The bioactive ingredients in Actinidia chinensis Planch. Inhibit liver cancer by inducing apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114553. [PMID: 34428524 DOI: 10.1016/j.jep.2021.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Actinidia chinensis Planch. (ACP) is a common traditional Chinese medicine, which is mostly used for cancer treatment clinically. Liver cancer is a refractory tumor with a high incidence. Although ACP has been reported in the treatment of liver cancer, its possible mechanism of action is little known. AIM OF STUDY The aim of this paper was to investigate the active components of ACP in the treatment of liver cancer and the related mechanisms by a network pharmacology approach. METHODS The active components of ACP and the corresponding targets were obtained from multiple databases. Cytoscape software and STRING database were used to build the "herb-component-target (H-C-T)" network and protein-protein interactions (PPI) network. The key components and targets were further predicted by the Cytohubba plug-in in Cytoscape. Then, experiments were carried out on HepG2 cell line and Huh7 cell line to verify the effects and related mechanisms of the key compounds in ACP. RESULTS 28 active components in ACP and 1299 related targets were screened out according to two indicators, oral bioavailability (OB) and drug-likeness (DL). The key compounds predicted include rutinum, astragalin, and L-epicatechin, and the main signaling pathways focus on apoptosis. Astragalin, a key compound in ACP, could inhibit the expression of Bcl-2, up-regulate the expression of Bax, cleaved caspase 3, cleaved caspase 8, and cleaved caspase 9, and regulate the apoptosis signaling pathway to inhibit the proliferation of liver cancer cells to play a therapeutic role in anti-liver cancer. CONCLUSIONS These results suggest that ACP can alleviate the progression of liver cancer through the mechanisms predicted by network pharmacology, and provide a basis for the further understanding of the application of ACP in anti-cancer.
Collapse
Affiliation(s)
- Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yi Lu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Chongwang Ran
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peili Tang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China
| | - Ju Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Xueyun Duan
- Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
14
|
Bhattacharya A, Chowdhury A, Chaudhury K, Shukla PC. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188581. [PMID: 34144130 DOI: 10.1016/j.bbcan.2021.188581] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel pharmacological target for hypercholesterolemia and associated cardiovascular diseases owing to its function to mediate the degradation of low-density lipoprotein receptor (LDLR). Findings over the past two decades have identified novel binding partners and cellular functions of PCSK9. Notably, PCSK9 is aberrantly expressed in a broad spectrum of cancers and apparently contributes to disease prognosis, indicating that PCSK9 could be a valuable cancer biomarker. Experimental studies demonstrate the contribution of PCSK9 in various aspects of cancer, including cell proliferation, apoptosis, invasion, metastasis, anti-tumor immunity and radioresistance, strengthening the idea that PCSK9 could be a promising therapeutic target. Here, we comprehensively review the involvement of PCSK9 in cancer, summarizing its aberrant expression, association with disease prognosis, biological functions and underlying mechanisms in various malignancies. Besides, we highlight the potential of PCSK9 as a future therapeutic target in personalized cancer medicine.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhirup Chowdhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
15
|
Wang S, Fu JL, Hao HF, Jiao YN, Li PP, Han SY. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol Res 2021; 170:105728. [PMID: 34119622 DOI: 10.1016/j.phrs.2021.105728] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
16
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
