1
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Singh M, Afonso J, Sharma D, Gupta R, Kumar V, Rani R, Baltazar F, Kumar V. Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol 2023; 90:1-14. [PMID: 36706846 DOI: 10.1016/j.semcancer.2023.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
As a result of metabolic reprogramming, cancer cells display high rates of glycolysis, causing an excess production of lactate along with an increase in extracellular acidity. Proton-linked monocarboxylate transporters (MCTs) are crucial in the maintenance of this metabolic phenotype, by mediating the proton-coupled lactate flux across cell membranes, also contributing to cancer cell pH regulation. Among the proteins codified by the SLC16 gene family, MCT1 and MCT4 isoforms are the most explored in cancers, being overexpressed in many cancer types, from solid tumours to haematological malignancies. Similarly to what occurs in particular physiological settings, MCT1 and MCT4 are able to mediate lactate shuttles among cancer cells, and also between cancer and stromal cells in the tumour microenvironment. This form of metabolic cooperation is responsible for important cancer aggressiveness features, such as cell proliferation, survival, angiogenesis, migration, invasion, metastasis, immune tolerance and therapy resistance. The growing understanding of MCT functions and regulation is offering a new path to the design of novel inhibitors that can be foreseen in clinical practices. This review provides an overview of the role of MCT isoforms in cancer and summarizes the recent advances in their pharmacological targeting, highlighting the potential of new potent and selective MCT1 and/or MCT4 inhibitors in cancer therapeutics, and anticipating its inclusion in clinical practice.
Collapse
Affiliation(s)
- Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Dolly Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India; Amity Institute of Biotechnology, Amity University UP, Sector-125, Noida, India-201313
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India
| | - Vivek Kumar
- Department of Chemistry, DBG College, Sector-18, Panipat, Haryana, India
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida 201306, UP, India.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India.
| |
Collapse
|
3
|
Silva A, Cerqueira MC, Rosa B, Sobral C, Pinto-Ribeiro F, Costa MF, Baltazar F, Afonso J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065141. [PMID: 36982217 PMCID: PMC10049181 DOI: 10.3390/ijms24065141] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Energy production by cancer is driven by accelerated glycolysis, independently of oxygen levels, which results in increased lactate production. Lactate is shuttled to and from cancer cells via monocarboxylate transporters (MCTs). MCT1 works both as an importer and an extruder of lactate, being widely studied in recent years and generally associated with a cancer aggressiveness phenotype. The aim of this systematic review was to assess the prognostic value of MCT1 immunoexpression in different malignancies. Study collection was performed by searching nine different databases (PubMed, EMBASE, ScienceDirect, Scopus, Cochrane Library, Web of Science, OVID, TRIP and PsycINFO), using the keywords "cancer", "Monocarboxylate transporter 1", "SLC16A1" and "prognosis". Results showed that MCT1 is an indicator of poor prognosis and decreased survival for cancer patients in sixteen types of malignancies; associations between the transporter's overexpression and larger tumour sizes, higher disease stage/grade and metastasis occurrence were also frequently observed. Yet, MCT1 overexpression correlated with better outcomes in colorectal cancer, pancreatic ductal adenocarcinoma and non-small cell lung cancer patients. These results support the applicability of MCT1 as a biomarker of prognosis, although larger cohorts would be necessary to validate the overall role of MCT1 as an outcome predictor.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Sobral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Caligiuri I, Vincenzo C, Asano T, Kumar V, Rizzolio F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Semin Cancer Biol 2023; 91:143-157. [PMID: 36871635 DOI: 10.1016/j.semcancer.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.
Collapse
Affiliation(s)
- Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Canzonieri Vincenzo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tomochiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy.
