1
|
Abukwaik R, Vera-Siguenza E, Tennant D, Spill F. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect. Bull Math Biol 2024; 86:124. [PMID: 39207627 PMCID: PMC11362376 DOI: 10.1007/s11538-024-01346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| |
Collapse
|
2
|
Zhao S, Zhang Y, Bao S, Jiang L, Li Q, Kong Y, Cao J. A novel HMGA2/MPC-1/mTOR signaling pathway promotes cell growth via facilitating Cr (VI)-induced glycolysis. Chem Biol Interact 2024; 399:111141. [PMID: 38992767 DOI: 10.1016/j.cbi.2024.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Mitochondrial Pyruvate Carrier 1 (MPC1) is localized on mitochondrial outer membrane to mediate the transport of pyruvate from cytosol to mitochondria. It is also well known to act as a tumor suppressor. Hexavalent chromium (Cr (VI)) contamination poses a global challenge due to its high toxicity and carcinogenesis. This research was intended to probe the potential mechanism of MPC1 in the effect of Cr (VI)-induced carcinogenesis. First, Cr (VI)-treatments decreased the expression of MPC1 in vitro and in vivo. Overexpression of MPC1 inhibited Cr (VI)-induced glycolysis and migration in A549 cells. Then, high mobility group A2 (HMGA2) protein strongly suppressed the transcription of MPC1 by binding to its promoter, and HMGA2/MPC1 axis played an important role in oxidative phosphorylation (OXPHOS), glycolysis and cell migration. Furthermore, endoplasmic reticulum (ER) stress made a great effect on the interaction between HMGA2 and MPC1. Finally, the mammalian target of the rapamycin (mTOR) was determined to mediate MPC1-regulated OXPHOS, aerobic glycolysis and cell migration. Collectively, our data revealed a novel HMGA2/MPC-1/mTOR signaling pathway to promote cell growth via facilitating the metabolism reprogramming from OXPHOS to aerobic glycolysis, which might be a potential therapy for cancers.
Collapse
Affiliation(s)
- Siyang Zhao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Institute of Plant Resources, Dalian Minzu University, No.18 Liaohe West Road, Dalian, 116600, China
| | - Yahui Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
4
|
Hiratsuka T, Yoshizawa A, Endo T, Yamamoto T, Toyokuni S, Tsuruyama T. Formalin-Fixed Paraffin-Embedded Proteomics of Malignant Mesothelioma and New Candidate Biomarkers Thioredoxin and Superoxide Dismutase 2 for Immunohistochemistry. J Transl Med 2024; 104:100299. [PMID: 38013118 DOI: 10.1016/j.labinv.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
The pathogenesis of malignant mesothelioma (MM) has been extensively investigated, focusing on stress derived from reactive oxygen species. We aimed to identify diagnostic biomarkers of MM by analyzing proteins in formalin-fixed paraffin-embedded specimens using liquid chromatography-mass spectrometry. We extracted proteins from formalin-fixed paraffin-embedded sections of MM tissues (n = 7) and compared their profiles with those of benign mesothelial tissues (n = 4) and alveolar tissue (n = 1). Proteomic data were statistically assessed and profiled using principal component analysis. We were successful in the classification of MM and healthy tissue. The levels of superoxide dismutase 2 (SOD2), an enzyme that converts superoxide anion into oxygen and hydrogen peroxide, and thioredoxin (TXN), which plays a crucial role in reducing disulfide bonds in proteins, primarily contributed to the classification. Other redox-related proteins, such as pyruvate dehydrogenase subunit X, and ceruloplasmin also contributed to the classification. Protein-protein interaction analysis demonstrated that these proteins play essential roles in MM pathogenesis. Immunohistochemistry revealed that TXN levels were significantly lower, whereas SOD2 levels were significantly higher in MM and lung cancer tissues than in controls. Proteomic profiling suggested that MM tissues experienced increased exposure to hydrogen peroxide and other reactive oxygen species. Combining immunohistochemistry for TXN and SOD2 allows for differentiation among MM, lung cancer, and control tissues; hence, TXN and SOD2 may be promising MM biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Takuya Hiratsuka
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Tatsuya Endo
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Takushi Yamamoto
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan; Tazuke Kofukai Medical Research Institute Kitano Hospital, Ohgimachi, Osaka, Japan.
| |
Collapse
|
5
|
Wang J, Saiki N, Tanimura A, Noma T, Niwa A, Nakahata T, Saito MK. UK-5099, a mitochondrial pyruvate carrier inhibitor, recovers impaired neutrophil maturation caused by AK2 deficiency in human pluripotent stem cell models. Biochem Biophys Res Commun 2023; 687:149211. [PMID: 37949028 DOI: 10.1016/j.bbrc.2023.149211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Reticular dysgenesis (RD) is a rare genetic disease caused by gene mutations in the ATP:AMP phosphotransferase, adenylate kinase 2 (AK2). Patients with RD suffer from severe combined immunodeficiency with neutrophil maturation arrest. Although hematopoietic stem cell transplantation can be a curative option, it is invasive, and complications of agranulocytosis-induced infection worsen the prognosis. Here, we report that the use of UK-5099, an inhibitor of the mitochondrial pyruvate carrier (MPC), on hemo-angiogenic progenitor cells (HAPCs) derived from AK2-deficient induced pluripotent stem cells improved neutrophil maturation. Reactive oxygen species (ROS) levels in AK2-deficient HAPCs remained unchanged throughout all experiments, implying that UK-5099 improved the phenotype without affecting ROS levels. Overall, our results suggest that the MPC is a potential therapeutic target for the treatment of neutrophil maturation defects in RD.
Collapse
Affiliation(s)
- Jingxin Wang
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Norikazu Saiki
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Tanimura
- Division of Food and Health Environmental Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan; Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, Izumo, 693-8550, Japan
| | - Takafumi Noma
- Department of Nutrition and Health, Faculty of Human Life Studies, Hiroshima Jogakuin University, Hiroshima, 732-0063, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tastutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
7
|
Zheng XX, Chen JJ, Sun YB, Chen TQ, Wang J, Yu SC. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol 2023; 33:708-727. [PMID: 37137792 DOI: 10.1016/j.tcb.2023.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Previous studies have shown that mitochondria play core roles in not only cancer stem cell (CSC) metabolism but also the regulation of CSC stemness maintenance and differentiation, which are key regulators of cancer progression and therapeutic resistance. Therefore, an in-depth study of the regulatory mechanism of mitochondria in CSCs is expected to provide a new target for cancer therapy. This article mainly introduces the roles played by mitochondria and related mechanisms in CSC stemness maintenance, metabolic transformation, and chemoresistance. The discussion mainly focuses on the following aspects: mitochondrial morphological structure, subcellular localization, mitochondrial DNA, mitochondrial metabolism, and mitophagy. The manuscript also describes the recent clinical research progress on mitochondria-targeted drugs and discusses the basic principles of their targeted strategies. Indeed, an understanding of the application of mitochondria in the regulation of CSCs will promote the development of novel CSC-targeted strategies, thereby significantly improving the long-term survival rate of patients with cancer.
