1
|
Zhu W, Fu M, Li Q, Chen X, Liu Y, Li X, Luo N, Tang W, Zhang Q, Yang F, Chen Z, Zhang Y, Peng B, Zhang Q, Zhang Y, Peng X, Hu G. Amino acid metabolism-related genes as potential biomarkers and the role of MATN3 in stomach adenocarcinoma: A bioinformatics, mendelian randomization and experimental validation study. Int Immunopharmacol 2024; 143:113253. [PMID: 39353384 DOI: 10.1016/j.intimp.2024.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a major contributor to cancer-related mortality worldwide. Alterations in amino acid metabolism, which is integral to protein synthesis, have been observed across various tumor types. However, the prognostic significance of amino acid metabolism-related genes in STAD remains underexplored. METHODS Transcriptomic gene expression and clinical data for STAD patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Amino acid metabolism-related gene sets were sourced from the Gene Set Enrichment Analysis (GSEA) database. A prognostic model was built using LASSO Cox regression based on the TCGA cohort and validated with GEO datasets (GSE84433, GSE84437, GSE84426). Kaplan-Meier analysis compared overall survival (OS) between high- and low-risk groups, and ROC curves assessed model accuracy. A nomogram predicted 1-, 3-, and 5-year survival. Copy number variations (CNVs) in model genes were visualized using data from the Xena platform, and mutation profiles were analyzed with "maftools" to create a waterfall plot. KEGG and GO enrichment analyses were performed to explore biological mechanisms. Immune infiltration and related functions were evaluated via ssGSEA, and Spearman correlation analyzed associations between risk scores and immune components. The TIDE database predicted immunotherapy efficacy, while FDA-approved drug sensitivity was assessed through CellMiner database. The role of MATN3 in STAD was further examined in vitro and in vivo, including amino acid-targeted metabolomic sequencing to assess its impact on metabolism. Finally, Mendelian randomization (MR) analysis evaluated the causal relationship between the model genes and gastric cancer. RESULTS In this study, we developed a prognostic risk model for STAD based on three amino acid metabolism-related genes (SERPINE1, NRP1, MATN3) using LASSO regression analysis. CNV amplification was common in SERPINE1 and NRP1, while CNV deletion frequently occurred in MATN3. STAD patients were classified into high- and low-risk groups based on the median risk score, with the high-risk group showing worse prognosis. A nomogram incorporating the risk score and clinical factors was created to estimate 1-, 3-, and 5-year survival rates. Distinct mutation profiles were observed between risk groups, with KEGG pathway analysis showing immune-related pathways enriched in the high-risk group. High-risk scores were significantly associated with the C6 (TGF-β dominant) subtype, while low-risk scores correlated with the C4 (lymphocyte-depleted) subtype. Higher risk scores also indicated increased immune infiltration, enhanced immune functions, lower tumor purity, and poorer immunotherapy response. Model genes were linked to anticancer drug sensitivity. Manipulating MATN3 expression showed that it promoted STAD cell proliferation and migration in vitro and tumor growth in vivo. Metabolomic sequencing revealed that MATN3 knockdown elevated levels of 30 amino acid metabolites, including alpha-aminobutyric acid, glycine, and aspartic acid, while reducing (S)-β-Aminoisobutyric acid and argininosuccinic acid. MR analysis found a significant causal effect of NRP1 on gastric cancer, but no causal relationship for MATN3 or SERPINE1. CONCLUSION In conclusion, the amino acid metabolism-related prognostic model shows promise as a valuable biomarker for predicting the clinical prognosis, selecting immunotherapy and drug treatment for STAD patients. Furthermore, our study has shed light on the potential value of the MATN3 as a promising strategy for combating the progression of STAD.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Wuhan 430000, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Tang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Yao L, Wu J, Wang X, Wang N. LINC01134 Directly Binds and Regulates SLC1A5 Stability to Promotes Colorectal Cancer Progression. J Cancer 2024; 15:6135-6147. [PMID: 39440055 PMCID: PMC11493009 DOI: 10.7150/jca.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Colorectal cancer (CRC) is a common malignant tumor with a poor prognosis. Long noncoding RNAs (lncRNAs) have recently gained attention for their pivotal role in regulating cancer progression, including CRC. This study aimed to investigate the biological mechanisms underlying the participation of long intergenic non-protein coding RNA 1134 (LINC01134) in the progression of CRC. Material and Methods: Quantitative Real-time-PCR (RT-qPCR) and western blot were applied to assess the expression levels of mRNA and protein. Functional experiments (CCK8 assay, colon formation assay, EdU assay and flow cytometry) were applied to assess cell viability and apoptosis. RNA-RNA interaction assays, subcellular fractionation analysis and dual luciferase reporter assays were employed to explore molecular interactions between LINC01134 and solute carrier family 1 member 5 (SLC1A5). The mRNA stability was analyzed using actinomycin D (ActD). Results: We found that LINC01134 expression was highly expressed in CRC tissues and positively correlated with advanced clinical stages and unfavorable prognosis, which is consistent with