1
|
Campagna R, Serritelli EN, Salvolini E, Schiavoni V, Cecati M, Sartini D, Pozzi V, Emanuelli M. Contribution of the Paraoxonase-2 Enzyme to Cancer Cell Metabolism and Phenotypes. Biomolecules 2024; 14:208. [PMID: 38397445 PMCID: PMC10886763 DOI: 10.3390/biom14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Paraoxonase-2 (PON2) is a ubiquitously expressed intracellular protein that is localized in the perinuclear region, the endoplasmic reticulum (ER), and mitochondria, and is also associated with the plasma membrane. PON2 functions as an antioxidant enzyme by reducing the levels of reactive oxygen species (ROS) in the mitochondria and ER through different mechanisms, thus having an anti-apoptotic effect and preventing the formation of atherosclerotic lesions. While the antiatherogenic role played by this enzyme has been extensively explored within endothelial cells in association with vascular disorders, in the last decade, great efforts have been made to clarify its potential involvement in both blood and solid tumors, where PON2 was reported to be overexpressed. This review aims to deeply and carefully examine the contribution of this enzyme to different aspects of tumor cells by promoting the initiation, progression, and spread of neoplasms.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Emma Nicol Serritelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Zhao J, Li J, Zhang R. Off the fog to find the optimal choice: Research advances in biomarkers for early diagnosis and recurrence monitoring of bladder cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188926. [PMID: 37230421 DOI: 10.1016/j.bbcan.2023.188926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Bladder cancer (BC) has high morbidity and mortality rates owing to challenges in clinical diagnosis and treatment. Advanced BC is prone to recurrence after surgery, necessitating early diagnosis and recurrence monitoring to improve the prognosis of patients. Traditional detection methods for BC include cystoscopy, cytology, and imaging; however, these methods have drawbacks such as invasiveness, lack of sensitivity, and high costs. Existing reviews on BC focus on treatment and management and lack a comprehensive assessment of biomarkers. Our article reviews various biomarkers for the early diagnosis and recurrence monitoring of BC and outlines the existing challenges associated with their application and possible solutions. Furthermore, this study highlights the potential application of urine biomarkers as a non-invasive, inexpensive adjunctive test for screening high-risk populations or evaluating patients with suspected BC symptoms, thereby alleviating the discomfort and financial burden associated with cystoscopy and improving patient survival.
Collapse
Affiliation(s)
- Jiaxin Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
3
|
Whitt AG, Neely AM, Sarkar OS, Meng S, Arumugam S, Yaddanapudi K, Li C. Paraoxonase 2 (PON2) plays a limited role in murine lung tumorigenesis. Sci Rep 2023; 13:9929. [PMID: 37337025 PMCID: PMC10279720 DOI: 10.1038/s41598-023-37146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Paraoxonase 2 (PON2) is a multifunctional intracellular enzyme that has received growing attention for its ability to modulate various aspects of normal and malignant cellular physiology. Recent research has revealed that PON2 is upregulated in tissues from patients with various types of solid tumors and hematologic cancers, likely due to its ability to suppress oxidative stress and evade apoptosis. However, the effects of PON2 on pulmonary oncogenesis are unknown. Here, we conducted studies to investigate how PON2 influences lung cancer cell proliferation in vitro and lung tumorigenesis in vivo using a variety of cellular and animal models. It was found that PON2 expression deficiency hampered the proliferation of cultured lung cancer cells with concomitant cell cycle arrest at the G1 phase. In addition, the loss of endogenous PON2 expression impaired key aspects of oxidative metabolism in lung adenocarcinoma cells. Moreover, we investigated how the interplay between PON2 expression in lung tumors and host mice influences lung tumor initiation and progression. PON2 status in both transplanted tumor cells and mice failed to influence the development of subcutaneously grafted Lewis lung carcinoma (LLC) tumors, orthotopically implanted LLC tumors, and oncogenic Kras-driven primary lung adenocarcinoma tumors. Importantly, the frequencies of tumor-infiltrating myeloid subsets that include myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages were not impacted by PON2 expression in LLC tumor-bearing mice. Overall, our studies indicate that PON2 plays a limited role in murine lung tumorigenesis.