| |
Collapse
|
5
|
Grasa L, Chueca E, Arechavaleta S, García-González MA, Sáenz MÁ, Valero A, Hördnler C, Lanas Á, Piazuelo E. Antitumor effects of lactate transport inhibition on esophageal adenocarcinoma cells. J Physiol Biochem 2023; 79:147-161. [PMID: 36342616 PMCID: PMC9905156 DOI: 10.1007/s13105-022-00931-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
As a consequence of altered glucose metabolism, cancer cell intake is increased, producing large amounts of lactate which is pumped out the cytosol by monocarboxylate transporters (MCTs). MCT 1 and MCT4 are frequently overexpressed in tumors, and recently, MCT inhibition has been reported to exert antineoplastic effects. In the present study, MCT1 and MCT4 levels were assessed in esophageal adenocarcinoma (EAC) cells and the effects of the MCT-1 selective inhibitor AZD3965, hypoxia, and a glucose overload were evaluated in vitro. Two EAC cell lines (OE33 and OACM5.1C) were treated with AZD3965 (10-100 nM) under different conditions (normoxia/hypoxia) and also different glucose concentrations, and parameters of cytotoxicity, oxidative stress, intracellular pH (pHi), and lactate levels were evaluated. MCT1 was present in both cell lines whereas MCT4 was expressed in OE33 cells and only in a small proportion of OACM5.1C cells. Glucose addition did not have any effect on apoptosis nor cell proliferation. AZD3965 increased apoptosis and reduced proliferation of OACM5.1C cells, effects which were abrogated when cells were growing in hypoxia. MCT1 inhibition increased intracellular lactate levels in all the cells evaluated, but this increase was higher in cells expressing only MCT1 and did not affect oxidative stress. AZD3965 induced a decrease in pHi of cells displaying low levels of MCT4 and also increased the sodium/hydrogen exchanger 1 (NHE-1) expression on these cells. These data provide in vitro evidence supporting the potential of MCT inhibitors as novel antineoplastic drugs for EAC and highlight the importance of achieving a complete MCT inhibition.
Collapse
Affiliation(s)
- Laura Grasa
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain.
- Faculty of Veterinary Medicine, University of Zaragoza, Calle Miguel Servet, 177, 50013, Saragossa, Spain.
| | - Eduardo Chueca
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Samantha Arechavaleta
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - María Asunción García-González
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
- IACS Aragón, Instituto Aragonés de Ciencias de La Salud, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
| | - María Ángeles Sáenz
- Faculty of Medicine, University of Zaragoza, Calle de Pedro Cerbuna, 12, 50009, Saragossa, Spain
| | - Alberto Valero
- Servicio de Patología, Hospital Universitario Miguel Servet, Paseo Isabel La Católica 1-3, 50009, Saragossa, Spain
| | - Carlos Hördnler
- Servicio de Patología, Hospital Universitario Miguel Servet, Paseo Isabel La Católica 1-3, 50009, Saragossa, Spain
| | - Ángel Lanas
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
- Faculty of Medicine, University of Zaragoza, Calle de Pedro Cerbuna, 12, 50009, Saragossa, Spain
| | - Elena Piazuelo
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
- IACS Aragón, Instituto Aragonés de Ciencias de La Salud, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
| |
Collapse
|
6
|
Lin W, Lu X, Yang H, Huang L, Huang W, Tang Y, Liu S, Wang H, Zhang Y. Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. Int J Mol Med 2022; 50:124. [PMID: 36004461 PMCID: PMC9448297 DOI: 10.3892/ijmm.2022.5180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer heterogeneity has been proposed to be one of the main causes of metastatic dissemination and therapy failure. However, the underlying mechanisms of this phenomenon remain poorly understood. Melanoma is an aggressive malignancy with a high heterogeneity and metastatic potential. Therefore, the present study investigated the possible association between cancer heterogeneity and metastasis in melanoma. In total, two novel Chinese oral mucosal melanoma (COMM) cell lines, namely COMM-1 and COMM-2, were established for exploring methods into preventing the loss of cellular heterogeneity caused by long-term cell culture. Each cell line was grown under two different models of culture, which yielded two subtypes, one exhibited an adhesive morphology (COMM-AD), whereas the other was grown in suspension (COMM-SUS). Compared with the COMM-AD cells, the COMM-SUS cells exhibited higher metastatic capacities and autofluorescence. Further investigations indicated that the COMM-SUS cells exhibited metabolic reprogramming by taking up lactate produced by COMM-AD cells at increased levels to accumulate NADH through monocarboxylate transporter 1, whilst also increasing NADPH levels through the pentose phosphate pathway (PPP). Additionally, increased NADH and NADPH levels in the COMM-SUS cells, coupled with the upregulation of the anti-ferroptotic proteins, glutathione peroxidase 4 and ferroptosis suppressor protein 1, enabled them to resist ferroptotic cell death induced by oxidative stress during hematogenous dissemination. The inhibition of ferroptosis was found to substantially increase the metastatic capacity of COMM-AD cells. Furthermore, suppressing lactate uptake and impairing PPP activation significantly decreased the metastatic potential of the COMM-SUS cells. Thus, the present study on metabolic heterogeneity in COMM cells potentially provides a novel perspective for exploring this mechanism underlying cancer metastasis.