findings from CRC cell lines. Functional experiments showed that suppressing LINC01134 restrained the proliferation of CRC both in vitro and in vivo and induced apoptosis of CRC cells. Gene co-expression analysis revealed a positive relationship between LINC01134 and SLC1A5, which was also upregulated and associated with unfavorable prognosis in CRC. Further analysis of RNA interactions and mRNA stability revealed that LINC01134 directly binds to SLC1A5 mRNA, enhancing its stability. Remarkably, silencing SLC1A5 expression partially counteracted the promotion of CRC cell proliferation by LINC01134 overexpression and alleviated its inhibition of apoptosis. Conclusions: Our findings indicated that LINC01134 functioned as an oncogene in CRC by binding directly to SLC1A5 mRNA and increasing its stability. Therefore, targeting LINC01134 could be a potential therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Li Yao
- Department of general surgery, Shanghai Punan Hospital, 219 Linyi Road, Pudong New Area, 200125, Shanghai, China
| | - Jinxiu Wu
- Department of general surgery, Shanghai Punan Hospital, 219 Linyi Road, Pudong New Area, 200125, Shanghai, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, No.1 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China
| | - Nailing Wang
- Department of cardiovascular medicine, Shanghai Punan Hospital, 219 Linyi Road, Pudong New Area, 200125, Shanghai, China
| |
Collapse
|
3
|
CHU FEI, TONG KAI, GU XIANG, BAO MEI, CHEN YANFEN, WANG BIN, SHAO YANHUA, WEI LING. Glutamine transporters as effective targets in digestive system malignant tumor treatment. Oncol Res 2024; 32:1661-1671. [PMID: 39308523 PMCID: PMC11413814 DOI: 10.32604/or.2024.048287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/07/2024] [Indexed: 09/25/2024] Open
Abstract
Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body. Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements, which is supported by the upregulation of glutamine transporters. Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors. Among all cancers, digestive system malignant tumors (DSMTs) have the highest incidence and mortality rates, and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy. Due to the relatively low survival rate and severe side effects associated with DSMTs treatment, new treatment strategies are urgently required. This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs. Additionally, glutamine transporter-target drugs are discussed, providing theoretical guidance for the further development of drugs DSMTs treatment.
Collapse
Affiliation(s)
- FEI CHU
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - KAI TONG
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - XIANG GU
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - MEI BAO
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - YANFEN CHEN
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - BIN WANG
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - YANHUA SHAO
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - LING WEI
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Liu YC, Liu SY, Lin YC, Liu CJ, Chang KW, Lin SC. The disruption of NEAT1-miR-125b-5p-SLC1A5 cascade defines the oncogenicity and differential immune profile in head and neck squamous cell carcinoma. Cell Death Discov 2024; 10:392. [PMID: 39223142 PMCID: PMC11369192 DOI: 10.1038/s41420-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming sustains malignant head and neck squamous cell carcinoma (HNSCC) to overcome stressful microenvironments, and increased glutamine uptake is a common metabolic hallmark in cancers. Since metabolic reprogramming has been recognized as a new therapeutic target for tumor cells, understanding the regulatory axis of glutamine uptake in HNSCC and its potential downstream effects in its pathogenesis of HNSCC would be incredibly beneficial. Bioinformatic analysis of the Cancer Genome Atlas (TCGA)-HNSCC dataset and RNAseq analysis performed on HNSCC indicated that SLC1A5 was the most dysregulated transporter among the seven homologous glutamate or neutral amino acid transporters in the SLC1A family. To further clarify the role of SLC1A5 in HNSCC, we knocked down SLC1A5 expression. This knockdown decelerated cell growth, induced G0/G1 arrest, diminished tumorigenicity, and increased cleavage caspase3, LC3B, and intracellular Fe2+. Inhibitors against apoptosis, autophagy, or ferroptosis rescued the cell viability repressed by SLC1A5 knockdown. SLC1A5 knockdown also suppressed glutamine uptake, enhanced oxidative stress, and increased sensitivity to cisplatin. CRISPR/dCas9-mediated SLC1A5 induction conferred cisplatin resistance and reduced apoptosis, autophagy, and ferroptosis. Reporter assays and western blot data demonstrated that miR-125b-5p targets and attenuates SLC1A5, while the si-NEAT1 increases miR-125b-5p expression. Analysis of the TCGA-HNSCC databases showed concordant upregulation of NEAT1 and downregulation of miR-125b-5p, along with SLC1A5 upregulation in tumors. Analysis of transcriptomic data revealed that tumors harboring higher SLC1A5 expression had significantly lower immune scores in CD8+, monocytes, and dendritic cells, and higher scores in M0 and M1 macrophages. Disruptions in immune modulation, metabolism, and oxidative stress components were associated with SLC1A5 aberrations in HNSCC. This study concludes that the NEAT1/miR-125b-5p/SLC1A5 cascade modulates diverse activities in oncogenicity, treatment efficacy, and immune cell profiles in head and neck/oral carcinoma.