Collapse
Affiliation(s)
- Aaron G Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aaron M Neely
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Omar Sadi Sarkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shuhan Meng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Sengodagounder Arumugam
- NMR Facility, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Chi Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Effect of Sphingomyelinase-Treated LDLs on HUVECs. Molecules 2023; 28:molecules28052100. [PMID: 36903354 PMCID: PMC10004656 DOI: 10.3390/molecules28052100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.
Collapse
|
5
|
Campagna R, Belloni A, Pozzi V, Salvucci A, Notarstefano V, Togni L, Mascitti M, Sartini D, Giorgini E, Salvolini E, Santarelli A, Lo Muzio L, Emanuelli M. Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. Int J Mol Sci 2022; 24:ijms24010338. [PMID: 36613780 PMCID: PMC9820498 DOI: 10.3390/ijms24010338] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral squamous cell carcinoma represents the most aggressive and frequent form of head and neck cancer. Due to drug resistance, the 5-year survival rate of patients with advanced disease is less than 50%. In order to identify molecular targets for effective oral cancer treatment, we focused on paraoxonase-2 enzyme. Indeed, based on data previously obtained from preliminary immunohistochemistry and Western blot analyses performed on tissue specimens, the enzyme was found to be upregulated in tumor compared with normal oral mucosa. Therefore, paraoxonase-2 gene silencing was achieved in HSC-3 and HOC621 oral cancer cell lines, and the effect on cell proliferation, viability, apoptosis induction and sensitivity to cisplatin and 5-fluorouracil treatment was evaluated. Fourier Transform InfraRed Microspectroscopy analyzed alterations of cellular macromolecules upon treatment. Enzyme level and cell proliferation were also determined in cisplatin-resistant clones obtained from HOC621 cell line, as well as in parental cells. Reported data showed that paraoxonase-2 knockdown led to a reduction of cell proliferation and viability, as well as to an enhancement of sensitivity to cisplatin, together with the activation of apoptosis pathway. Spectroscopical data demonstrated that, under treatment with cisplatin, oxidative damage exerted on lipids and proteins was markedly more evident in cells down-regulating paraoxonase-2 compared to controls. Interestingly, enzyme expression, as well as cell proliferation were significantly higher in cisplatin-resistant compared with control HOC621 cells. Taken together these results seem to candidate the enzyme as a promising target for molecular treatment of this neoplasm.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Alessia Salvucci
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Lucrezia Togni
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Marco Mascitti
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-0712204673
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60124 Ancona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
6
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
7
|
Lu Z, Feng Y. Foreboding lncRNA markers of low-grade gliomas dependent on metabolism. Medicine (Baltimore) 2022; 101:e31302. [PMID: 36343057 PMCID: PMC9646492 DOI: 10.1097/md.0000000000031302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
At present, there is no systematic study on the signature of long-chain noncoding RNAs (lncRNAs) involved in metabolism that can fully predict the prognosis in patients with low-grade gliomas (LGGs). Therefore, consistent metabolic-related lncRNA signatures need to be established. The Cancer Genome Atlas (TCGA) was used to identify the expression profile of lncRNAs containing 529 LGGs samples. LncRNAs and genes related to metabolism are used to establish a network in the form of coexpression to screen lncRNAs related to metabolism. LncRNA was more clearly described by univariate Cox regression. Moreover, lncRNA signatures were explored by multivariate Cox regression and lasso regression. The risk score was established according to the signature and it was an unattached prognostic marker according to Cox regression analysis. Functional enrichment of lncRNAs was shown by employing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Univariate Cox retrospective analysis showed that 543 metabolism-related lncRNAs were independent prognostic factors of LGG, and multivariate Cox regression analysis confirmed that 19 metabolism-related lncRNAs were prognostic genes of LGG. In the risk model, the low-risk group had a higher Overall survival (OS) than the high-risk group (P < .001). Univariate Cox regression analysis of risk score and clinical factors showed that risk score was an independent prognostic factor (P < .001, HR = 1.047, 95% CI: 1.038-1.056). Multivariate Cox results showed that risk score could predict the prognosis of LGG (P < .001, HR = 1.036, 95% CI: 1.026-1.045). ROC curve analysis showed that risk score could predict the prognosis of LGG. The areas of 1-year, 3-years, and 5 years are 0.891, 0.904 and 0.832. GO and KEGG analysis showed that metabolism-related lncRNAs was mainly concentrated in the pathways related to tumor metabolism. In order to find a more stable and reliable target for the treatment of LGG, we established 19 metabolic-related lncRNAs prognostic model, and determined that it can predict the prognosis of LGG patients. This provides a new solution approach to the poor prognosis of patients with LGG and may reverse the trend of LGG's transformation to high-grade gliomas.