Collapse
Affiliation(s)
- Weifan Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiangwan Lu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Hang Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Linxuan Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Wuheng Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Yuluan Tang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Situn Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guanghua Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
7
|
Hiltunen N, Rintala J, Väyrynen JP, Böhm J, Karttunen TJ, Huhta H, Helminen O. Monocarboxylate Transporters 1 and 4 and Prognosis in Small Bowel Neuroendocrine Tumors. Cancers (Basel) 2022; 14:2552. [PMID: 35626155 PMCID: PMC9139933 DOI: 10.3390/cancers14102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Monocarboxylate transporters (MCTs) are cell membrane proteins transporting lactate, pyruvate, and ketone bodies across the plasma membrane. The prognostic role of MCTs in neuroendocrine tumors is unknown. We aimed to analyze MCT1 and MCT4 expression in small bowel neuroendocrine tumors (SB-NETs). The cohort included 109 SB-NETs and 61 SB-NET lymph node metastases from two Finnish hospitals. Tumor samples were immunohistochemically stained with MCT1 and MCT4 monoclonal antibodies. The staining intensity, percentage of positive cells, and stromal staining were assessed. MCT1 and MCT4 scores (0, 1 or 2) were composed based on the staining intensity and the percentage of positive cells. Survival analyses were performed with the Kaplan-Meier method and Cox regression, adjusted for confounders. The primary outcome was disease-specific survival (DSS). A high MCT4 intensity in SB-NETs was associated with better DSS when compared to low intensity (85.7 vs. 56.6%, p = 0.020). A high MCT4 percentage of positive cells resulted in better DSS when compared to a low percentage (77.4 vs. 49.1%, p = 0.059). MCT4 scores 0, 1, and 2 showed DSS of 52.8 vs. 58.8 vs. 100% (p = 0.025), respectively. After adjusting for confounders, the mortality hazard was lowest in the patients with a high MCT4 score. MCT1 showed no association with survival. According to our study, a high MCT4 expression is associated with an improved prognosis in SB-NETs.
Collapse
Affiliation(s)
- Niko Hiltunen
- Cancer and Translational Medicine Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland; (J.R.); (J.P.V.); (T.J.K.); (H.H.); (O.H.)
| | - Jukka Rintala
- Cancer and Translational Medicine Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland; (J.R.); (J.P.V.); (T.J.K.); (H.H.); (O.H.)
- Surgery Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| | - Juha P. Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland; (J.R.); (J.P.V.); (T.J.K.); (H.H.); (O.H.)
| | - Jan Böhm
- Department of Pathology, Central Finland Central Hospital, 40620 Jyväskylä, Finland;
| | - Tuomo J. Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland; (J.R.); (J.P.V.); (T.J.K.); (H.H.); (O.H.)
| | - Heikki Huhta
- Cancer and Translational Medicine Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland; (J.R.); (J.P.V.); (T.J.K.); (H.H.); (O.H.)
| | - Olli Helminen
- Cancer and Translational Medicine Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland; (J.R.); (J.P.V.); (T.J.K.); (H.H.); (O.H.)
- Surgery Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
8
|
Wang Y, Qin L, Chen W, Chen Q, Sun J, Wang G. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem 2021; 226:113806. [PMID: 34517305 DOI: 10.1016/j.ejmech.2021.113806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Poor selectivity, potential systemic toxicity and drug resistance are the main challenges associated with chemotherapeutic drugs. MCT1 and MCT4 and LAT1 play vital roles in tumour metabolism and growth by taking up nutrients and are thus potential targets for tumour therapy. An increasing number of studies have shown the feasibility of including these transporters as components of tumour-targeting therapy. Here, we summarize the recent progress in MCT1-, MCT4-and LAT1-based therapeutic strategies. First, protein structures, expression, relationships with cancer, and substrate characteristics are introduced. Then, different drug targeting and delivery strategies using these proteins have been reviewed, including designing protein inhibitors, prodrugs and nanoparticles. Finally, a dual targeted strategy is discussed because these proteins exert a synergistic effect on tumour proliferation. This article concentrates on tumour treatments targeting MCT1, MCT4 and LAT1 and delivery techniques for improving the antitumour effect. These innovative tactics represent current state-of-the-art developments in transporter-based antitumour drugs.