Collapse
Affiliation(s)
- Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - So-Yu Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Cheng Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Lim SA. Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy. BMB Rep 2024; 57:388-399. [PMID: 38919017 PMCID: PMC11444991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 06/27/2024] Open
Abstract
Immunotherapy represents a promising treatment strategy for targeting various tumor types. However, the overall response rate is low due to the tumor microenvironment (TME). In the TME, numerous distinct factors actively induce immunosuppression, restricting the efficacy of anticancer immune reactions. Recently, metabolic reprogramming of tumors has been recognized for its role in modulating the tumor microenvironment to enhance immune cell responses in the TME. Furthermore, recent elucidations underscore the critical role of metabolic limitations imposed by the tumor microenvironment on the effectiveness of antitumor immune cells, guiding the development of novel immunotherapeutic approaches. Hence, achieving a comprehensive understanding of the metabolic requirements of both cancer and immune cells within the TME is pivotal. This insight not only aids in acknowledging the current limitations of clinical practices but also significantly shapes the trajectory of future research endeavors in the domain of cancer immunotherapy. In addition, therapeutic interventions targeting metabolic limitations have exhibited promising potential as combinatory treatments across diverse cancer types. In this review, we first discuss the metabolic barriers in the TME. Second, we explore how the immune response is regulated by metabolites. Finally, we will review the current strategy for targeting metabolism to not simply inhibit tumor growth but also enhance antitumor immune responses. Thus, we could suggest potent combination therapy for improving immunotherapy with metabolic inhibitors. [BMB Reports 2024; 57(9): 388-399].
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Life Science, Ewha Womans University, Seoul 03760; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
6
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S, Kumar AP. Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab 2024; 84:101952. [PMID: 38705513 PMCID: PMC11112377 DOI: 10.1016/j.molmet.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res 2024; 12:45. [PMID: 38685115 PMCID: PMC11059647 DOI: 10.1186/s40364-024-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Cell death is an important part of the life cycle, serving as a foundation for both the orderly development and the maintenance of physiological equilibrium within organisms. This process is fundamental, as it eliminates senescent, impaired, or aberrant cells while also promoting tissue regeneration and immunological responses. A novel paradigm of programmed cell death, known as disulfidptosis, has recently emerged in the scientific circle. Disulfidptosis is defined as the accumulation of cystine by cancer cells with high expression of the solute carrier family 7 member 11 (SLC7A11) during glucose starvation. This accumulation causes extensive disulfide linkages between F-actins, resulting in their contraction and subsequent detachment from the cellular membrane, triggering cellular death. The RAC1-WRC axis is involved in this phenomenon. Disulfidptosis sparked growing interest due to its potential applications in a variety of pathologies, particularly oncology, neurodegenerative disorders, and metabolic anomalies. Nonetheless, the complexities of its regulatory pathways remain elusive, and its precise molecular targets have yet to be definitively identified. This manuscript aims to meticulously dissect the historical evolution, molecular underpinnings, regulatory frameworks, and potential implications of disulfidptosis in various disease contexts, illuminating its promise as a groundbreaking therapeutic pathway and target.