Collapse
Affiliation(s)
- Zhuangzhuang Lu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- * Correspondence: Yugong Feng, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China (e-mail: )
| |
Collapse
|
8
|
Bacchetti T, Campagna R, Sartini D, Cecati M, Morresi C, Bellachioma L, Martinelli E, Rocchetti G, Lucini L, Ferretti G, Emanuelli M. C. spinosa L. subsp. rupestris Phytochemical Profile and Effect on Oxidative Stress in Normal and Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196488. [PMID: 36235028 PMCID: PMC9573631 DOI: 10.3390/molecules27196488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Spices, widely used to improve the sensory characteristics of food, contain several bioactive compounds as well, including polyphenols, carotenoids, and glucosynolates. Acting through multiple pathways, these bioactive molecules affect a wide variety of cellular processes involved in molecular mechanisms important in the onset and progress of human diseases. Capparis spinosa L. is an aromatic plant characteristic of the Mediterranean diet. Previous studies have reported that different parts (aerial parts, roots, and seeds) of C. spinosa exert various pharmacological activities. Flower buds of C. spinosa contain several bioactive compounds, including polyphenols and glucosinolates. Two different subspecies of C. spinosa L., namely, C. spinosa L. subsp. spinosa, and C. spinosa L. subsp. rupestris, have been reported. Few studies have been carried out in C. spinosa L. subsp. rupestris. The aim of our study was to investigate the phytochemical profile of floral buds of the less investigated species C. spinosa subsp. rupestris. Moreover, we investigated the effect of the extract from buds of C. spinosa subsp. rupestris (CSE) on cell proliferation, intracellular ROS levels, and expression of the antioxidant and anti-apoptotic enzyme paraoxonase-2 (PON2) in normal and cancer cells. T24 cells and Caco-2 cells were selected as models of advanced-stage human bladder cancer and human colorectal adenocarcinoma, respectively. The immortalized human urothelial cell line (UROtsa) and human dermal fibroblast (HuDe) were chosen as normal cell models. Through an untargeted metabolomic approach based on ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), our results demonstrate that C. spinosa subsp. rupestris flower buds contain polyphenols and glucosinolates able to exert a higher cytotoxic effect and higher intracellular reactive oxygen species (ROS) production in cancer cells compared to normal cells. Moreover, upregulation of the expression of the enzyme PON2 was observed in cancer cells. In conclusion, our data demonstrate that normal and cancer cells are differentially sensitive to CSE, which has different effects on PON2 gene expression as well. The overexpression of PON2 in T24 cells treated with CSE could represent a mechanism by which tumor cells protect themselves from the apoptotic process induced by glucosinolates and polyphenols.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (T.B.); (G.F.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Erika Martinelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: (T.B.); (G.F.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
9
|
Effect of glycated HDL on oxidative stress and cholesterol homeostasis in a human bladder cancer cell line, J82. Exp Mol Pathol 2022; 126:104777. [DOI: 10.1016/j.yexmp.2022.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
|
10
|
Grätz C, Bui MLU, Thaqi G, Kirchner B, Loewe RP, Pfaffl MW. Obtaining Reliable RT-qPCR Results in Molecular Diagnostics—MIQE Goals and Pitfalls for Transcriptional Biomarker Discovery. Life (Basel) 2022; 12:life12030386. [PMID: 35330136 PMCID: PMC8953338 DOI: 10.3390/life12030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, we discuss the development pipeline for transcriptional biomarkers in molecular diagnostics and stress the importance of a reliable gene transcript quantification strategy. Hence, a further focus is put on the MIQE guidelines and how to adapt them for biomarker discovery, from signature validation up to routine diagnostic applications. First, the advantages and pitfalls of the holistic RNA sequencing for biomarker development will be described to establish a candidate biomarker signature. Sequentially, the RT-qPCR confirmation process will be discussed to validate the discovered biomarker signature. Examples for the successful application of RT-qPCR as a fast and reproducible quantification method in routinemolecular diagnostics are provided. Based on the MIQE guidelines, the importance of “key steps” in RT-qPCR is accurately described, e.g., reverse transcription, proper reference gene selection and, finally, the application of automated RT-qPCR data analysis software. In conclusion, RT-qPCR proves to be a valuable tool in the establishment of a disease-specific transcriptional biomarker signature and will have a great future in molecular diagnostics or personalized medicine.