Collapse
Affiliation(s)
- Xiao-Xia Zheng
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Jun-Jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Yi-Bo Sun
- College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tian-Qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
8
|
Michail A, Gkikas D, Stellas D, Kaltezioti V, Politis PK. Prox1 Suppresses the Proliferation of Breast Cancer Cells via Direct Inhibition of c-Myc Gene Expression. Cells 2023; 12:1869. [PMID: 37508533 PMCID: PMC10377922 DOI: 10.3390/cells12141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is one of the most lethal malignancies in women worldwide and is characterized by rapid growth and low survival rates, despite advances in tumor biology and therapies. Novel therapeutic approaches require new insights into the molecular mechanisms of malignant transformation and progression. To this end, here, we identified Prox1 as a negative regulator of proliferation and tumor-related metabolism in breast cancer. In particular, we showed that breast tumors from human patients exhibited reduced levels of Prox1 expression, while high expression levels of Prox1 were associated with a favorable prognosis in breast cancer patients. Moreover, we experimentally demonstrated that Prox1 was sufficient to strongly suppress proliferation, migration, and the Warburg effect in human breast cancer cells without inducing apoptosis. Most importantly, over-expression of Prox1 inhibited breast tumor growth in vivo in both heterotopic and orthotopic xenograft mouse models. The anti-tumorigenic effect of Prox1 was mediated by the direct repression of c-Myc transcription and its downstream target genes. Consistently, c-Myc over-expression from an artificial promoter that was not targeted by Prox1 reversed Prox1's anti-tumor effects. These findings suggest that Prox1 has a tumor suppressive role via direct transcriptional regulation of c-Myc, making it a promising therapeutic gene for breast cancer.
Collapse
Affiliation(s)
- Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
- Department of Biology, University of Patras, 265 04 Patras, Greece
| | - Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
9
|
Lin D, Yan K, Chen L, Chen J, Xu J, Xie Z, Li Z, Lin S, Li J, Chen Z. Hypoxia-induced reprogramming of glucose-dependent metabolic pathways maintains the stemness of human bone marrow-derived endothelial progenitor cells. Sci Rep 2023; 13:8776. [PMID: 37258701 DOI: 10.1038/s41598-023-36007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The benefits of hypoxia for maintaining the stemness of cultured human bone marrow-derived endothelial progenitor cells (BM EPCs) have previously been demonstrated but the mechanisms responsible remain unclear. Growing evidences suggest that cellular metabolism plays an important role in regulating stem cell fate and self-renewal. Here we aimed to detect the changes of glucose metabolism and to explore its role on maintaining the stemness of BM EPCs under hypoxia. We identified the metabolic status of BM EPCs by using extracellular flux analysis, LC-MS/MS, and 13C tracing HPLC-QE-MS, and found that hypoxia induced glucose metabolic reprogramming, which manifested as increased glycolysis and pentose phosphate pathway (PPP), decreased tricarboxylic acid (TCA) and mitochondrial respiration. We further pharmacologically altered the metabolic status of cells by employing various of inhibitors of key enzymes of glycolysis, PPP, TCA cycle and mitochondria electron transport chain (ETC). We found that inhibiting glycolysis or PPP impaired cell proliferation either under normoxia or hypoxia. On the contrary, inhibiting pyruvate oxidation, TCA or ETC promoted cell proliferation under normoxia mimicking hypoxic conditions. Moreover, promoting pyruvate oxidation reverses the maintenance effect of hypoxia on cell stemness. Taken together, our data suggest that hypoxia induced glucose metabolic reprogramming maintains the stemness of BM EPCs, and artificial manipulation of cell metabolism can be an effective way for regulating the stemness of BM EPCs, thereby improving the efficiency of cell expansion in vitro.
Collapse
Affiliation(s)
- Dongni Lin
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Kaihao Yan
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Lingyun Chen
- Hygiene Detection Center, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Junxiong Chen
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Jianing Xu
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Zijing Xie
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China
| | - Zhujun Li
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Shuo Lin
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Jinghuan Li
- The Second School of Clinical Medicine, Undergraduate Innovation and Entrepreneurship Project, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China
| | - Zhenzhou Chen
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital, Southern Medical University, 253# Gongye RD, Guangzhou, 510282, China.
| |
Collapse
|
10
|
Kobayashi H. Recent advances in understanding the metabolic plasticity of ovarian cancer: A systematic review. Heliyon 2022; 8:e11487. [PMID: 36406733 PMCID: PMC9668530 DOI: 10.1016/j.heliyon.2022.e11487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a gynecologic malignancy with a poor prognosis due to resistance to first-line chemotherapeutic agents. Some cancer cells are primarily dependent on glycolysis, but others favor mitochondrial oxidative phosphorylation (OXPHOS) over glycolysis. Changes in metabolic reprogramming have been reported to be involved in cancer cell survival. In this review, we summarize the metabolic profiles (e.g., metabolic heterogeneity, plasticity, and reprogramming) and adaptation to the dynamic tumor microenvironment and discuss potential novel therapeutic strategies. A literature search was performed between January 2000 and March 2022 in the PubMed and Google Scholar databases using a combination of specific terms. Ovarian cancer cells, including cancer stem cells, depend on glycolysis, OXPHOS, or both for survival. Several environmental stresses, such as nutrient starvation or glucose deprivation, hypoxic stress, acidification, and excessive reactive oxygen species (ROS) generation, reprogram the metabolic pathways to adapt. The interaction between tumors and adjacent stromal cells allows cancer cells to enhance mitochondrial energy metabolism. The metabolic reprogramming varies depending on genomic and epigenetic alterations of metabolism-related genes and the metabolic environment. Developing accurate and non-invasive methods for early identification of metabolic alterations could facilitate optimal cancer diagnosis and treatment. Cancer metabolism research has entered an exciting era where novel strategies targeting metabolic profiling will become more innovative.
Collapse
|
11
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Zhao Y, Tao Z, Li L, Zheng J, Chen X. Predicting biochemical-recurrence-free survival using a three-metabolic-gene risk score model in prostate cancer patients. BMC Cancer 2022; 22:239. [PMID: 35246070 PMCID: PMC8896158 DOI: 10.1186/s12885-022-09331-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/24/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Biochemical recurrence (BCR) after initial treatment, such as radical prostatectomy, is the most frequently adopted prognostic factor for patients who suffer from prostate cancer (PCa). In this study, we aimed to construct a prognostic model consisting of gene expression profiles to predict BCR-free survival. METHODS We analyzed 70 metabolic pathways in 152 normal prostate samples and 494 PCa samples from the UCSC Xena dataset (training set) via gene set enrichment analysis (GSEA) to select BCR-related genes and constructed a BCR-related gene risk score (RS) model. We tested the power of our model using Kaplan-Meier (K-M) plots and receiver operator characteristic (ROC) curves. We performed univariate and multivariate analyses of RS using other clinicopathological features and established a nomogram model, which has stronger prediction ability. We used GSE70770 and DFKZ 2018 datasets to validate the results. Finally, we performed differential expression and quantitative real-time polymerase chain reaction analyses of the UCSC data for further verification of the findings. RESULTS A total of 194 core enriched genes were obtained through GSEA, among which 16 BCR-related genes were selected and a three-gene RS model based on the expression levels of CA14, LRAT, and MGAT5B was constructed. The outcomes of the K-M plots and ROC curves verified the accuracy of the RS model. We identified the Gleason score, pathologic T stage, and RS model as independent predictors through univariate and multivariate Cox analyses and constructed a nomogram model that presented better predictability than the RS model. The outcomes of the validation set were consistent with those of the training set. Finally, the results of differential expression analyses support the effectiveness of our model. CONCLUSION We constructed an RS model based on metabolic genes that could predict the prognosis of PCa patients. The model can be easily used in clinical applications and provide important insights into future research on the underlying mechanism of PCa.