Collapse
Affiliation(s)
- Yang Wang
- Personnel Department, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Liuxin Qin
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Weiwei Chen
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Jin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
9
|
Nortunen M, Parkkila S, Saarnio J, Huhta H, Karttunen TJ. Carbonic Anhydrases II and IX in Non-ampullary Duodenal Adenomas and Adenocarcinoma. J Histochem Cytochem 2021; 69:677-690. [PMID: 34636283 DOI: 10.1369/00221554211050133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-ampullary duodenal adenocarcinoma (DAC) is a rare malignancy. Little information is available concerning the histopathological prognostic factors associated with DAC. Carbonic anhydrases (CAs) are metalloenzymes catalyzing the universal reaction of CO2 hydration. Isozymes CAII, CAIX, and CAXII are associated with prognosis in various cancers. Our aim was to analyze the immunohistochemical expressions of CAII, CAIX, and CAXII in normal duodenal epithelium, duodenal adenomas, and adenocarcinoma and their associations with clinicopathological variables and survival. Our retrospective study included all 27 DACs treated in Oulu University Hospital during years 2000-2020. For comparison, samples of 42 non-ampullary adenomas were collected. CAII expression was low in duodenal adenomas and adenocarcinoma. CAIX expression in adenomas and adenocarcinoma was comparable with the high expression of normal duodenal crypts. Expression patterns in carcinomas were largely not related to clinicopathological features. However, low expression of CAII associated with poorer differentiation of the tumor (p=0.049) and low expression of CAIX showed a trend for association with nodal spread, although statistical significance was not reached (p=0.091). CAII and CAIX lost their epithelial polarization and staining intensity in adenomas. CAXII expression was not detected in the studied samples. CAs were not associated with survival. The prognostic value of CAII and CAIX downregulation should be further investigated. Both isozymes may serve as biomarkers of epithelial dysplasia in the duodenum.
Collapse
Affiliation(s)
- Minna Nortunen
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University and Fimlab Ltd, Tampere University Hospital, Tampere, Finland (SP)
| | - Juha Saarnio
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
10
|
The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma. BIOLOGY 2021; 10:biology10080697. [PMID: 34439930 PMCID: PMC8389269 DOI: 10.3390/biology10080697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Esophageal adenocarcinoma has a poor 5-year survival rate and is among the highest mortality cancers. Changes in the esophageal microbiome have been associated with cancer pathogenesis; however, the molecular mechanism remains obscure. This review article critically analyzes the molecular mechanisms through which microbiota may mediate the development and progression of esophageal adenocarcinoma and its precursors-gastroesophageal reflux disease and Barrett’s esophagus. It summarizes changes in esophageal microbiome composition in normal and pathologic states and subsequently discusses the role of altered microbiota in disease progression. The potential role of esophageal microbiota in protecting against the development of esophageal adenocarcinoma is also discussed. By doing so, this article highlights specific directions for future research developing microbiome-mediated therapeutics for esophageal adenocarcinoma. Abstract Esophageal adenocarcinoma (EAC) is associated with poor overall five-year survival. The incidence of esophageal cancer is on the rise, especially in Western societies, and the pathophysiologic mechanisms by which EAC develops are of extreme interest. Several studies have proposed that the esophageal microbiome may play an important role in the pathophysiology of EAC, as well as its precursors—gastroesophageal reflux disease (GERD) and Barrett’s esophagus (BE). Gastrointestinal microbiomes altered by inflammatory states have been shown to mediate tumorigenesis directly and are now being considered as novel targets for both cancer treatment and prevention. Elucidating molecular mechanisms through which the esophageal microbiome potentiates the development of GERD, BE, and EAC will provide a foundation on which new therapeutic targets can be developed. This review summarizes current findings that elucidate the molecular mechanisms by which microbiota promote the pathogenesis of GERD, BE, and EAC, revealing potential directions for additional research on the microbiome-mediated pathophysiology of EAC.
Collapse
|
11
|
Eskuri M, Kemi N, Kauppila JH. Monocarboxylate Transporters 1 and 4 and MTCO1 in Gastric Cancer. Cancers (Basel) 2021; 13:cancers13092142. [PMID: 33946786 PMCID: PMC8124264 DOI: 10.3390/cancers13092142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The expression of monocarboxylate transporters (MCTs) are reported in a variety of cancers and suggested as a therapeutic target for cancer treatment. However, previous study results in gastric cancer are contradictory. In this study, we evaluated the expression of MCT1, MCT4, and Mitochondrial cytochrome c oxidase (MTCO1) and their association with clinicopathological parameters and prognostic significance in a cohort of 568 surgically treated gastric cancer patients. The results suggest that monocarboxylate transporters and MTCO1 are associated with gastric cancer progression but have no independent prognostic relevance. Abstract Background: Monocarboxylate transporters (MCTs) appear to play an important role in tumor development and aggressiveness. The present study aimed to evaluate associations between cytoplasmic MCT1, MCT4, and mitochondrial cytochrome c oxidase (MTCO1) expression and clinicopathological variables or survival in gastric cancer. Material and methods: A total of 568 gastric adenocarcinoma patients were included in this retrospective cohort study. Protein expressions were detected by immunohistochemical staining. The patients were divided into low expression and high expression groups by median value. The Chi-squared test was used to compare categorical variables. The T-test was used to compare continuous variables. Expressions were analyzed in relation to 5-year survival and overall survival. Cox regression provided HRs and 95% CIs, adjusted for confounders. Results: High cytoplasmic MCT1 expression was associated statistically significantly with higher T-class (p = 0.020). High cytoplasmic MCT4 expression was associated statistically significantly with positive lymph node status (p = 0.005) and was more common in Lauren’s intestinal type (p < 0.001). Low cytoplasmic MTCO1 expression was associated statistically significantly with positive distant metastases (p = 0.030), and high cytoplasmic MTCO1 expression was associated more often with intestinal type (p = 0.044). However, MCT1, MCT4, and MTCO1 were not associated with survival. Conclusions: Monocarboxylate receptors seem to be associated with gastric cancer progression but have no independent prognostic relevance.