Collapse
Affiliation(s)
- Christian Grätz
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- GeneSurge GmbH, Ottostr. 3, 80333 München, Germany;
| | - Maria L. U. Bui
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- GeneSurge GmbH, Ottostr. 3, 80333 München, Germany;
| | - Granit Thaqi
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- GeneSurge GmbH, Ottostr. 3, 80333 München, Germany;
| | | | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (C.G.); (M.L.U.B.); (G.T.); (B.K.)
- Correspondence: or
| |
Collapse
|
11
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
12
|
Parween F, Gupta RD. Insights into the role of paraoxonase 2 in human pathophysiology. J Biosci 2022; 47:4. [PMID: 35092416 PMCID: PMC8721187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/10/2021] [Indexed: 09/18/2023]
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
13
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Bacchetti T, Salvolini E, Pompei V, Campagna R, Molinelli E, Brisigotti V, Togni L, Lucarini G, Sartini D, Campanati A, Mattioli-Belmonte M, Rubini C, Ferretti G, Offidani A, Emanuelli M. Paraoxonase-2: A potential biomarker for skin cancer aggressiveness. Eur J Clin Invest 2021; 51:e13452. [PMID: 33210737 DOI: 10.1111/eci.13452] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cutaneous neoplasms include melanoma and non-melanoma skin cancers (NMSCs). Among NMSCs, basal cell carcinoma (BCC) represents the most common lesion. On the contrary, although accounting for less than 5% of all skin cancers, melanoma is responsible for most of cutaneous malignancy-related deaths. Paraoxonase-2 (PON2) is an intracellular enzyme exerting a protective role against production of reactive oxygen species within mitochondrial respiratory chain. Recently, a growing attention has been focused on exploring the role of PON2 in cancer. The aim of this study was to investigate the diagnostic and prognostic role of PON2 in skin neoplasms. MATERIALS AND METHODS 36 cases of BCC, distinguished between nodular and infiltrative lesions, as well as 29 melanoma samples were analysed by immunohistochemistry to evaluate PON2 protein expression. Subsequent statistical analyses were carried out to explore the existence of correlations between intratumour enzyme levels and clinicopathological features. RESULTS Results obtained showed PON2 overexpression in BCCs compared with controls. In particular, distinguishing between less and more aggressive tumour forms, we found no significant differences in enzyme levels between nodular BCCs and controls. Conversely, PON2 expression was significantly higher in infiltrative BCCs compared with controls. Moreover, the enzyme was strongly upregulated in melanoma samples with respect to controls. Interestingly, PON2 levels were positively correlated with Breslow thickness, Clark level, regression, mitoses, lymph node metastases, primary tumour (pT) parameter and pathological stage. CONCLUSIONS Reported findings seem to suggest that PON2 expression levels could be positively related with tumour aggressiveness of both BCC and melanoma.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valerio Brisigotti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucrezia Togni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
16
|
Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants (Basel) 2021; 10:antiox10020256. [PMID: 33562328 PMCID: PMC7915308 DOI: 10.3390/antiox10020256] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
PON1, PON2, and PON3 belong to a family of lactone hydrolyzing enzymes endowed with various substrate specificities. Among PONs, PON2 shows the highest hydrolytic activity toward many acyl-homoserine lactones (acyl-HL) involved in bacterial quorum-sensing signaling. Accordingly, defense against pathogens, such as Brevundimonas aeruginosa (B. aeruginosa), was postulated to be the principal function of PON2. However, recent findings have highlighted the importance of PON2 in oxidative stress control, inhibition of apoptosis, and the progression of various types of malignancies. This review focuses on all of these aspects of PON2.