Collapse
Affiliation(s)
- Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yubiao Yang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bitao Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
8
|
Guo J, Fan J, Zhang Y, Li M, Jin Z, Shang Y, Zhang H, Kong Y. Progesterone inhibits endometrial cancer growth by inhibiting glutamine metabolism through ASCT2. Biosci Rep 2024; 44:BSR20232035. [PMID: 38415405 PMCID: PMC10932743 DOI: 10.1042/bsr20232035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024] Open
Abstract
Endometrial carcinoma (EC) is a common malignancy that originates from the endometrium and grows in the female reproductive system. Surgeries, as current treatments for cancer, however, cannot meet the fertility needs of young women patients. Thus, progesterone (P4) therapy is indispensable due to its effective temporary preservation of female fertility. Many cancer cells are often accompanied by changes in metabolic phenotypes, and abnormally dependent on the amino acid glutamine. However, whether P4 exerts an effect on EC via glutamine metabolism is unknown. In the present study, we found that P4 could inhibit glutamine metabolism in EC cells and down-regulate the expression of the glutamine transporter ASCT2. This regulation of ASCT2 affects the uptake of glutamine. Furthermore, the in vivo xenograft studies showed that P4 inhibited tumor growth and the expression of key enzymes involved in glutamine metabolism. Our study demonstrated that the direct regulation of glutamine metabolism by P4 and its anticancer effect was mediated through the inhibition of ASCT2. These results provide a mechanism underlying the effects of P4 therapy on EC from the perspective of glutamine metabolism.
Collapse
Affiliation(s)
- Jinqiu Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yaru Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mengyue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeen Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuhong Shang
- Department of Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongshuo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Li X, Zhang HS. Amino acid metabolism, redox balance and epigenetic regulation in cancer. FEBS J 2024; 291:412-429. [PMID: 37129434 DOI: 10.1111/febs.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Amino acids act as versatile nutrients driving cell growth and survival, especially in cancer cells. Amino acid metabolism comprises numerous metabolic networks and is closely linked with intracellular redox balance and epigenetic regulation. Reprogrammed amino acid metabolism has been recognized as a ubiquitous feature in tumour cells. This review outlines the metabolism of several primary amino acids in cancer cells and highlights the pivotal role of amino acid metabolism in sustaining redox homeostasis and regulating epigenetic modification in response to oxidative and genetic stress in cancer cells.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
10
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
11
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
12
|
Cheng L, Zhai H, Du J, Zhang G, Shi G. Lobetyolin inhibits cell proliferation and induces cell apoptosis by downregulating ASCT2 in gastric cancer. Cytotechnology 2023; 75:435-448. [PMID: 37655270 PMCID: PMC10465467 DOI: 10.1007/s10616-023-00588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease and is the fifth most common cancer worldwide. Lobetyolin, as a bioactive ingredient extracted from Codonopsis pilosula (Franch.) Nannf., has been reported to exert anti-tumor effects in several cancer types. This study was aimed to investigate the role of lobetyolin in GC and the associated mechanism. MKN-45 and MKN-28 cells were incubated with concentrations of lobetyolin for 24 h. The viability and survival of GC cells were evaluated by performing MTT assay. Glutamine uptake, Adenosine Triphosphate, reactive oxygen species (ROS), and glutathione levels were measured by corresponding kits. Apoptosis and mitochondrial membrane potential of GC cells were determined by flow cytometry. Alanine, serine, cysteine-preferring transporter 2 (ASCT2) and the AKT/GSK3β/c-Myc pathway protein levels were examined by western blotting. Xenograft model and immunohistochemical staining were used to evaluate the pharmacological effects of lobetyolin in mice in vivo. We found that lobetyolin treatment suppressed the proliferative capacity of both MKN-45 and MKN-28 cells in a concentration-dependent manner. Lobetyolin reduced the uptake of glutamine and downregulated the expression levels of ASCT2 in GC cells and xenograft tumors. Lobetyolin effectively restrained the growth of tumors in vivo. In addition, lobetyolin induced the accumulation of ROS to attenuate mitochondria-mediated apoptosis via downregulation of ASCT2 expression. Lobetyolin promoted the phosphorylation of c-Myc and suppressed the phosphorylation of GSK3β and AKT in both MKN-45 and MKN-28 cells. The level of total Nrf2 protein was reduced after lobetyolin treatment. Overall, lobetyolin exerts anti-cancer effects by repressing cell proliferation and inducing cell apoptosis via downregulation of ASCT2 in GC.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Gastroenterology, The Central Hospital of Qianjiang, Yangtze University, Qianjiang, 433100 China