Collapse
Affiliation(s)
- Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
13
|
Zhang W, Wang C, Hu X, Lian Y, Ding C, Ming L. Inhibition of LDHA suppresses cell proliferation and increases mitochondrial apoptosis via the JNK signaling pathway in cervical cancer cells. Oncol Rep 2022; 47:77. [PMID: 35191522 PMCID: PMC8892607 DOI: 10.3892/or.2022.8288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
The Warburg effect or aerobic glycolysis is a hallmark of cancer. Lactate dehydrogenase (LDH), which catalyzes conversion of pyruvate into lactate, serves a critical role during Warburg effect. LDH A chain (LDHA), a member of the LDH family, is upregulated in multiple types of cancer and serves a vital role in tumor growth and progression. However, its expression and function in cervical cancer has not been characterized. The present study evaluated LDHA expression in The Cancer Genome Atlas database and found that LDHA was upregulated in cervical cancer compared with normal tissue. To clarify the role of LDHA in cervical cancer HeLa and SiHa cells, lentiviral shRNA was used to stably knockdown LDHA and oxamate, a small-molecule inhibitor of LDHA, was used to inhibit the activity of LDHA. Glucose uptake assay, lactate production measurement and ATP detection assay demonstrated LDHA inhibition notably decreased glucose consumption, lactate production and ATP levels in both HeLa and SiHa cells. Furthermore, the effect of LDHA inhibition on cell proliferation, cell cycle and apoptosis was investigated by MTT, BrdU incorporation, colony formation assay, flow cytometry and western blotting; LDHA knockdown or oxamate treatment led to decreased cell proliferation and increased apoptosis. Inhibition of LDHA induced G2/M cell cycle arrest and activated the mitochondrial apoptosis pathway. Mechanistically, the JNK signaling pathway was key for LDHA inhibition-mediated cell cycle arrest and apoptosis. Collectively, these results indicated that LDHA was involved in cervical cancer pathogenesis and may be a promising therapeutic target for treatment.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R China
| | - Xiaomei Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R China
| | - Yanzhen Lian
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R China
| | - Caili Ding
- Zhengzhou Hang Gang Ding Shi Medical Laboratory Co., Ltd., Zhengzhou, Henan 450000, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R Chin
| |
Collapse
|
14
|
Alderweireldt E, Grootaert C, De Wever O, Van Camp J. A two-front nutritional environment fuels colorectal cancer: perspectives for dietary intervention. Trends Endocrinol Metab 2022; 33:105-119. [PMID: 34887164 DOI: 10.1016/j.tem.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) develops and progresses in a nutritional environment comprising a continuously changing luminal cocktail of external dietary and microbial factors on the apical side, and a dynamic host-related pool of systemic factors on the serosal side. In this review, we highlight how this two-front environment influences the bioenergetic status of colonocytes throughout CRC development from (cancer) stem cells to cancer cells in nutrient-rich and nutrient-poor conditions, and eventually to metastatic cells, which, upon entry to the circulation and during metastatic seeding, are forced to metabolically adapt. Furthermore, given the influence of diet on the two-front nutritional environment, we discuss dietary strategies that target the specific metabolic preferences of these cells, with a possible impact on colon cancer cell bioenergetics and CRC outcome.
Collapse
Affiliation(s)
- Elien Alderweireldt
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Chen CL, Lin CY, Kung HJ. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int J Mol Sci 2021; 22:13435. [PMID: 34948229 PMCID: PMC8708687 DOI: 10.3390/ijms222413435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Ching-Yu Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
16
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
17
|
Nantasupha C, Thonusin C, Charoenkwan K, Chattipakorn S, Chattipakorn N. Metabolic reprogramming in epithelial ovarian cancer. Am J Transl Res 2021; 13:9950-9973. [PMID: 34650675 PMCID: PMC8507042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Cancer cells usually show adaptations to their metabolism that facilitate their growth, invasiveness, and metastasis. Therefore, reprogramming the energy metabolism is one of the current key foci of cancer research and treatment. Although aerobic glycolysis-the Warburg effect-has been thought to be the dominant energy metabolism in cancer, recent data indicate a different possibility, specifically that oxidative phosphorylation (OXPHOS) is the more likely form of energy metabolism in some cancer cells. Due to the heterogeneity of epithelial ovarian cancer, there are different metabolic preferences among cell types, study types (in vivo/in vitro), and invasiveness. Current knowledge acknowledges glycolysis to be the main energy provider in ovarian cancer growth, invasion, migration, and viability, so specific agents targeting the glycolysis or OXPHOS pathways have been used in previous studies to attenuate tumor progression and increase chemosensitization. However, chemoresistant cell lines exert various metabolic preferences. This review comprehensively summarizes the information from existing reports which could together provide an in-depth understanding and insights for the development of a novel targeted therapy which can be used as an adjunctive treatment to standard chemotherapy to decelerate tumor progression and decrease the epithelial ovarian cancer mortality rate.
Collapse
Affiliation(s)
- Chalaithorn Nantasupha
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai UniversityChiang Mai, Thailand
| | - Kittipat Charoenkwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Siriporn Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai UniversityChiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai UniversityChiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai UniversityChiang Mai, Thailand
| |
Collapse
|
18
|
Voigt AL, Kondro DA, Powell D, Valli-Pulaski H, Ungrin M, Stukenborg JB, Klein C, Lewis IA, Orwig KE, Dobrinski I. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J 2021; 35:e21513. [PMID: 33811704 DOI: 10.1096/fj.202002799r] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Human male reproductive development has a prolonged prepubertal period characterized by juvenile quiescence of germ cells with immature spermatogonial stem cell (SSC) precursors (gonocytes) present in the testis for an extended period of time. The metabolism of gonocytes is not defined. We demonstrate with mitochondrial ultrastructure studies via TEM and IHC and metabolic flux studies with UHPLC-MS that a distinct metabolic transition occurs during the maturation to SSCs. The mitochondrial ultrastructure of prepubertal human spermatogonia is shared with prepubertal pig spermatogonia. The metabolism of early prepubertal porcine spermatogonia (gonocytes) is characterized by the reliance on OXPHOS fuelled by oxidative decarboxylation of pyruvate. Interestingly, at the same time, a high amount of the consumed pyruvate is also reduced and excreted as lactate. With maturation, prepubertal spermatogonia show a metabolic shift with decreased OXHPOS and upregulation of the anaerobic metabolism-associated uncoupling protein 2 (UCP2). This shift is accompanied with stem cell specific promyelocytic leukemia zinc finger protein (PLZF) protein expression and glial cell-derived neurotropic factor (GDNF) pathway activation. Our results demonstrate that gonocytes differently from mature spermatogonia exhibit unique metabolic demands that must be attained to enable their maintenance and growth in vitro.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas Andrew Kondro
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Diana Powell
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Claudia Klein
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian A Lewis
- Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, AB, Canada
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
You JH, Lee J, Roh JL. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett 2021; 507:40-54. [PMID: 33741422 DOI: 10.1016/j.canlet.2021.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells evolve to survive as 'persister cells' resistant to various chemotherapeutic agents. Persister cancer cells retain mesenchymal traits that are vulnerable to ferroptosis by iron-dependent accumulation of lethal lipid peroxidation. Regulation of the KDM5A-MPC1 axis might shift cancer cells to have mesenchymal traits via epithelial-mesenchymal transition process. Therefore, we examined the therapeutic potentiality of KDM5A-MPC1 axis regulation in promoting ferroptosis in erlotinib-tolerant persister head and neck cancer cells (erPCC). ErPCC acquired mesenchymal traits and disabled antioxidant program that were more vulnerable to ferroptosis inducers of RSL3, ML210, sulfasalazine, and erastin. GPX4 and xCT suppression caused increased sensitivity to ferroptosis in vivo models of GPX4 genetic silencing. KDM5A expression increased and MPC1 expression decreased in erPCC. KDM5A inhibition increased MPC1 expression and decreased sensitivity to ferroptosis inducers in erPCC. MPC1 suppression increased vulnerability to ferroptosis in vitro and in vivo by retaining mesenchymal traits and glutaminolysis. Low expression of MPC1 was associated with low overall survival from the TCGA data. Our data suggest that regulation of the KDM5A-MPC1 axis contributes to promoting cancer ferroptosis susceptibility.