He M, Hu J, Fang T, Tang W, Lv B, Yang B, Xia J. Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with GSTP1 and suppressing the JNK signaling pathway. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0313. [PMID: 33893729 PMCID: PMC8763006 DOI: 10.20892/j.issn.2095-3941.2020.0313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/31/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Protein convertase subtilisin/Kexin type 9 (PCSK9) has been found to be closely associated with the occurrence and development of numerous tumors. However, the precise role of PCSK9 and its relationship to the development of hepatocellular carcinoma (HCC) remain largely unknown. This study aimed to clarify these issues. METHODS The expression levels of PCSK9 in HCC tissues and HCC cell lines were determined by the quantitative reverse transcription polymerase chain reaction, Western blot, and immunohistochemical analyses, and the effects of PCSK9 expression on HCC cell biological traits were investigated by overexpressing and downregulating PCSK9 expression in vivo and in vitro. Additionally, the mechanism by which PCSK9 mediated dissociation of glutathione S-transferase Pi 1 (GSTP1) dimers and phosphorylation of the Jun N-terminal kinase (JNK) pathway components were investigated. RESULTS PCSK9 expression levels were significantly lower in HCC tissues than in adjacent non-tumor samples. In vivo and in vitro experiments suggested that PCSK9 inhibited HCC cell proliferation and metastasis. Further analysis showed that PCSK9 interacted with GSTP1 and promoted GSTP1 dimer dissociation and JNK signaling pathway inactivation in HCC cells. Moreover, the relationships between PCSK9 protein expressions and clinical outcomes were investigated. The PCSK9-lo group displayed a significantly shorter overall survival (OS; median OS: 64.2 months vs. 83.2 months; log-rank statistic: 4.237; P = 0.04) and recurrence-free survival (RFS; median RFS: 26.5 months vs. 46.6 months; log-rank statistic: 10.498; P = 0.001) time than the PCSK9-hi group. CONCLUSIONS PCSK9 inhibited HCC cell proliferation, cell cycle progression, and apoptosis by interacting with GSTP1 and suppressing JNK signaling, suggesting that PCSK9 might act as a tumor suppressor and be a therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Mingyan He
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Hu
- Department of Cardiology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenqing Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bei Lv
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
18
|
Pan CF, Zhang X, Wang JW, Yang T, Zhong LLD, Shen KP. Weichang'an Formula Inhibits Tumor Growth in Combination with Bevacizumab in a Murine Model of Colon Cancer-Making up for the Deficiency of Bevacizumab by inhibiting VEGFR-1. Front Pharmacol 2021; 11:512598. [PMID: 33746736 PMCID: PMC7970919 DOI: 10.3389/fphar.2020.512598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Aim: Angiogenesis plays an important role in the initiation, development, and metastasis of malignant tumors. Antiangiogenic drugs combined with immune therapy are considered to have a synergistic effect on anti-tumor strategy. Weichang’an formula (WCAF) is a prescription of traditional Chinese medicine (TCM) based on pharmaceutical screening and clinical experience. The aim of this study is to examine the effect of WCAF and its combined action with Bevacizumab (BEV) in colorectal cancer, and to identify the possible mechanism of action. Methods: A human colon cancer cell (HCT 116) subcutaneous xenograft model was established in BALB/c-nu/nu mice. Tumor-bearing mice were randomized into each of four groups: control, WCAF treated, BEV treated, and WCAF plus BEV treated. Apoptosis was detected by TUNEL assay. Western blot was used to assess the protein levels of Leptin-R, STAT3, p-STAT3, BCL-2, and VEGFR-1. Immunohistochemistry was used to detect the micro-vessel density (MVD) and AKT1. Leptin and Vascular endothelial growth factor A (VEGF-A) mRNA expression were detected by Real-time PCR (RT-PCR). A network pharmacology study and validation assay were carried out to find the underlying molecular targets of WCAF related to immune regulation. Results: Compared with the control group, WCAF reduced tumor weight and volume, as well as promoted tumor cell apoptosis. WCAF treatment decreased the mRNA expression of Leptin and VEGF-A, while the protein levels of CD31, LEP-R, VEGFR-1, STAT3, and p-STAT3 were decreased in tumor tissues. In addition, VEGFR-1 protein expression was decreased in the WCAF group and the WCAF plus BEV group but not in the BEV group. The combination of WCAF and BEV demonstrated a partial additive anti-tumor effect in vivo. The pharmacological network also found there are 26 WCAF target proteins related to cancer immune and 12 cancer immune related pathways. The AKT1 protein expression in the WCAF and WCAF + BEV groups were significantly lower than the that in the control group (p < 0.01). Conclusion: WCAF can inhibit tumor growth and promote apoptosis and inhibit tumor angiogenesis in subcutaneous xenografts of human colon cancer HCT-116 in nude mice. WCAF also makes up for the deficiency of BEV by inhibiting VEGFR-1. The VEGFR-1 expression between the combination group and BEV alone achieved statistically significant difference (p < 0.01). Combined with BEV, WCAF showed a partial additive anti-tumor effect. The mechanism may be related to Leptin/STAT3 signal transduction, VEGF-A, VEGFR-1 and WCAF target proteins related to cancer immune such as leptin and AKT1.