Collapse
Affiliation(s)
- Maarit Eskuri
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland;
- Correspondence: ; Tel.: +358-294-480-000
| | - Niko Kemi
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland;
| | - Joonas H. Kauppila
- Surgery Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland;
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| |
Collapse
|
12
|
Correlations between glycolysis with clinical traits and immune function in bladder urothelial carcinoma. Biosci Rep 2021; 41:227821. [PMID: 33558879 PMCID: PMC7897921 DOI: 10.1042/bsr20203982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glycolysis was a representative hallmark in the tumor microenvironment (TME), and we aimed to explore the correlations between glycolysis with immune activity and clinical traits in bladder urothelial carcinoma (BLCA). METHODS Our study obtained glycolysis scores for each BLCA samples from TCGA by a single-sample gene set enrichment analysis (ssGSEA) algorithm, based on a glycolytic gene set. The relationship between glycolysis with prognosis, clinical characteristics, and immune function were investigated subsequently. RESULTS We found that enhanced glycolysis was associated with poor prognosis and metastasis in BLCA. Moreover, glycolysis had a close correlation with immune function, and enhanced glycolysis increased immune activities. In other words, glycolysis had a positive correlation with immune activities. Immune checkpoints such as IDO1, CD274, were up-regulated in high-glycolysis group as well. CONCLUSION We speculated that in BLCA, elevated glycolysis enhanced immune function, which caused tumor cells to overexpress immune checkpoints to evade immune surveillance. Inhibition of glycolysis might be a promising assistant for immunotherapy in bladder cancer.
Collapse
|
13
|
Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett 2020; 500:75-86. [PMID: 33347908 DOI: 10.1016/j.canlet.2020.12.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment is of critical importance in cancer development and progression and includes the surrounding stromal and immune cells, extracellular matrix, and the milieu of metabolites and signalling molecules in the intercellular space. To support sustained mitotic activity cancer cells must reconfigure their metabolic phenotype. Lactate is the major by-product of such metabolic alterations and consequently, accumulates in the tumour. Lactate actively contributes to immune evasion, a hallmark of cancer, by directly inhibiting immune cell cytotoxicity and proliferation. Furthermore, lactate can recruit and induce immunosuppressive cell types, such as regulatory T cells, tumour-associated macrophages, and myeloid-derived suppressor cells which further suppress anti-tumour immune responses. Given its roles in oncogenesis, measuring intratumoural and systemic lactate levels has shown promise as a both predictive and prognostic biomarker in several cancer types. The efficacies of many anti-cancer therapies are limited by an immunosuppressive TME in which lactate is a major contributor, therefore, targeting lactate metabolism is a priority. Developing inhibitors of key proteins in lactate metabolism such as GLUT1, hexokinase, LDH, MCT and HIF have shown promise in preclinical studies, however there is a corresponding lack of success in human trials so far. This may be explained by a weakness of preclinical models that fail to reproduce the complexities of metabolic interactions in natura. The future of these therapies may be as an adjunct to more conventional treatments.
Collapse
Affiliation(s)
- Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Claire L Donohoe
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland.
| |
Collapse
|
14
|
Dell'Anno I, Barone E, Mutti L, Rassl DM, Marciniak SJ, Silvestri R, Landi S, Gemignani F. Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report). J Transl Med 2020; 18:341. [PMID: 32887638 PMCID: PMC7650278 DOI: 10.1186/s12967-020-02487-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive neoplasm of the pleura, mainly related to asbestos exposure. As in other solid tumors, malignant cells exhibit high glucose uptake and glycolytic rates with increased lactic acid efflux into the interstitial space. Lactate transport into and out of cells, crucial to maintaining intracellular pH homeostasis and glycolysis, is carried out by monocarboxylate transporters (MCTs) and the chaperone basigin (CD147). We set out to examine the clinical significance of basigin, MCT1 and MCT4 in the context of MPM and to evaluate their expression in relation to the evolution of the disease. METHODS We used immunohistochemistry to measure the expression of basigin, MCT1 and MCT4 in a cohort of 135 individuals with MPM compared to a series of 15 non-MPM pleura specimens. Moreover, by Kaplan-Meier and Cox analyses we evaluated whether an expression over the average of these markers could be associated with the patients' overall survival (OS). RESULTS We detected positive staining of basigin, MCT1, and MCT4 in most MPM specimens. In particular, MCT4 was always positive in malignant tissues but undetectable in the 4 normal pleural specimens incorporated within the tissue microarray. This was confirmed in the additional series of 15 normal pleural samples. Moreover, MCT4 expression was significantly associated with reduced OS. CONCLUSION In this study, the tissue expression of basigin did not prove to be exploitable as a diagnostic or prognostic marker for MPM patients. The expression of MCT1 was not informative either, being tightly correlated with that of basigin. However, the expression of MCT4 showed promise as a diagnostic/therapeutic and prognostic biomarker.