Collapse
|
17
|
Campagna R, Bacchetti T, Salvolini E, Pozzi V, Molinelli E, Brisigotti V, Sartini D, Campanati A, Ferretti G, Offidani A, Emanuelli M. Paraoxonase-2 Silencing Enhances Sensitivity of A375 Melanoma Cells to Treatment with Cisplatin. Antioxidants (Basel) 2020; 9:E1238. [PMID: 33297311 PMCID: PMC7762224 DOI: 10.3390/antiox9121238] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023] Open
Abstract
Melanoma represents the most aggressive skin cancer, being responsible for the majority of deaths related with these neoplasms. Despite chemotherapy represents a frontline approach for management of the advanced stages of the disease, it displayed poor response rates and short-term efficacy due to melanoma cell resistance. Therefore, the discovery of molecules that can be used for effective targeted therapy of melanoma is crucial. In this study, we evaluated the impact of paraoxonase-2 (PON2) silencing on proliferation, viability, and resistance to treatment of the A375 melanoma cell line with chemotherapeutic drugs dacarbazine (DTIC) and cisplatin (CDDP). Due to the enzymes ability to counteract oxidative stress, we also evaluated the effect of enzyme knockdown on reactive oxygen species (ROS) production in cells treated with CDDP. The data reported clearly demonstrated that PON2 knockdown led to a significant reduction of cell proliferation and viability, as well as to an enhancement of A375 sensitivity to CDDP treatment. Moreover, enzyme downregulation was associated with an increase of ROS production in CDDP-treated cells. Although further analyses will be necessary to understand how PON2 could influence melanoma cell metabolism and phenotype, our results seem to suggest that the enzyme may serve as an interesting molecular target for effective melanoma treatment.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Valerio Brisigotti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
18
|
Identification and Validation of an Energy Metabolism-Related lncRNA-mRNA Signature for Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3708231. [PMID: 32802843 PMCID: PMC7403901 DOI: 10.1155/2020/3708231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Energy metabolic processes play important roles for tumor malignancy, indicating that related protein-coding genes and regulatory upstream genes (such as long noncoding RNAs (lncRNAs)) may represent potential biomarkers for prognostic prediction. This study will develop a new energy metabolism-related lncRNA-mRNA prognostic signature for lower-grade glioma (LGG) patients. A GSE4290 dataset obtained from Gene Expression Omnibus was used for screening the differentially expressed genes (DEGs) and lncRNAs (DELs). The Cancer Genome Atlas (TCGA) dataset was used as the prognosis training set, while the Chinese Glioma Genome Atlas (CGGA) was for the validation set. Energy metabolism-related genes were collected from the Molecular Signatures Database (MsigDB), and a coexpression network was established between energy metabolism-related DEGs and DELs to identify energy metabolism-related DELs. Least absolute shrinkage and selection operator (LASSO) analysis was performed to filter the prognostic signature which underwent survival analysis and nomogram construction. A total of 1613 DEGs and 37 DELs were identified between LGG and normal brain tissues. One hundred and ten DEGs were overlapped with energy metabolism-related genes. Twenty-seven DELs could coexpress with 67 metabolism-related DEGs. LASSO regression analysis showed that 9 genes in the coexpression network were the optimal signature and used to construct the risk score. Kaplan-Meier curve analysis showed that patients with a high risk score had significantly worse OS than those with a low risk score (TCGA: HR = 3.192, 95%CI = 2.182‐4.670; CGGA: HR = 1.922, 95%CI = 1.431‐2.583). The predictive accuracy of the risk score was also high according to the AUC of the ROC curve (TCGA: 0.827; CGGA: 0.806). Multivariate Cox regression analyses revealed age, IDH1 mutation, and risk score as independent prognostic factors, and thus, a prognostic nomogram was established based on these three variables. The excellent prognostic performance of the nomogram was confirmed by calibration and discrimination analyses. In conclusion, our findings provided a new biomarker for the stratification of LGG patients with poor prognosis.