Collapse
Affiliation(s)
- Ji Hyeon You
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
20
|
Shukla P, Singh KK. The mitochondrial landscape of ovarian cancer: emerging insights. Carcinogenesis 2021; 42:663-671. [PMID: 33928357 PMCID: PMC8163040 DOI: 10.1093/carcin/bgab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (OC) is known to be the most lethal cancer in women worldwide, and its etiology is poorly understood. Recent studies show that mitochondrial DNA (mtDNA) content as well as mtDNA and nuclear genes encoding mitochondrial proteins influence OC risk. This review presents an overview of role of mitochondrial genetics in influencing OC development and discusses the contribution of mitochondrial proteome in OC development, progression and therapy. A role of mitochondrial genetics in racial disparity is also highlighted. In-depth understanding of role of mitochondria in OC will help develop strategies toward prevention and treatment and improving overall survival in women with OC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Interplay between Metabolism Reprogramming and Epithelial-to-Mesenchymal Transition in Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13081973. [PMID: 33923958 PMCID: PMC8072988 DOI: 10.3390/cancers13081973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Tumor cells display important plasticity potential. Notably, tumor cells have the ability to change toward immature cells called cancer stem cells under the influence of the tumor environment. Importantly, cancer stem cells are a small subset of relatively quiescent cells that, unlike rapidly dividing differentiated tumor cells, escape standard chemotherapies, causing relapse or recurrence of cancer. Interestingly, these cells adopt a specific metabolism. Most often, they mainly rely on glucose uptake and metabolism to sustain their energy needs. This metabolic reprogramming is set off by environmental factors such as pro-inflammatory signals or catecholamine hormones (epinephrine, norepinephrine). A better understanding of this process could provide opportunities to kill cancer stem cells. Indeed, it would become possible to develop drugs that act specifically on metabolic pathways used by these cells. These new drugs could be used to strengthen the effects of current chemotherapies and overcome cancers with poor prognoses. Abstract Tumor cells display important plasticity potential, which contributes to intratumoral heterogeneity. Notably, tumor cells have the ability to retrodifferentiate toward immature states under the influence of their microenvironment. Importantly, this phenotypical conversion is paralleled by a metabolic rewiring, and according to the metabostemness theory, metabolic reprogramming represents the first step of epithelial-to-mesenchymal transition (EMT) and acquisition of stemness features. Most cancer stem cells (CSC) adopt a glycolytic phenotype even though cells retain functional mitochondria. Such adaptation is suggested to reduce the production of reactive oxygen species (ROS), protecting CSC from detrimental effects of ROS. CSC may also rely on glutaminolysis or fatty acid metabolism to sustain their energy needs. Besides pro-inflammatory cytokines that are well-known to initiate the retrodifferentiation process, the release of catecholamines in the microenvironment of the tumor can modulate both EMT and metabolic changes in cancer cells through the activation of EMT transcription factors (ZEB1, Snail, or Slug (SNAI2)). Importantly, the acquisition of stem cell properties favors the resistance to standard care chemotherapies. Hence, a better understanding of this process could pave the way for the development of therapies targeting CSC metabolism, providing new strategies to eradicate the whole tumor mass in cancers with unmet needs.
Collapse
|
22
|
Mamouni K, Kim J, Lokeshwar BL, Kallifatidis G. ARRB1 Regulates Metabolic Reprogramming to Promote Glycolysis in Stem Cell-Like Bladder Cancer Cells. Cancers (Basel) 2021; 13:cancers13081809. [PMID: 33920080 PMCID: PMC8069028 DOI: 10.3390/cancers13081809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Bladder cancer (BC) ranks second in incidence and mortality among all genitourinary cancers. The high recurrence of BC is attributed to the presence of cancer stem cells (CSCs), which are the driving force behind tumor growth. Increasing evidence suggests that stem cells exhibit a distinct metabolic program compared to differentiated cells. Understanding their metabolic preference for maintaining stem cell properties is essential for developing novel therapeutics targeting CSCs. The current work shows for the first time that the scaffold protein β-arrestin1 (ARRB1) functions as a metabolic switch regulating the metabolic reprogramming of CSC-like cells towards glycolysis by regulating the mitochondrial pyruvate carrier MPC1 and glucose transporter GLUT1. The balance between glycolysis and oxidative phosphorylation plays a crucial role in regulating the fate of stem cells. Our findings will potentially open new therapeutic avenues for targeting bladder cancer cells and/or the CSC-like cells within aggressive bladder tumors. Abstract β-arrestin 1 (ARRB1) is a scaffold protein that regulates signaling downstream of G protein-coupled receptors (GPCRs). In the current work, we investigated the role of ARRB1 in regulating the metabolic preference of cancer stem cell (CSC)-like cells in bladder cancer (BC). We show that ARRB1 is crucial for spheroid formation and tumorigenic potential. Furthermore, we measured mitochondrial respiration, glucose uptake, glycolytic rate, mitochondrial/glycolytic ATP production and fuel oxidation in previously established ARRB1 knock out (KO) cells and corresponding controls. Our results demonstrate that depletion of ARRB1 decreased glycolytic rate and induced metabolic reprogramming towards oxidative phosphorylation. Mechanistically, the depletion of ARRB1 dramatically increased the mitochondrial pyruvate carrier MPC1 protein levels and reduced the glucose transporter GLUT1 protein levels along with glucose uptake. Overexpression of ARRB1 in ARRB1 KO cells reversed the phenotype and resulted in the upregulation of glycolysis. In conclusion, we show that ARRB1 regulates the metabolic preference of BC CSC-like cells and functions as a molecular switch that promotes reprogramming towards glycolysis by negatively regulating MPC1 and positively regulating GLUT1/ glucose uptake. These observations open new therapeutic avenues for targeting the metabolic preferences of cancer stem cell (CSC)-like BC cells.