| | - Haoqing Zhai
- Department of Oncology, The Central Hospital of Qianjiang, Yangtze University, Qianjiang, 433100 China
| | - Juan Du
- Department of Internal Medicine, Hubei University Hospital, Wuhan, 430062 China
| | - Gang Zhang
- Department of Digestive 2, Wuhan Sixth Hospital, Wuhan, 430015 China
| | - Gan Shi
- Department of Gastroenterology, Wuhan Xinzhou District People’s Hospital, No.61, Xinzhou Street, Zhucheng Street, Xinzhou District, Wuhan, 430400 China
| |
Collapse
|
13
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
14
|
Ni R, Li Z, Li L, Peng D, Ming Y, Li L, Liu Y. Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. Front Oncol 2023; 13:1143798. [PMID: 36959802 PMCID: PMC10029103 DOI: 10.3389/fonc.2023.1143798] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glutamine, the most abundant non-essential amino acid in human blood, is crucial for cancer cell growth and cancer progression. Glutamine mainly functions as a carbon and nitrogen source for biosynthesis, energy metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated glutamine metabolism is a notable metabolic characteristic of cancer cells. Some carcinogen-driven cancers exhibit a marked dependence on glutamine, also known as glutamine addiction, which has rendered the glutamine metabolic pathway a breakpoint in cancer therapeutics. However, some cancer cells can adapt to the glutamine unavailability by reprogramming metabolism, thus limiting the success of this therapeutic approach. Given the complexity of metabolic networks and the limited impact of inhibiting glutamine metabolism alone, the combination of glutamine metabolism inhibition and other therapeutic methods may outperform corresponding monotherapies in the treatment of cancers. This review summarizes the uptake, transport, and metabolic characteristics of glutamine, as well as the regulation of glutamine dependence by some important oncogenes in various cancers to emphasize the therapeutic potential of targeting glutamine metabolism. Furthermore, we discuss a glutamine metabolic pathway, the glutaminase II pathway, that has been substantially overlooked. Finally, we discuss the applicability of polytherapeutic strategies targeting glutamine metabolism to provide a new perspective on cancer therapeutics.
Collapse
Affiliation(s)
- Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Li
- Department of pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| |
Collapse
|
15
|
Kawakami I, Yoshino H, Fukumoto W, Tamai M, Okamura S, Osako Y, Sakaguchi T, Inoguchi S, Matsushita R, Yamada Y, Tatarano S, Nakagawa M, Enokida H. Targeting of the glutamine transporter SLC1A5 induces cellular senescence in clear cell renal cell carcinoma. Biochem Biophys Res Commun 2022; 611:99-106. [PMID: 35487063 DOI: 10.1016/j.bbrc.2022.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
In recent years, cancer metabolism has attracted attention as a therapeutic target, and glutamine metabolism is considered one of the most important metabolic processes in cancer. Solute carrier family 1 member 5 (SLC1A5) is a sodium channel that functions as a glutamine transporter. In various cancer types, SLC1A5 gene expression is enhanced, and cancer cell growth is suppressed by inhibition of SLC1A5. However, the involvement of SLC1A5 in clear cell renal cell carcinoma (ccRCC) is unclear. Therefore, in this study, we evaluated the clinical importance of SLC1A5 in ccRCC using The Cancer Genome Atlas database. Our findings confirmed that SLC1A5 was a prognosis factor for poor survival in ccRCC. Furthermore, loss-of-function assays using small interfering RNAs or an SLC1A5 inhibitor (V9302) in human ccRCC cell lines (A498 and Caki1) showed that inhibition of SLC1A5 significantly suppressed tumor growth, invasion, and migration. Additionally, inhibition of SLC1A5 by V9302 in vivo significantly suppressed tumor growth, and the antitumor effects of SLC1A5 inhibition were related to cellular senescence. Our findings may improve our understanding of ccRCC and the development of new treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Issei Kawakami
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Wataru Fukumoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Motoki Tamai
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoru Inoguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Diaz-Romero C, Lopez-Basave HN, Duenas-Gonzalez A. Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications. Curr Cancer Drug Targets 2022; 22:703-716. [DOI: 10.2174/1568009622666220413083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 12/09/2022]
Abstract
Background:
Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited.