Collapse
|
19
|
Fumarola S, Cecati M, Sartini D, Ferretti G, Milanese G, Galosi AB, Pozzi V, Campagna R, Morresi C, Emanuelli M, Bacchetti T. Bladder Cancer Chemosensitivity is Affected by Paraoxonase-2 Expression. Antioxidants (Basel) 2020; 9:antiox9020175. [PMID: 32093309 PMCID: PMC7070528 DOI: 10.3390/antiox9020175] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The goal of the current study was to identify potential roles of paraoxonase-2 in bladder carcinogenesis. T24 bladder cancer cells were transfected with plasmids inducing paraoxonase-2 silencing or overexpression. Upon the selection of clones stably down- or upregulating paraoxonase-2, cell proliferation, migration, and the production of reactive oxygen species were evaluated, before and after treatment with cisplatin and gemcitabine, used alone or in combination. The activity levels of both caspase-3 and caspase-8 were also analyzed. shRNA-mediated gene silencing and the overexpression of paraoxonase-2 revealed that the enzyme was able to promote both the proliferation and migration of T24 cells. Moreover, the knockdown of paraoxonase-2 was significantly associated with a reduced cell viability of T24 cells treated with chemotherapeutic drugs and led to both an increase of reactive oxygen species production and caspase-3 and caspase-8 activation. Conversely, under treatment with anti-neoplastic compounds, a higher proliferative capacity was found in T24 cells overexpressing paraoxonase-2 compared with controls. In addition, upon enzyme upregulation, both the production of reactive oxygen species and activation of caspase-3 and caspase-8 were reduced. Although further analyses will be required to fully understand the involvement of paraoxonase-2 in bladder tumorigenesis and in mechanisms leading to the development of chemoresistance, the data reported in this study seem to demonstrate that the enzyme could exert a great impact on tumor progression and susceptibility to chemotherapy, thus suggesting paraoxonase-2 as a novel and interesting molecular target for effective bladder cancer treatment.
Collapse
Affiliation(s)
- Stefania Fumarola
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Andrea Benedetto Galosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Valentina Pozzi
- New York-Marche Structural Biology Center, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy (T.B.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
- New York-Marche Structural Biology Center, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence: ; Tel.: +390712204681; Fax: +390712204398
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy (T.B.)
| |
Collapse
|
20
|
Wang X, Xu G, Zhang J, Wang S, Ji M, Mo L, Zhu M, Li J, Zhou G, Lu J, Chen C. The clinical and prognostic significance of paraoxonase-2 in gastric cancer patients: immunohistochemical analysis. Hum Cell 2019; 32:487-494. [DOI: 10.1007/s13577-019-00263-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022]
|
21
|
Alterations of Antioxidant Enzymes and Biomarkers of Nitro-oxidative Stress in Tissues of Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2730896. [PMID: 31191796 PMCID: PMC6525891 DOI: 10.1155/2019/2730896] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 11/17/2022]
Abstract
Bladder cancer (BC) is one of the most common tumors found in the urinary bladder for both male and female in western countries. In vitro and in vivo studies suggest that high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and oxidative stress play a crucial role in human cancer. Low concentration of ROS and RNS is indispensable for cell survival and proliferation. However, high concentration of ROS and RNS can exert a cytotoxic effect. Increased oxidative stress is a result of either increased ROS/RNS production or a decrease of antioxidant defense mechanisms. A literature search was carried out on PubMed, Medline, and Google Scholar for articles in English published up to May 2018 using the following keywords: oxidative stress, antioxidants, reactive oxygen species, lipid peroxidation, paraoxonase, urinary bladder cancer, and nitric oxide. Literature data demonstrate that BC is associated with oxidative stress and with an imbalance between oxidants and antioxidant enzymes. Markers of lipid peroxidation, protein and nucleic acid oxidation are significantly higher in tissues of patients with BC compared with control groups. A decrease of activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione, and paraoxonase) has also been demonstrated. The imbalance between oxidants and antioxidants could have a potential role in the etiology and progression of bladder cancer.
Collapse
|
22
|
Oeyen E, Hoekx L, De Wachter S, Baldewijns M, Ameye F, Mertens I. Bladder Cancer Diagnosis and Follow-Up: The Current Status and Possible Role of Extracellular Vesicles. Int J Mol Sci 2019; 20:ijms20040821. [PMID: 30769831 PMCID: PMC6412916 DOI: 10.3390/ijms20040821] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Diagnostic methods currently used for bladder cancer are cystoscopy and urine cytology. Cystoscopy is an invasive tool and has low sensitivity for carcinoma in situ. Urine cytology is non-invasive, is a low-cost method, and has a high specificity but low sensitivity for low-grade urothelial tumors. Despite the search for urinary biomarkers for the early and non-invasive detection of bladder cancer, no biomarkers are used at the present in daily clinical practice. Extracellular vesicles (EVs) have been recently studied as a promising source of biomarkers because of their role in intercellular communication and tumor progression. In this review, we give an overview of Food and Drug Administration (FDA)-approved urine tests to detect bladder cancer and why their use is not widespread in clinical practice. We also include non-FDA approved urinary biomarkers in this review. We describe the role of EVs in bladder cancer and their possible role as biomarkers for the diagnosis and follow-up of bladder cancer patients. We review recently discovered EV-derived biomarkers for the diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Eline Oeyen
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium.