Collapse
Affiliation(s)
- Chuan-Fang Pan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Nursing, Shengli College, China University of Petroleum, Dongying, China
| | - Jing-Wen Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Ke-Ping Shen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Chen Y, Cai X, Li G, He X, Yu X, Yu X, Xiao Q, Xiang Z, Wang C. Chemical constituents of radix Actinidia chinensis planch by UPLC-QTOF-MS. Biomed Chromatogr 2021; 35:e5103. [PMID: 33629744 DOI: 10.1002/bmc.5103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Radix Actinidia decoction and its prescriptions are used to treat tumors and other diseases. Although some chemical components have been isolated from Radix Actinidia, systematic analysis of its chemical components has not been reported, which hinders the basic research on its effective substances and its quality control. In this work, a UPLC-QTOF-MS method was employed to profile and characterize the chemical constituents of water extracts from Radix Actinidia Chinensis Planch (RACP). We unambiguously or tentatively identified 295 chemical components from RACP, including 46 pentacyclic triterpenes, 72 flavonoids, 53 phenolic acids, 24 coumarins, three anthraquinones and other compounds. Most of the chemical components have not been described so far in Actinidia. More than 180 phytochemicals are reported in Actinidia for the first time. 2α,3α,24-trihydroxyurs-12-en-28-oic acid, asiatic acid, syringic acid, fraxin, esculetin, 5,7-dihydroxychromone, esculin, (+)-catechin, (-)-epi-catechin, vanillic acid, ferulic acid, protocatechuic acid and rutin were unambiguously identified by comparison with the reference standards. Catechin derivatives, coumarin derivatives and phenolic acid derivatives were the main water-soluble components in RACP. This study broadened the chemical profiles of RACP, and laid the foundation for subsequent research on the effective components and their mechanism of action. This work also provides an important reference for the quality control and evaluation of RACP.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guowei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xixi Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinwei Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiming Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Wu J, Guo L, Qiu X, Ren Y, Li F, Cui W, Song S. Genkwadaphnin inhibits growth and invasion in hepatocellular carcinoma by blocking DHCR24-mediated cholesterol biosynthesis and lipid rafts formation. Br J Cancer 2020; 123:1673-1685. [PMID: 32958824 PMCID: PMC7686505 DOI: 10.1038/s41416-020-01085-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The liver is the central organ for cholesterol homoeostasis, and its dysfunction might cause liver pathological alterations including hepatocellular carcinomas (HCCs). 3β-hydroxysteroid-Δ24 reductase (DHCR24), a crucial enzyme of cholesterol biosynthetic pathway, is involved in lipid rafts formation. Genkwadaphnin (GD) is a daphnane diterpene isolated from the flower buds of Daphne genkwa Siebold et Zuccarini (Thymelaeaceae). METHODS We evaluated in vitro and in vivo effect of GD using HCC cells and BALB/c nude mice. Microarray assays were used to identify the differential genes by GD. DHCR24 expression and activity, cholesterol level, lipid rafts structure and the role of DHCR24 in human HCC specimens were tested by various molecular biology techniques. RESULTS High expression of DHCR24 in human HCC specimens was correlated with poor clinical outcome. Interfering DHCR24 altered growth and migration of HCC cells. GD inhibited growth and metastasis of HCC cells both in vivo and in vitro. GD suppressed DHCR24 expression and activity, as well as DHCR24-mediated cholesterol biosynthesis and lipid rafts formation, then further inhibited HCC cell invasion and migration. CONCLUSIONS Our data suggest that DHCR24-mediated cholesterol metabolism might be an effective therapeutic strategy in HCC, and natural product GD might be a promising agent for HCC therapy.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ling Guo
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaoran Qiu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yong Ren
- Department of Pathology, Central Theater Command General Hospital PLA, Wuhan, Hubei, 430070, People's Republic of China
| | - Feifei Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
21
|
Wang L, Hou J, Wang J, Zhu Z, Zhang W, Zhang X, Shen H, Wang X. Regulatory roles of HSPA6 in Actinidia chinensis Planch. root extract (acRoots)-inhibited lung cancer proliferation. Clin Transl Med 2020; 10:e46. [PMID: 32508044 PMCID: PMC7403824 DOI: 10.1002/ctm2.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Actinidia chinensis Planch. root extract (acRoots) as one of Chinese traditional medications has been applied for antitumor therapy for decades, although the exact mechanisms have not been revealed. Our present study aimed to define the inhibitory specificity and pattern of acRoots in the lung cancer cell lines by comparing 40 types of cancer cell lines, select acRoots‐associated inflammation target genes from transcriptional profiles of acRoots‐sensitive and less‐sensitive lung cancer cell lines, and validate the correlation of acRoots‐associated inflammation target genes with prognosis of patients with lung cancer. We selected acRoots‐sensitive (H1299) and less‐sensitive lung cancer cells (H460) and found that the sensitivity was associated with the appearance of p53. The heat shock 70 kDa protein 6 (HSPA6) was defined as a critical factor in regulating cell sensitivity probably through the interaction with intra‐HSPA family members, inter‐HSP family members, and other families. The degree of cell sensitivity to acRoots increased in both sensitive and less‐sensitive cells after deletion of HSPA6 genes. Thus, our data indicate that HSPA6 and HSPA6‐dominated molecular network can be an alternative to modify cell sensitivity to drugs.