Collapse
Affiliation(s)
- Irene Dell'Anno
- Department of Biology, University of Pisa, Pisa, Toscana, Italy
| | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Toscana, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
| | - Doris M Rassl
- Royal Papworth Hospital NHS Trust, Papworth Road, Cambridge Biomedical Campus, Cambridge, B2 0AY, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Toscana, Italy.
| | | |
Collapse
|
15
|
Zhou J, Shrestha P, Qiu Z, Harman DG, Teoh WC, Al-Sohaily S, Liem H, Turner I, Ho V. Distinct Microbiota Dysbiosis in Patients with Non-Erosive Reflux Disease and Esophageal Adenocarcinoma. J Clin Med 2020; 9:jcm9072162. [PMID: 32650561 PMCID: PMC7408827 DOI: 10.3390/jcm9072162] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Non-erosive reflux disease (NERD) and esophageal adenocarcinoma (EAC) are often regarded as bookends in the gastroesophageal reflux disease spectrum. However, there is limited clinical evidence to support this disease paradigm while the underlying mechanisms of disease progression remain unclear. In this study, we used 16S rRNA sequencing and mass-spectrometer-based proteomics to characterize the esophageal microbiota and host mucosa proteome, respectively. A total of 70 participants from four patient groups (NERD, reflux esophagitis, Barrett’s esophagus, and EAC) and a control group were analyzed. Our results showed a unique NERD microbiota composition, distinct to control and other groups. We speculate that an increase in sulfate-reducing Proteobacteria and Bacteroidetes along with hydrogen producer Dorea are associated with a mechanistic role in visceral hypersensitivity. We also observed a distinct EAC microbiota consisting of a high abundance of lactic acid-producing bacteria (Staphylococcus, Lactobacillus, Bifidobacterium, and Streptococcus), which may contribute towards carcinogenesis through dysregulated lactate metabolism. This study suggests the close relationship between esophageal mucosal microbiota and the appearance of pathologies of this organ.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Correspondence: ; Tel.: +61-2-4620-3865
| | - Prapti Shrestha
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
| | - Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2750, Australia;
| | - David G. Harman
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
| | - Wun-Chung Teoh
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Sam Al-Sohaily
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Han Liem
- Nepean Hospital, Kingswood, NSW 2747, Australia;
| | - Ian Turner
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (P.S.); (D.G.H.); (S.A.-S.); (I.T.); (V.H.)
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
16
|
Puri S, Juvale K. Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem 2020; 199:112393. [PMID: 32388280 DOI: 10.1016/j.ejmech.2020.112393] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Development of multidrug resistance (MDR) is one of the major causes leading to failure of cancer chemotherapy and radiotherapy. Monocarboxylate transporters (MCTs) MCT1 and MCT4, which are overexpressed in solid tumours, play a very important role in cancer cell survival and proliferation. These lactate transporters work complimentarily to drive lactate shuttle in tumour cells, which results in maintenance of H+ ion (pH) balance necessary for their survival. Inhibition of these transmembrane proteins has been demonstrated as a novel strategy to treat drug resistant solid cancers. Presently, only a few small molecule MCT1 inhibitors such as AZD3965 and AR-C155858 are known with clinical potential. Even lesser mention of MCT4 inhibitors, which include molecules having scaffolds such as pyrazole and indazole, is available in the literature. Current overview presents the status of recent developments undertaken in identification of efficacious MCT1 and/or MCT4 inhibitors as a potential anticancer therapy overcoming MDR. Further, detailed structure-activity relationships for different classes of compounds has been proposed to streamline the understandings learnt from ongoing research work. Through this review, we aim to highlight the importance of these excellent targets and facilitate future development of selective, potent and safe MCT1 and/or MCT4 inhibitors as promising chemotherapy for drug resistant cancer.