Collapse
Affiliation(s)
- Kenza Mamouni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jeongheun Kim
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (B.L.L.); (G.K.); Tel.: +1-706-723-0033 (B.L.L.); +1-706-446 4976 (G.K.); Fax: +1-706-721-0101 (B.L.L. & G.K.)
| | - Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
- Correspondence: (B.L.L.); (G.K.); Tel.: +1-706-723-0033 (B.L.L.); +1-706-446 4976 (G.K.); Fax: +1-706-721-0101 (B.L.L. & G.K.)
| |
Collapse
|
23
|
Fernandez-Caggiano M, Eaton P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ 2021; 28:1149-1158. [PMID: 33473180 PMCID: PMC8027425 DOI: 10.1038/s41418-020-00729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is the entry point for the glycolytic end-product pyruvate to the mitochondria. MPC activity, which is controlled by its abundance and post-translational regulation, determines whether pyruvate is oxidised in the mitochondria or metabolised in the cytosol. MPC serves as a crucial metabolic branch point that determines the fate of pyruvate in the cell, enabling metabolic adaptations during health, such as exercise, or as a result of disease. Decreased MPC expression in several cancers limits the mitochondrial oxidation of pyruvate and contributes to lactate accumulation in the cytosol, highlighting its role as a contributing, causal mediator of the Warburg effect. Pyruvate is handled similarly in the failing heart where a large proportion of it is reduced to lactate in the cytosol instead of being fully oxidised in the mitochondria. Several recent studies have found that the MPC abundance was also reduced in failing human and mouse hearts that were characterised by maladaptive hypertrophic growth, emulating the anabolic scenario observed in some cancer cells. In this review we discuss the evidence implicating the MPC as an important, perhaps causal, mediator of heart failure progression.
Collapse
Affiliation(s)
- Mariana Fernandez-Caggiano
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Philip Eaton
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| |
Collapse
|
24
|
Ruiz-Iglesias A, Mañes S. The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers (Basel) 2021; 13:cancers13071488. [PMID: 33804985 PMCID: PMC8037430 DOI: 10.3390/cancers13071488] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The characteristic metabolic hallmark of cancer cells is the massive catabolism of glucose by glycolysis, even under aerobic conditions—the so-called Warburg effect. Although energetically unfavorable, glycolysis provides “building blocks” to sustain the unlimited growth of malignant cells. Aberrant glycolysis is also responsible for lactate accumulation and acidosis in the tumor milieu, which fosters hypoxia and immunosuppression. One of the mechanisms used by cancer cells to increase glycolytic flow is the negative regulation of the proteins that conform the mitochondrial pyruvate carrier (MPC) complex, which transports pyruvate into the mitochondrial matrix to be metabolized in the tricarboxylic acid (TCA) cycle. Evidence suggests that MPC downregulation in tumor cells impacts many aspects of tumorigenesis, including cancer cell-intrinsic (proliferation, invasiveness, stemness, resistance to therapy) and -extrinsic (angiogenesis, anti-tumor immune activity) properties. In many cancers, but not in all, MPC downregulation is associated with poor survival. MPC regulation is therefore central to tackling glycolysis in tumors. Abstract Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix, where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears to be associated with a poor prognosis. However, most transformed cells undergo a switch from oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities, is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis, immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This review examines the latest findings regarding the tumorigenic processes affected by MPC.
Collapse
|
25
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
26
|
Fernandez-Caggiano M, Kamynina A, Francois AA, Prysyazhna O, Eykyn TR, Krasemann S, Crespo-Leiro MG, Vieites MG, Bianchi K, Morales V, Domenech N, Eaton P. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat Metab 2020; 2:1223-1231. [PMID: 33106688 PMCID: PMC7610404 DOI: 10.1038/s42255-020-00276-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Cardiomyocytes rely on metabolic substrates, not only to fuel cardiac output, but also for growth and remodelling during stress. Here we show that mitochondrial pyruvate carrier (MPC) abundance mediates pathological cardiac hypertrophy. MPC abundance was reduced in failing hypertrophic human hearts, as well as in the myocardium of mice induced to fail by angiotensin II or through transverse aortic constriction. Constitutive knockout of cardiomyocyte MPC1/2 in mice resulted in cardiac hypertrophy and reduced survival, while tamoxifen-induced cardiomyocyte-specific reduction of MPC1/2 to the attenuated levels observed during pressure overload was sufficient to induce hypertrophy with impaired cardiac function. Failing hearts from cardiomyocyte-restricted knockout mice displayed increased abundance of anabolic metabolites, including amino acids and pentose phosphate pathway intermediates and reducing cofactors. These hearts showed a concomitant decrease in carbon flux into mitochondrial tricarboxylic acid cycle intermediates, as corroborated by complementary 1,2-[13C2]glucose tracer studies. In contrast, inducible cardiomyocyte overexpression of MPC1/2 resulted in increased tricarboxylic acid cycle intermediates, and sustained carrier expression during transverse aortic constriction protected against cardiac hypertrophy and failure. Collectively, our findings demonstrate that loss of the MPC1/2 causally mediates adverse cardiac remodelling.
Collapse
Affiliation(s)
- Mariana Fernandez-Caggiano
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alisa Kamynina
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Asvi A Francois
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Oleksandra Prysyazhna
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas R Eykyn
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Susanne Krasemann
- University Medical Center Hamburg Eppendorf UKE, Institute for Neuropathology, Hamburg, Germany
| | - Maria G Crespo-Leiro
- Unidad de Cirugia Cardiaca y Trasplante, Servicio de Cardiología, Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Maria Garcia Vieites
- Unidad de Cirugia Cardiaca y Trasplante, Servicio de Cardiología, Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Katiuscia Bianchi
- Barts Cancer Institute, Queen Mary, John Vane Science Centre, University of London, London, UK
| | - Valle Morales
- Barts Cancer Institute, Queen Mary, John Vane Science Centre, University of London, London, UK
| | - Nieves Domenech
- Unidad de Cirugia Cardiaca y Trasplante, Servicio de Cardiología, Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Philip Eaton
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
27
|
Zhang M, Liang L, He J, He Z, Yue C, Jin X, Gao M, Xiao S, Zhou Y. Fra-1 Inhibits Cell Growth and the Warburg Effect in Cervical Cancer Cells via STAT1 Regulation of the p53 Signaling Pathway. Front Cell Dev Biol 2020; 8:579629. [PMID: 33102485 PMCID: PMC7554318 DOI: 10.3389/fcell.2020.579629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
The oncogenesis of cervical cancer is a multi-factor and multi-step process, and major risk factors include oncogene activation with tumor suppressor gene inactivation, viral factors, and immune factors. For example, the human papillomavirus (HPV) has been linked to the occurrence of cervical cancer. At present, the pathogenesis of cervical cancer remains unclear. Fra-1 (Fos-related antigen 1, also known as FOSL1) is a member of the Fos family and an important nuclear transcription factor that regulates normal cell growth, differentiation, and apoptosis. In the present study, we found that Fra-1 inhibited the proliferation of cervical cancer cells while also promoting apoptosis and affecting cell cycle distribution. Moreover, Fra-1 up-regulated STAT1 expression and modulated p53 signal pathway activity in cervical cancer cells. Overexpression of Fra-1 inhibited cell senescence by altering sirtuin 1 (SIRT1) expression in HeLa cells, and Fra-1 overexpression restored mitochondrial disorder and suppressed metabolic reprogramming in HeLa cells. Silencing of STAT1 impaired the inhibitory effect of Fra-1 on cervical cancer cell growth, while knock-down of STAT1 reversed the effect on cell senescence and mitochondrial dysfunction caused by Fra-1 in HeLa cells. Silencing of STAT1 also recovered metabolic reprogramming in cervical cancer cells. In summary, our results show that Fra-1 inhibited cervical cancer cell growth and the Warburg effect via STAT1-mediated regulation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Manying Zhang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Liang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Junyu He