Collapse
Affiliation(s)
- Lingyan Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiayun Hou
- Zhongshan Hospital Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghua Zhu
- Department of Respiratory, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Shen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Respiratory, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
He X, Fang J, Chen X, Zhao Z, Li Y, Meng Y, Huang L. Actinidia chinensis Planch.: A Review of Chemistry and Pharmacology. Front Pharmacol 2019; 10:1236. [PMID: 31736750 PMCID: PMC6833939 DOI: 10.3389/fphar.2019.01236] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Actinidia chinensis Planch. (A. chinensis), commonly known as Chinese kiwifruit, is a China native fruit, which becomes increasingly popular due to attractive economic, nutritional, and health benefits properties. The whole plant including fruits, leaves, vines, and roots of A. chinensis are used mainly as food or additive in food products and as folk medicine in China. It is a good source of triterpenoids, polyphenols, vitamin C, carbohydrate, amino acid, and minerals. These constituents render the A. chinensis with a wide range of pharmacological properties including antitumor, antioxidant, anti-inflammatory, immunoregulatory, hypolipemic, antidiabetic, and cardiovascular protective activities, suggesting that it may possibly be value in the prevention and treatment of pathologies associated to cancer, oxidative stress, and aging. This minireview provides a brief knowledge about the recent advances in chemistry, biological activities, utilization, and storage of Chinese kiwifruit. Future research directions on how to better use of this crop are suggested.
Collapse
Affiliation(s)
- Xirui He
- Department of Bioengineering, Zhuhai Campus Zunyi Medical University, Zhuhai, China
| | - Jiacheng Fang
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Xufei Chen
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Zefeng Zhao
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Yongsheng Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yibing Meng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Linhong Huang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Fang T, Fang Y, Xu X, He M, Zhao Z, Huang P, Yuan F, Guo M, Yang B, Xia J. Actinidia chinensis Planch root extract attenuates proliferation and metastasis of hepatocellular carcinoma by inhibiting epithelial-mesenchymal transition. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:474-485. [PMID: 30415058 DOI: 10.1016/j.jep.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated the potent anticancer activity of various Chinese herbs. Actinidia chinensis Planch root (acRoots), a traditional Chinese medicine, functions as an antitumor and detoxifying agent and plays a role in diuresis and hemostasis. Treatment with acRoots confers strong inhibition of tumor growth in various forms of cancer. Here, we evaluated the anticancer activity and molecular mechanisms of Actinidia chinensis Planch root extract (acRoots) on hepatocellular carcinoma (HCC). MATERIALS AND METHODS Our previous study used mRNA chip analyses to identify the genes regulated by acRoots. Further analyses of the altered genes identified a key regulator of genes in response to acRoots. Here, the effects of acRoots on HCC cell proliferation, migration, invasion, and apoptosis were evaluated by cell counting, Transwell and apoptosis assays. In addition, the in vivo anti-HCC effects of acRoots were investigated using an HCC animal model. The expression of a key regulator of genes in response to acRoots was analyzed using quantitative polymerase chain reaction and western blotting. RESULTS Treatment with acRoots (10 mg/mL) had no cytotoxicity in L02 cells and had a positive effect on L02 cell viability; however, it significantly inhibited HCC cell proliferation. Treatment with acRoots downregulated DLX2 gene expression in HCC cells, and high DLX2 expression was associated with advanced stage and poor prognosis in patients with HCC. Treatment with acRoots inhibited proliferation, invasion and migration, clonality, and the epithelial-to-mesenchymal transition, and promoted the apoptosis of HCC cells by downregulating DLX2 expression. HCC cells with higher DLX2 expression were more sensitive to acRoots. CONCLUSIONS acRoots inhibited the malignant biological behavior of HCC cells via regulation of the epithelial-mesenchymal transition (EMT) by DLX2.