Objective:
To provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade.
Methods:
A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review.
Results:
Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid -oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to
antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical, as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously blockade them to avoid or decrease the metabolic flexibility that may lead to treatment resistance.
Conclusions:
There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma Chavez-Blanco
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | - Alfonso Duenas-Gonzalez
- Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Wang W, Pan H, Ren F, Chen H, Ren P. Targeting ASCT2-mediated glutamine metabolism inhibits proliferation and promotes apoptosis of pancreatic cancer cells. Biosci Rep 2022; 42:BSR20212171. [PMID: 35237783 PMCID: PMC8935385 DOI: 10.1042/bsr20212171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Some tumor cells have a high rate of glutamine uptake and exhibit glutamine addiction. Alanine-serine cysteine-preferring transporter 2 (ASCT2) is a major mediator of glutamine supply in many tumor cells, but the underlying effects and mechanisms of ASCT2 in pancreatic cancer (PC) are largely unknown. Our results show that ASCT2 expression is significantly higher in PC than in normal pancreatic duct cells and pancreas. Utilizing the Kaplan-Meier Plotter database, a high expression of SLC1A5 mRNA was significantly associated with poor overall survival (OS) in patients with PC. shRNA-mediated inhibition of ASCT2 function in vitro can significantly decrease glutamine consumption, α-ketoglutarate (α-KG) production and ATP generation and increase the reactive oxygen species (ROS) level. Moreover, the antioxidant N-acetylcysteine partially attenuated the increase in the ROS levels and reduced ATP generation. These data suggest that ASCT2 mediates glutamine metabolism and maintains redox homeostasis in PC. To further investigate whether ASCT2 is involved in PC cell growth, we blocked ASCT2 activity with the ASCT2 inhibitor l-γ-glutamyl-p-nitroanilide (GPNA) and silenced the expression of ASCT2 with specific shRNAs. We found that the growth of PC cells was significantly inhibited. Additionally, knockdown of ASCT2 induced apoptosis through the Akt/mTOR signaling pathway. Furthermore, the loss of ASCT2 in BxPC-3 cell xenografts significantly inhibited tumor growth in vivo, and this effect was associated with an increase in cleaved caspase-3 expression and a decrease in Ki67 staining. Taken together, our results show that ASCT2 may be utilized as a putative therapeutic target for PC.
Collapse
Affiliation(s)
- Wenbin Wang
- Wuhan Sixth Hospital Affiliated to Jianghan University, Wuhan, Hubei, China
| | - Haihua Pan
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Feihua Ren
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongxia Chen
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ping Ren
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Zhu D, Wu S, Li Y, Zhang Y, Chen J, Ma J, Cao L, Lyu Z, Hou T. Ferroptosis-related gene SLC1A5 is a novel prognostic biomarker and correlates with immune infiltrates in stomach adenocarcinoma. Cancer Cell Int 2022; 22:124. [PMID: 35305616 PMCID: PMC8933927 DOI: 10.1186/s12935-022-02544-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is associated with high morbidity and mortality rates. Ferroptosis is an iron-dependent form of cell death, which plays an important role in the development of many cancers. Tumor-associated competing endogenous RNAs (ceRNAs) regulate tumorigenesis and development. Our study aimed to construct ceRNA networks and explore the relationship between ferroptosis-related genes in the ceRNA network and immune infiltration in STAD. METHODS Based on the interactions among long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), a ceRNA network was constructed to illustrate the relationships among lncRNAs, miRNAs, and mRNAs. Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) functional enrichment analyses were carried out to explore the functions and interactions of the differentially expressed (DE) mRNAs related to the ceRNA network. Differential expression and prognostic analysis of ferroptosis-related genes in the ceRNA network were performed using the R package "limma" and "survminer." The correlation between ferroptosis-related genes and tumor-infiltrating immune cells was analyzed using Spearman correlation analysis and CIBERSORT. Quantitative real-time PCR (qRT-PCR) was used to validate the expression of ferroptosis-related genes in STAD cells lines. RESULTS A ceRNA network consisting of 29 DElncRNAs, 31 DEmiRNAs, and 182 DEmRNAs was constructed. These DEmRNAs were significantly enriched in pathways related to the occurrence and development of STAD. The ferroptosis-related gene SLC1A5 was upregulated in STAD (P < 0.001) and was associated with better prognosis (P = 0.049). The CIBERSORT database and Spearman correlation analysis indicated that SLC1A5 was correlated with eight types of tumor-infiltrating immune cells and immune checkpoints, including PD-L1(CD-274) and PD-1(PDCD1). The SLC1A5 mRNA was found to be highly expressed in STAD cells lines. CONCLUSIONS Our study provides insights into the function of ceRNAs in STAD and identifies biomarkers for the development of therapies for STAD. The ferroptosis-related gene SLC1A5 in the ceRNA network was associated with both tumor-infiltrating immune cells and immune checkpoints in the tumor microenvironment, suggesting that SLC1A5 may be a novel prognostic marker and a potential target for STAD immunotherapy in the future.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Sifan Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yafang Li
- Guangdong Clinical Laboratory Center, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yu Zhang
- Medical Department, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jianhong Ma