Collapse
Affiliation(s)
- Sachin Puri
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
17
|
Cai T, Zhang C, Zeng X, Zhao Z, Yan Y, Yu X, Wu L, Lin L, Pan H. Protective effects of Weipixiao decoction against MNNG-induced gastric precancerous lesions in rats. Biomed Pharmacother 2019; 120:109427. [PMID: 31648165 DOI: 10.1016/j.biopha.2019.109427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is recognized as one of the most common cancer. In-depth research of gastric precancerous lesions (GPL) plays an important role in preventing the occurrence of gastric cancer. Meanwhile, traditional treatment provides a novel sight in the prevention of occurrence and development of gastric cancer. The current study was designed to assess the effects of therapy with Weipixiao (WPX) decoction on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL rats and the underlying molecular mechanisms. After 10-weeks treatment, all rats were sacrificed. Histopathological changes of gastric tissue were assessed via hematoxylin-eosin (HE) and High-iron diamine-Alcian blue-Periodic acid-Schiff (HID-AB-PAS) staining. To be fully evidenced, RT-qPCR, Western blot and immunohistochemistry were used to detect the expressions of LDHA, CD147, HIF-1α, MCT4, PI3K, AKT, mTOR and miRNA-34a, which were crucial factors for evaluating GPL in the aspect of glycolysis pathogenesis. According to the results of HE and HID-AB-PAS staining, it could be confirmed that MNNG-induced GPL rats were obviously reversed by WPX decoction. Additionally, the increased gene levels of LDHA, CD147, MCT4, PI3K, AKT, mTOR and HIF-1α in model group were down-regulated by WPX decoction, while miRNA-34a expression was decreased and up-regulated by WPX decoction. The significantly increased protein levels of LDHA, CD147, MCT4, PI3K, AKT, mTOR and HIF-1α induced by MNNG were attenuated in rats treated with WPX decoction. In brief, the findings of this study imply that abnormal glycolysis in MNNG-induced GPL rats was relieved by WPX decoction via regulation of the expressions of LDHA, CD147, HIF-1α, MCT4, PI3K, AKT, mTOR and miRNA-34a.
Collapse
Affiliation(s)
- Tiantian Cai
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China
| | - Chengzhe Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Yan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Xuhua Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China; Department of Respiratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou,Guanghdong, 510000, China
| | - Lei Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China; Department of Respiratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou,Guanghdong, 510000, China
| | - Lin Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China; Department of Respiratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou,Guanghdong, 510000, China.
| | - Huafeng Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China.
| |
Collapse
|
18
|
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab 2019; 33:48-66. [PMID: 31395464 PMCID: PMC7056923 DOI: 10.1016/j.molmet.2019.07.006] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. Scope of review Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. Major conclusions Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT−/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments. In cancer, hypoxia and cell proliferation are associated to lactic acid production. Lactate exchanges are at the core of tumor metabolism. Transmembrane lactate trafficking depends on monocarboxylate transporters (MCTs). MCTs are implicated in tumor development and aggressiveness. Targeting MCTs is a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erica Mina
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Vincent F Van Hée
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
19
|
Li N, Li H, Cao L, Zhan X. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas. Endocr Relat Cancer 2018; 25:909-931. [PMID: 29997262 DOI: 10.1530/erc-18-0243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Mitochondria play important roles in growth, signal transduction, division, tumorigenesis and energy metabolism in epithelial ovarian carcinomas (EOCs) without an effective biomarker. To investigate the proteomic profile of EOC mitochondrial proteins, a 6-plex isobaric tag for relative and absolute quantification (iTRAQ) proteomics was used to identify mitochondrial expressed proteins (mtEPs) in EOCs relative to controls, followed by an integrative analysis of the identified mtEPs and the Cancer Genome Atlas (TCGA) data from 419 patients. A total of 5115 quantified proteins were identified from purified mitochondrial samples, and 262 proteins were significantly related to overall survival in EOC patients. Furthermore, 63 proteins were identified as potential biomarkers for the development of an EOC, and our findings were consistent with previous reports on a certain extent. Pathway network analysis identified 70 signaling pathways. Interestingly, the results demonstrated that cancer cells exhibited an increased dependence on mitophagy, such as peroxisome, phagosome, lysosome, valine, leucine and isoleucine degradation and fatty acid degradation pathways, which might play an important role in EOC invasion and metastasis. Five proteins (GLDC, PCK2, IDH2, CPT2 and HMGCS2) located in the mitochondrion and enriched pathways were selected for further analysis in an EOC cell line and tissues, and the results confirmed reliability of iTRAQ proteomics. These findings provide a large-scale mitochondrial proteomic profiling with quantitative information, a certain number of potential protein biomarkers and a novel vision in the mitophagy bio-mechanism of a human ovarian carcinoma.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug DesignXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer DrugsXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huanni Li
- Department of Obstetrics and GynecologyXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lanqin Cao