- Centre for Proteomics (CFP), University of Antwerp, 2020 Antwerp, Belgium.
| | - Lucien Hoekx
- Urology Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium.
| | - Stefan De Wachter
- Urology Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium.
| | - Marcella Baldewijns
- Pathological Anatomy Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium.
| | - Filip Ameye
- Urology Department, General Hospital Maria Middelares Ghent, 9000 Ghent, Belgium.
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium.
- Centre for Proteomics (CFP), University of Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
23
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Ester Munera-Maravilla
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alejandra Bernardini
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alicia Teijeira
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
24
|
Shakhparonov MI, Antipova NV, Shender VO, Shnaider PV, Arapidi GP, Pestov NB, Pavlyukov MS. Expression and Intracellular Localization of Paraoxonase 2 in Different Types of Malignancies. Acta Naturae 2018; 10:92-99. [PMID: 30397533 PMCID: PMC6209399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PON2 belongs to the paraoxonase protein family that consists of lactone hydrolyzing enzymes with different substrate specificities. Unlike other members of the family, PON2 exhibits substantial antioxidant activity, is localized predominantly inside the cell, and is ubiquitously expressed in all human tissues. Previously, it was proffered that defense against pathogens, such as Pseudomonas aeruginosa, is the main function of paraoxonases. However, recent findings have highlighted the important role played by PON2 in protection against oxidative stress, inhibition of apoptosis, and progression of various types of malignancies. In the current study, we performed a bioinformatic analysis of RNA and DNA sequencing data extracted from tumor samples taken from more than 10,000 patients with 31 different types of cancer and determined expression levels and mutations in the PON2 gene. Next, we investigated the intracellular localization of PON2 in multiple cancer cell lines and identified the proteins interacting with PON2 using the LC-MS/MS technique. Our data indicate that a high PON2 expression level correlates with a worse prognosis for patients with multiple types of solid tumors and suggest that PON2, when localized on the nuclear envelope and endoplasmic reticulum, may protect cancer cells against unfavorable environmental conditions and chemotherapy.
Collapse
Affiliation(s)
- M. I. Shakhparonov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - N. V. Antipova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - V. O. Shender
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - P. V. Shnaider
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - G. P. Arapidi
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - N. B. Pestov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - M. S. Pavlyukov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| |
Collapse
|
25
|
Wieczorek E, Reszka E. mRNA, microRNA and lncRNA as novel bladder tumor markers. Clin Chim Acta 2017; 477:141-153. [PMID: 29224950 DOI: 10.1016/j.cca.2017.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Early detection of bladder cancer (BC) is essential for improvement of the patient's prognosis and general survival rates. Current diagnostic methods are still limited, so new specific and cost-effective biomarkers are emerging as the noninvasive tools in treatment decisions in recurrent BC. Gene expression and epigenetic profile can be analysed using quantitative real-time-PCR (qRT-PCR) method in urine, blood and tissue. This review provides an update of recent findings on BC molecular profile as novel markers in diagnosis and prognosis of bladder tumors. We describe mRNA-, microRNA- and lncRNA-based biomarkers involved in the BC detection, diagnosis, prediction of recurrence and monitoring after treatment.
Collapse
Affiliation(s)
- Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
26
|
Bacchetti T, Ferretti G, Sahebkar A. The role of paraoxonase in cancer. Semin Cancer Biol 2017; 56:72-86. [PMID: 29170064 DOI: 10.1016/j.semcancer.2017.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/20/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
The paraoxonase (PON) gene family includes three proteins, PON1, PON2 and PON3. PON1 and PON3 are both associated with high-density lipoprotein (HDL) particles and exert anti-oxidant and anti-inflammatory properties. PON2 and PON3 are intracellular enzymes which modulate mitochondrial superoxide anion production and endoplasmic reticulum (ER) stress-induced apoptosis. The pleiotropic roles exerted by PONs have been mainly investigated in cardiovascular and neurodegenerative diseases. In recent years, overexpression of PON2 and PON3 has been observed in cancer cells and it has been proposed that both enzymes could be involved in tumor survival and stress resistance. Moreover, a lower activity of serum PON1 has been reported in cancer patients. This review summarizes literature data on the role of PONs in human cancers and their potential role as a target for antitumor drugs.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Ancona, Italy.
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Polytechnic University of Marche, Ancona, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|