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Lixue Cao
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Zejian Lyu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Tieying Hou
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Clinical Laboratory Center, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Medical Department, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
19
|
Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J, Li DF. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front Oncol 2022; 11:745209. [PMID: 35096565 PMCID: PMC8790521 DOI: 10.3389/fonc.2021.745209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence and the third leading cause of death in developed countries. Despite the development of combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The reprogramming of energy metabolism is a hallmark of cancer, especially increased dependence on aerobic glycolysis. In the present review, we summarized current evidence on how metabolic reprogramming in GC targets the tumor microenvironment, modulates metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the combination of metabolic reprogramming targeted agents and conventional chemotherapeutics or molecularly targeted treatments [including vascular endothelial growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This deeper understanding of the molecular mechanisms underlying successful pharmacological combinations is crucial in finding the best-personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Yu-Ling Bin
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Hong-Sai Hu
- Department of Gastroenterology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Feng Tian
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Zhen-Hua Wen
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
20
|
Zhong X, Yao L, Xu L, Ma Q, Huang G, Yang M, Gao C, Cheng J, Zhou X, Li Q, Guo X. Comprehensive Analysis of Potential Correlation Between Solute Carrier 1A (SLC1A) Family and Lung Adenocarcinoma. Int J Gen Med 2022; 15:2101-2117. [PMID: 35241927 PMCID: PMC8886152 DOI: 10.2147/ijgm.s350986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common dangerous malignant tumor and the leading cause of global cancer incidence and mortality. The Solute Carrier 1A (SLC1A) family play a significant part in cellular biological process, inflammation, and immunity. Specific functions of the SLC1A family in lung cancer are still not systematically described. Objective This study aimed to explore the best biological understanding of SLC1A family in lung cancer. Methods To study the expression and role of the SLC1A family in lung cancer, researchers used a variety of bioinformatics databases and tools. Results Aberrant expression of SLC1A family genes were demonstrated and analyzed the association with gender, tumor grade, cancer stages, and nodal metastasis status. The ectopic expression of SLC1A family genes has prognostic value for LUAD patients. Immune infiltration revealed a significant correlation between SLC1A family genes expression in LUAD. SLC1A family genes were involved in manifold biological processes and have different levels of DNA methylation and genetic alteration. Conclusions These findings suggested that members of the SLC1A family could be a potential target for the development of LUAD therapeutics as well as a reliable indicator of LUAD prognostic value.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Guangcheng Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Miyuan Yang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Chuanli Gao
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Jibing Cheng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xi Zhou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Qinrong Li
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Correspondence: Xiaolan Guo, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China, Tel +86-817-2282059, Fax +86-817-2282059, Email
| |
Collapse
|
21
|
SLC1A5 co-expression with TALDO1 associates with endocrine therapy failure in estrogen receptor-positive breast cancer. Breast Cancer Res Treat 2021; 189:317-331. [PMID: 34282517 PMCID: PMC8357718 DOI: 10.1007/s10549-021-06298-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/12/2021] [Indexed: 01/03/2023]
Abstract
Purpose Identification of effective biomarkers for the benefit of endocrine treatment and understanding the molecular pathways that contribute to the development of resistance are of crucial importance to the management of luminal breast cancer. The amino acid transporter SLC1A5 has emerging importance as a prognostic marker and potential therapeutic target in various types of cancer. This study aims to investigate its role in luminal breast cancer as a potential predictive marker for endocrine treatment. Methods SLC1A5 expression was assessed at the transcriptomic and proteomic levels in large, well-characterized cohorts of luminal breast cancer. The sensitivity to endocrine therapy after SLC1A5 knockdown was investigated in vitro, using MCF7 and MDA-MB-175 cell lines. Bioinformatic analyses were performed to study the interacting networks of SLC1A5 and to identify a key co-expressed gene with SLC1A5. Results Here, we showed that patients with tumors that highly expressed SLC1A5 associated with a high risk of relapse after endocrine treatment. In vitro, depletion of SLC1A5 increases the sensitivity of luminal breast cancer cells to tamoxifen. TALDO1 was identified as key co-expressed gene with SLC1A5, and in vitro knockdown of SLC1A5 showed reduction in TALDO1 expression. Indeed, TALDO1 was associated with poor clinical outcomes in patients who were subject to endocrine therapy. Conclusion These findings suggest that metabolic alterations, particularly the interaction between the key amino acid transporter SLC1A5 and metabolic enzyme TALDO1, could affect the sensitivity of endocrine therapy. This study demonstrated the prognostic value of both SLC1A5 and TALDO1 as biomarkers in luminal breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06298-1.