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhengxi He
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunxue Yue
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi Jin
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengxiang Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
28
|
Chen J, Guan L, Zou M, He S, Li D, Chi W. Specific cyprinid HIF isoforms contribute to cellular mitochondrial regulation. Sci Rep 2020; 10:17246. [PMID: 33057104 PMCID: PMC7560723 DOI: 10.1038/s41598-020-74210-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of the cellular response to hypoxic stress. Two HIF-1α paralogs, HIF-1αA and HIF-1αB, were generated in euteleosts by the specific, third round of genome duplication, but one paralog was later lost in most families with the exception of cyprinid fish. How these duplicates function in mitochondrial regulation and whether their preservation contributes to the hypoxia tolerance demonstrated by cyprinid fish in freshwater environments is not clear. Here we demonstrated the divergent function of these two zebrafish Hif-1a paralogs through cellular approaches. The results showed that Hif-1aa played a role in tricarboxylic acid cycle by increasing the expression of Citrate synthase and the activity of mitochondrial complex II, and it also enhanced mitochondrial membrane potential and ROS production by reducing free Ca2+ in the cytosol. Hif-1ab promoted intracellular ATP content by up-regulating the activity of mitochondrial complexes I, III and IV and the expression of related genes. Furthermore, both the two zebrafish Hif-1a paralogs promoted mitochondrial mass and the expression level of mtDNA, contributing to mitochondrial biogenesis. Our study reveals the divergent functions of Hif-1aa and Hif-1ab in cellular mitochondrial regulation.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Lihong Guan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ming Zou
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dapeng Li
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Wei Chi
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
29
|
Tompkins SC, Sheldon RD, Rauckhorst AJ, Noterman MF, Solst SR, Buchanan JL, Mapuskar KA, Pewa AD, Gray LR, Oonthonpan L, Sharma A, Scerbo DA, Dupuy AJ, Spitz DR, Taylor EB. Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Rep 2020; 28:2608-2619.e6. [PMID: 31484072 PMCID: PMC6746334 DOI: 10.1016/j.celrep.2019.07.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers. Tompkins et al. utilize stable glutamine isotope tracers in vivo and ex vivo to demonstrate hepatocyte MPC disruption increases TCA cycle glutamine utilization at the expense of glutathione synthesis and decreases hepatocellular tumorigenesis.
Collapse
Affiliation(s)
- Sean C Tompkins
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Rauckhorst
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Maria F Noterman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Jane L Buchanan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alvin D Pewa
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lawrence R Gray
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lalita Oonthonpan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Arpit Sharma
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
30
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
31
|
Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 2020; 34:13106-13124. [PMID: 32808332 DOI: 10.1096/fj.202000767r] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.
Collapse
Affiliation(s)
- Philippe Marchetti
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Quentin Fovez
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Nicolas Germain
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Raeeka Khamari
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Jérôme Kluza
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| |
Collapse
|
32
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
33
|
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020; 10:biom10071068. [PMID: 32708919 PMCID: PMC7407832 DOI: 10.3390/biom10071068] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer.
Collapse
|
34
|
A Shifty Target: Tumor-Initiating Cells and Their Metabolism. Int J Mol Sci 2019; 20:ijms20215370. [PMID: 31661927 PMCID: PMC6862122 DOI: 10.3390/ijms20215370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-initiating cells (TICs), or cancer stem cells, constitute highly chemoresistant, asymmetrically dividing, and tumor-initiating populations in cancer and are thought to play a key role in metastatic and chemoresistant disease. Tumor-initiating cells are isolated from cell lines and clinical samples based on features such as sphere formation in stem cell medium and expression of TIC markers, typically a set of outer membrane proteins and certain transcription factors. Although both bulk tumor cells and TICs show an adaptive metabolic plasticity, TIC metabolism is thought to differ and likely in a tumor-specific and growth condition-dependent pattern. In the context of some common solid tumor diseases, we here review reports on how TIC isolation methods and markers associate with metabolic features, with some focus on oxidative metabolism, including fatty acid and lipid metabolism. These have emerged as significant factors in TIC phenotypes, and in tumor biology as a whole. Other sections address mitochondrial biogenesis and dynamics in TICs, and the influence of the tumor microenvironment. Further elucidation of the complex biology of TICs and their metabolism will require advanced methodologies.
Collapse
|
35
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:brainsci9090238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson’s disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
36
|
Zhao H, Wu S, Li H, Duan Q, Zhang Z, Shen Q, Wang C, Yin T. ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:299-312. [PMID: 31508487 PMCID: PMC6726755 DOI: 10.1016/j.omto.2019.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poor prognosis in pancreatic cancer (PanCa) is partially due to chemoresistance to gemcitabine (GEM). Glucose metabolism has been revealed to contribute to the therapeutic resistance and pluripotent state of PanCa cells. However, few studies have focused on the effects of GEM on cancer cell metabolism, stemness of tumor cells, and molecular mechanisms that critically influence PanCa treatment. We demonstrate that GEM treatment induces metabolic reprogramming, reducing mitochondrial oxidation and upregulating aerobic glycolysis, and promotes stem-like behaviors in cancer cells. Inhibiting aerobic glycolysis suppresses cancer cell stemness and strengthens GEM's cytotoxicity. GEM-induced metabolic reprogramming is KRAS dependent, as knockdown of KRAS reverses the metabolic shift. GEM-induced metabolic reprogramming also activates AMP-activated protein kinase (AMPK), which promotes glycolytic flux and cancer stemness. In addition, GEM-induced reactive oxygen species (ROS) activate the KRAS/AMPK pathway. This effect was validated by introducing exogenous hydrogen peroxide (H2O2). Taken together, these findings reveal a counterproductive GEM effect during PanCa treatment. Regulating cellular redox, targeting KRAS/AMPK signaling, or reversing metabolic reprogramming might be effective approaches to eliminate cancer stem cells (CSCs) and enhance chemosensitivity to GEM to improve the prognosis of PanCa patients.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| |
Collapse
|
37
|
Arun RP, Sivanesan D, Patra B, Varadaraj S, Verma RS. Simulated microgravity increases polyploid giant cancer cells and nuclear localization of YAP. Sci Rep 2019; 9:10684. [PMID: 31337825 PMCID: PMC6650394 DOI: 10.1038/s41598-019-47116-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Physical cues are vital in determining cellular fate in cancer. In vitro 3D culture do not replicate forces present in vivo. These forces including tumor interstitial fluid pressure and matrix stiffness behave as switches in differentiation and metastasis, which are intricate features of cancer stem cells (CSCs). Gravity determines the effect of these physical factors on cell fate and functions as evident from microgravity experiments on space and ground simulations. Here, we described the role of simulation of microgravity (SMG) using rotary cell culture system (RCCS) in increasing stemness in human colorectal cancer cell HCT116. We observed distinct features of cancer stem cells including CD133/CD44 dual positive cells and migration in SMG which was not altered by autophagy induction or inhibition. 3D and SMG increased autophagy, but the flux was staggered under SMG. Increased unique giant cancer cells housing complete nuclear localization of YAP were observed in SMG. This study highlights the role of microgravity in regulating stemness in CSC and importance of physical factors in determining the same.