- Department of Obstetrics and GynecologyXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug DesignXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer DrugsXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- The Laboratory of Medical GeneticsCentral South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
20
|
Carbonic anhydrases II, IX, and XII in Barrett’s esophagus and adenocarcinoma. Virchows Arch 2018; 473:567-575. [DOI: 10.1007/s00428-018-2424-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/30/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
|
21
|
Li M, Wang S, Han X, Liu W, Song J, Zhang H, Zhao J, Yang F, Tan X, Chen X, Liu Y, Li H, Ding Y, Du X, Yin J, Zhang R, Cao G. Cancer mortality trends in an industrial district of Shanghai, China, from 1974 to 2014, and projections to 2029. Oncotarget 2017; 8:92470-92482. [PMID: 29190931 PMCID: PMC5696197 DOI: 10.18632/oncotarget.21419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
We aimed to characterize the trends and projections of cancer mortalities in Yangpu, an industry restructuring district of Shanghai, China. With high-quality data from the death registration system, the authors analyzed the trends in cancer mortalities during 1974-2014 and their relationship with pollution control and socioeconomic improvements. Cancer burden was projected into 2029. During 1974-2014, cancer death accounted for 28.80% of all-cause death. The 5 leading causes of cancer death were cancers of the lung & bronchus, stomach, liver, colon & rectum, and esophagus. Age-standardized mortality of all cancers was higher in men than in women (153.1/105vs. 88.8/105, p<0.001) and increased from 1974 to 1991 and decreased thereafter. The mortalities of cancers of the larynx, bladder, liver, nasopharynx, lung & bronchus, esophagus, lip oral & pharynx, stomach, kidney, and lymphoma were significantly higher in men than in women. Age-standardized mortalities of cancers of the esophagus, stomach, leukemia, female nasopharynx, female bladder, liver, and bone decreased especially after the 1990s, those of the colon & rectum, kidney, prostate, pancreas, breast, gallbladder, and ovary increased significantly. Lung cancer, breast cancer, colorectal cancer, and pancreas cancer in women and lung cancer, colorectal cancer, prostate cancer, and stomach cancer in men will be the leading causes of cancer death in 2025-2029. Cancer-caused life loss kept increasing since 2000. Conclusively, cancers associated with pollutions and infection decreased, especially after the 1990s, while those related to metabolic syndrome increased. These trends are related to closedown of polluted industries in the 1980s and lifestyle changes.
Collapse
Affiliation(s)
- Mi Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Shuo Wang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xue Han
- Department of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai 200090, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Jia Zhao
- Department of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai 200090, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Yan Liu
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Hui Li
- Department of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai 200090, China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyu Du
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Rong Zhang
- Department of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai 200090, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
李 其, 张 配, 刘 芳, 王 先, 李 璐, 王 仲, 蒋 琛, 郑 海, 刘 浩. [Monocarboxylate transporter 1 enhances the sensitivity of breast cancer cells to 3-bromopyruvate in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:588-593. [PMID: 28539279 PMCID: PMC6780470 DOI: 10.3969/j.issn.1673-4254.2017.05.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). METHODS The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. RESULTS 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. CONCLUSION MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.
Collapse
Affiliation(s)
- 其响 李
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 配 张
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 芳 刘
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 先知 王
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 璐 李
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 仲崑 王
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 琛琛 蒋
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 海伦 郑
- 蚌埠医学院第一附属医院消化科,安徽 蚌埠 233030 Department of Gastroenterology, First Affiliated Hospital, Bengbu Medical College, Bengbu 233030, China
| | - 浩 刘
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
23
|
李 其, 张 配, 刘 芳, 王 先, 李 璐, 王 仲, 蒋 琛, 郑 海, 刘 浩. [Monocarboxylate transporter 1 enhances the sensitivity of breast cancer cells to 3-bromopyruvate in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:588-593. [PMID: 28539279 PMCID: PMC6780470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). METHODS The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. RESULTS 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. CONCLUSION MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.
Collapse
Affiliation(s)
- 其响 李
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 配 张
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 芳 刘
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 先知 王
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 璐 李
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 仲崑 王
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 琛琛 蒋
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| | - 海伦 郑
- 蚌埠医学院第一附属医院消化科,安徽 蚌埠 233030 Department of Gastroenterology, First Affiliated Hospital, Bengbu Medical College, Bengbu 233030, China
| | - 浩 刘
- 蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy , Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
24
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|