Collapse
Affiliation(s)
- Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Yuan Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Xiaojing Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Mingyan He
- Department of gastroenterology, The First Affiliated Hospital of Nanchang university, Jiangxi 330006, PR China.
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China; Minhang Hospital; Shanghai Medical School of Fudan University, Shanghai 201100, PR China.
| |
Collapse
|
24
|
Yang X, Zhang J, Chen L, Wu Q, Yu C. Chitosan oligosaccharides enhance lipid droplets via down-regulation of PCSK9 gene expression in HepG2 cells. Exp Cell Res 2018; 366:152-160. [PMID: 29548750 DOI: 10.1016/j.yexcr.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023]
Abstract
Chitosan oligosaccharides (COS), linear polymers of N-acetyl-D-glucosamine and deacetylated glucosamine, exhibit diverse pharmacological effects such as antimicrobial, antitumor, antioxidant and anti-inflammatory activities. Here, we explored their hypocholesterolemic effects in vivo and the molecular mechanisms of COS in hepatic cells. Our in vivo study of dyslipidemic ApoE-/- male mice showed that COS treatment of 500 mg kg-1 d-1 for 4 weeks clearly reduced the lipid deposits in the aorta and significantly decreased the hepatic proprotein convertase subtilisin/kexin type 9 (PCSK9) protein levels versus HFD groups (p < 0.05). To elucidate the mechanisms behind these effects, the HepG2 cell line was treated with COS. We found that COS (200 μg/ml) increased the amount of cell-surface low-density lipoprotein receptor (LDLR) and enhanced the lipid droplets in HepG2 cells (p < 0.05). The mRNA levels of LDLR and HMG-CoA protein levels were not altered, and the mRNA levels of PCSK9 were down-regulated by COS treatment for 24 h. We also observed that the expression levels of SREBP-2 (125 kD) and HNF-1α were increased in total cell lysates, but nuclear SREBP-2 (nSREBP-2, 68 kD, the active subunit of SREBP-2) levels were decreased and FOXO3a levels increased in nuclear lysates after COS treatment for 24 h. We demonstrated that one of the reasons for regulation of lipid transfer with COS is that FOXO3a levels are up-regulated by COS, leading to a reduction in the PCSK9 promoter binding capacity of HNF-1α and thus suppressing PCSK9 gene expression, up-regulating LDLR levels, and enhancing the lipid droplets in HepG2 cells. In addition, decreased expression of the PCSK9 gene was also contributed to by down-regulation of SREBP-2 by COS. We further confirmed the effect of suppression of PCSK9 expression by COS by utilizing RNA interference to silence HNF-1α and SREBP-2. Finally, to the best of our knowledge, we are the first to demonstrate that PCSK9 expression and LDLR activity are synergistically changed by a combination of HNF-1α and SREBP-2 after COS treatment. Our findings indicate that COS may regulate PCSK9 to modulate hepatic LDLR abundance and activity.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jun Zhang
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Linmu Chen
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Wu
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
25
|
Lv J, Wang L, Shen H, Wang X. Regulatory roles of OASL in lung cancer cell sensitivity to Actinidia chinensis Planch root extract (acRoots). Cell Biol Toxicol 2018; 34:207-218. [DOI: 10.1007/s10565-018-9422-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 01/29/2023]
|