Collapse
Affiliation(s)
- Raj Pranap Arun
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Divya Sivanesan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Sudha Varadaraj
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India.
| |
Collapse
|
38
|
Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Xiong F, Guo C. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 2019; 10:3789-3797. [PMID: 31333796 PMCID: PMC6636296 DOI: 10.7150/jca.31166] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The occurrence and development of tumors is a complex process involving long-term multi-factor participation. In this process, tumor cells from a set of abnormal metabolic patterns that are different from normal cells. This abnormal metabolic change is called metabolic reprogramming of tumors. Wnt signaling pathway is one of the critical signaling pathways regulating cell proliferation and differentiation. In recent years, it has been found that Wnt signaling participates in the occurrence and development of malignant tumors by affecting metabolic reprogramming. This paper reviews the role of Wnt signaling in tumor metabolic reprogramming to provide crucial theoretical guidance for targeted therapy and drug response of tumors.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Lishen Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Liting Yang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Tavoulari S, Thangaratnarajah C, Mavridou V, Harbour ME, Martinou JC, Kunji ER. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J 2019; 38:e100785. [PMID: 30979775 PMCID: PMC6517818 DOI: 10.15252/embj.2018100785] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is critical for cellular homeostasis, as it is required in central metabolism for transporting pyruvate from the cytosol into the mitochondrial matrix. MPC has been implicated in many diseases and is being investigated as a drug target. A few years ago, small membrane proteins, called MPC1 and MPC2 in mammals and Mpc1, Mpc2 and Mpc3 in yeast, were proposed to form large protein complexes responsible for this function. However, the MPC complexes have never been isolated and their composition, oligomeric state and functional properties have not been defined. Here, we identify the functional unit of MPC from Saccharomyces cerevisiae In contrast to earlier hypotheses, we demonstrate that MPC is a hetero-dimer, not a multimeric complex. When not engaged in hetero-dimers, the yeast Mpc proteins can also form homo-dimers that are, however, inactive. We show that the earlier described substrate transport properties and inhibitor profiles are embodied by the hetero-dimer. This work provides a foundation for elucidating the structure of the functional complex and the mechanism of substrate transport and inhibition.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Vasiliki Mavridou
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael E Harbour
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Zou H, Chen Q, Zhang A, Wang S, Wu H, Yuan Y, Wang S, Yu J, Luo M, Wen X, Cui W, Fu W, Yu R, Chen L, Zhang M, Lan H, Zhang X, Xie Q, Jin G, Xu C. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis 2019; 10:148. [PMID: 30770798 PMCID: PMC6377639 DOI: 10.1038/s41419-019-1324-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial pyruvate carrier 1 (MPC1), a key factor that controls pyruvate transportation in the mitochondria, is known to be frequently dysregulated in tumor initiation and progression. However, the clinical relevance and potential molecular mechanisms of MPC1 in lung adenocarcinoma (LAC) progression remain to be illustrated. Herein, MPC1 was lowly expressed in LAC tissues and significantly associated with favorable survival of patients with LAC. Functionally, MPC1 markedly suppressed stemness, invasion, and migration in vitro and spreading growth of LAC cells in vivo. Further study revealed that MPC1 could interact with mitochondrial signal transducer and activator of transcription 3 (mito-STAT3), disrupting the distribution of STAT3 and reducing cytoplasmic signal transducer and activator of transcription 3 (cyto-STAT3) as well as its phosphorylation, while the activation of cyto-STAT3 by IL-6 reversed the attenuated malignant progression in MPC1-overexpression LAC cells. Collectively, we reveal that MPC1/STAT3 axis plays an important role in the progression of LAC, and our work may promote the development of new therapeutic strategies for LAC.
Collapse
Affiliation(s)
- Hongbo Zou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Songtao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Chengdu Military General Hospital, Chengdu, China
| | - Hong Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mao Luo
- Department of Dermatology, Chongqing Yubei District People's Hospital, Chongqing, China
| | - Xianmei Wen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haitao Lan
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qichao Xie
- Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China. .,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
41
|
Mitochondrial pyruvate carrier 1 functions as a tumor suppressor and predicts the prognosis of human renal cell carcinoma. J Transl Med 2019; 99:191-199. [PMID: 30291323 DOI: 10.1038/s41374-018-0138-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 11/09/2022] Open
Abstract
Invasion and subsequent metastasis are major characteristics of malignant human renal cell carcinoma (RCC), though the mechanisms remain elusive. Mitochondrial pyruvate carrier (MPC), a key factor that controls pyruvate transportation in mitochondria, is frequently dysregulated in tumor cells and loss of MPC predicts poor prognosis in various types of cancer. However, the clinical relevance and functional significance of MPC in RCC remain to be elucidated. In this study, we investigated the expression of MPC1 and MPC2 in specimens from RCC patients and observed downregulation of MPC1, but not MPC2, in RCC tissues compared with adjacent non-cancerous tissue. Moreover, RCC patients with higher MPC1 expression exhibited longer overall survival rate than those with lower MPC1. Functionally, MPC1 suppressed the invasion of RCC cells in vitro and reduced the growth of RCC cells in vivo, possibly through inhibition of MMP7 and MMP9. Further studies revealed that loss of MPC1 was induced by hypoxia in RCC cells, and notably, MPC1 expression, was negatively correlated with HIF1α expression in RCC cells and patient samples. Taken together, our results identify anti-tumor function of MPC1 in RCC and revealed MPC1 as a novel prognostic biomarker to predict better patient survival.
Collapse
|
42
|
Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 2019; 53:667-682. [PMID: 30668176 DOI: 10.1080/10409238.2018.1556578] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aerobic glycolysis is the process of oxidation of glucose into pyruvate followed by lactate production under normoxic condition. Distinctive from its anaerobic counterpart (i.e. glycolysis that occurs under hypoxia), aerobic glycolysis is frequently witnessed in cancers, popularly known as the "Warburg effect", and it is one of the earliest known evidences of metabolic alteration in neoplasms. Intracellularly, aerobic glycolysis circumvents mitochondrial oxidative phosphorylation (OxPhos), facilitating an increased rate of glucose hydrolysis. This in turn enables cancer cells to successfully compete with normal cells for glucose uptake in order to maintain uninterrupted growth. In addition, evading OxPhos mitigates excessive generation/accumulation of reactive oxygen species that otherwise may be deleterious to cells. Emerging data indicate that aerobic glycolysis in cancer also promotes glutaminolysis to satisfy the precursor requirements of certain biosynthetic processes (e.g. nucleic acids). Next, the metabolic intermediates of aerobic glycolysis also feed the pentose phosphate pathway (PPP) to facilitate macromolecular biosynthesis necessary for cancer cell growth and proliferation. Extracellularly, the extrusion of the end-product of aerobic glycolysis, i.e. lactate, alters the tumor microenvironment, and impacts cancer-associated cells. Collectively, accumulating data unequivocally demonstrate that aerobic glycolysis implicates myriad of molecular and functional processes to support cancer progression. This review, in the light of recent research, dissects the molecular intricacies of its regulation, and also deliberates the emerging paradigms to target aerobic glycolysis in cancer therapy.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
43
|
Mungo E, Bergandi L, Salaroglio IC, Doublier S. Pyruvate Treatment Restores the Effectiveness of Chemotherapeutic Agents in Human Colon Adenocarcinoma and Pleural Mesothelioma Cells. Int J Mol Sci 2018; 19:ijms19113550. [PMID: 30423827 PMCID: PMC6274794 DOI: 10.3390/ijms19113550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence supports the idea that a dysfunction in cell metabolism could sustain a resistant phenotype in cancer cells. As the success of chemotherapeutic agents is often questioned by the occurrence of multidrug resistance (MDR), a multiple cross-resistance towards different anti-cancer drugs represent a major obstacle to cancer treatment. The present study has clarified the involvement of the carbon metabolites in a more aggressive tumor colon adenocarcinoma phenotype and in a chemoresistant mesothelioma, and the role of pyruvate treatment in the reversion of the potentially related resistance. For the first time, we have shown that human colon adenocarcinoma cells (HT29) and its chemoresistant counterpart (HT29-dx) displayed different carbon metabolism: HT29-dx cells had a higher glucose consumption compared to HT29 cells, whereas human malignant mesothelioma (HMM) cells showed a lower glucose consumption compared to HT29 cells, accompanied by a lower pyruvate production and, consequently, a higher production of lactate. When treated with pyruvate, both HT29-dx and HMM cells exhibited a re-established accumulation of doxorubicin and a lower survival ability, a decreased activity of multidrug resistance protein 1 (MRP1) and a restored mitochondrial respiratory chain function, improving the effectiveness of the chemotherapeutic agents in these resistant cancer cells.
Collapse
Affiliation(s)
- Eleonora Mungo
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| | | | - Sophie Doublier
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
44
|
Tripodi F, Castoldi A, Nicastro R, Reghellin V, Lombardi L, Airoldi C, Falletta E, Maffioli E, Scarcia P, Palmieri L, Alberghina L, Agrimi G, Tedeschi G, Coccetti P. Methionine supplementation stimulates mitochondrial respiration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1901-1913. [PMID: 30290237 DOI: 10.1016/j.bbamcr.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Andrea Castoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | | | - Elisa Maffioli
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy.
| | - Gabriella Tedeschi
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
45
|
Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells 2018; 36:1457-1474. [PMID: 29845679 DOI: 10.1002/stem.2859] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression. Stem Cells 2018;36:1457-1474.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Ganapathy-Kanniappan S. Turning cancer's metabolic plasticity into fragility- an evolving paradigm. Cancer Biol Ther 2018; 19:763-765. [PMID: 29723104 DOI: 10.1080/15384047.2018.1471441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
In an elegant report, Corbet et al 1 recently demonstrated the much needed insight to exploit cancer's metabolic reprogramming for potential therapeutic intervention. In brief, the findings underscore the principle that abrogation of mitochondrial pyruvate metabolism upregulates glycolysis, and sensitizes cancer cells to radiation. Distinctive from the conventional approach of inhibition/ down-regulation of glycolysis, this emerging paradigm of forced-upregulation of glycolysis (i.e., a "hyperglycolytic" phenotype) concomitant with a reduced mitochondrial capacity turns the metabolic plasticity into vulnerability that may have implications in therapeutic targeting. Nevertheless, this commendable report 1 also provokes scientific curiosity and future directions of research on the opportunities and challenges of such forced upregulation of glycolysis in cancer.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
47
|
MPC1 is essential for PGC-1α-induced mitochondrial respiration and biogenesis. Biochem J 2018; 475:1687-1699. [PMID: 29669911 DOI: 10.1042/bcj20170967] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
Mitochondrial pyruvate carrier (MPC), which is essential for mitochondrial pyruvate usage, mediates the transport of cytosolic pyruvate into mitochondria. Low MPC expression is associated with various cancers, and functionally associated with glycolytic metabolism and stemness. However, the mechanism by which MPC expression is regulated is largely unknown. In this study, we showed that MPC1 is down-regulated in human renal cell carcinoma (RCC) due to strong suppression of peroxisome proliferator-activated receptor-gamma co-activator (PGC)-1 alpha (PGC-1α). We also demonstrated that overexpression of PGC-1α stimulates MPC1 transcription, while depletion of PGC-1α by siRNA suppresses MPC expression. We found that PGC-1α interacts with estrogen-related receptor-alpha (ERR-α) and recruits it to the ERR-α response element motif located in the proximal MPC1 promoter, resulting in efficient activation of MPC1 expression. Furthermore, the MPC inhibitor, UK5099, blocked PGC-1α-induced pyruvate-dependent mitochondrial oxygen consumption. Taken together, our results suggest that MPC1 is a novel target gene of PGC-1α. In addition, low expression of PGC-1α in human RCC might contribute to the reduced expression of MPC, resulting in impaired mitochondrial respiratory capacity in RCC by limiting the transport of pyruvate into the mitochondrial matrix.
Collapse
|
48
|
A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2664-2678. [PMID: 29778662 DOI: 10.1016/j.bbadis.2018.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
49
|
Corbet C. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight. Front Pharmacol 2018; 8:958. [PMID: 29403375 PMCID: PMC5777397 DOI: 10.3389/fphar.2017.00958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
50
|
Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Ogishima J, Eguchi S, Yamashita A, Tomio K, Komatsu A, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T. Detachment from the primary site and suspension in ascites as the initial step in metabolic reprogramming and metastasis to the omentum in ovarian cancer. Oncol Lett 2017; 15:1357-1361. [PMID: 29399186 DOI: 10.3892/ol.2017.7388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
Cancer cell metabolism is currently considered to be context dependent, and metabolic reprogramming is being widely investigated. It is known that ovarian cancer often metastasizes to the omentum. Given that the omentum itself contains a high concentration of adipocytes, ovarian cancer is thought to be a good model for research into metabolic reprogramming (particularly the shift to lipid metabolism). The present study investigated the switch to lipid metabolism in the metabolic reprogramming of ovarian cancer cells. The present study first considered the possibility of epigenetic involvement. Using an open database (GSE 85293 and GSE2109), the methylation status and gene expression patterns of the primary tumor site (ovary) and the metastatic tumor site (omentum) were compared. However, no evidence was obtained regarding the involvement of epigenetics (at least in terms of DNA methylation). The influence of suspension in ascites on metabolism was then considered, and a suspension culture was used as an in vitro model. It was demonstrated that ovarian cancer cells that are detached from the primary site and suspended in ascites have enhanced lipid metabolism. Additionally, it was demonstrated that these cells express high levels of the cancer stem cell (CSC) marker cluster of differentiation 44 and c-kit in a balanced manner as they approach the omentum. Accordingly, these cells activate the mammalian target of rapamycin pathway, which is thought to be advantageous for cancer cell metastasis. In conclusion, the present study proposed one explanation for why ovarian cancer cells are likely to disseminate to the peritoneal cavity, and in particular to the omentum.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsushi Komatsu
- Department of Obstetrics and Gynecology, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|