Collapse
|
22
|
Teixeira E, Silva C, Martel F. The role of the glutamine transporter ASCT2 in antineoplastic therapy. Cancer Chemother Pharmacol 2021; 87:447-464. [PMID: 33464409 DOI: 10.1007/s00280-020-04218-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Cancer cells are metabolically reprogrammed to support their high rates of proliferation, continuous growth, survival, invasion, metastasis, and resistance to cancer treatments. Among changes in cancer cell bioenergetics, the role of glutamine metabolism has been receiving increasing attention. Increased glutaminolysis in cancer cells is associated with increased expression of membrane transporters that mediate the cellular uptake of glutamine. ASCT2 (Alanine, Serine, Cysteine Transporter 2) is a Na+-dependent transmembrane transporter overexpressed in cancer cells and considered to be the primary transporter for glutamine in these cells. The possibility of inhibiting ASCT2 for antineoplastic therapy is currently under investigation. In this article, we will present the pharmacological agents currently known to act on ASCT2, which have been attracting attention in antineoplastic therapy research. We will also address the impact of ASCT2 inhibition on the prognosis of some cancers. We conclude that ASCT2 inhibition and combination of ASCT2 inhibitors with other anti-tumor therapies may be a promising antineoplastic strategy. However, more research is needed in this area.
Collapse
Affiliation(s)
- Estefânia Teixeira
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Al Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cláudia Silva
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Al Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Al Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
23
|
Feng Y, Pathria G, Heynen-Genel S, Jackson M, James B, Yin J, Scott DA, Ronai ZA. Identification and Characterization of IMD-0354 as a Glutamine Carrier Protein Inhibitor in Melanoma. Mol Cancer Ther 2021; 20:816-832. [PMID: 33632871 DOI: 10.1158/1535-7163.mct-20-0354] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/21/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
A key hallmark of cancer, altered metabolism, is central to cancer pathogenesis and therapy resistance. Robust glutamine metabolism is among cellular processes regulating tumor progression and responsiveness to therapy in a number of cancers, including melanoma and breast cancer. Among mechanisms underlying the increase in glutamine metabolism in tumors is enhanced glutamine uptake mediated by the glutamine transporters, with SLC1A5 (also known as ASCT2) shown to play a predominant role. Correspondingly, increased SLC1A5 expression coincides with poorer survival in patients with breast cancer and melanoma. Therefore, we performed an image-based screen to identify small molecules that are able to prevent the localization of SLC1A5 to the plasma membrane without impacting cell shape. From 7,000 small molecules, nine were selected as hits, of which one (IMD-0354) qualified for further detailed functional assessment. IMD-0354 was confirmed as a potent inhibitor of glutamine uptake that attained sustained low intracellular glutamine levels. Concomitant with its inhibition of glutamine uptake, IMD-0354 attenuated mTOR signaling, suppressed two- and three-dimensional growth of melanoma cells, and induced cell-cycle arrest, autophagy, and apoptosis. Pronounced effect of IMD-0354 was observed in different tumor-derived cell lines, compared with nontransformed cells. RNA-sequencing analysis identified the unfolded protein response, cell cycle, and response (DNA damage response pathways) to be affected by IMD-0354. Combination of IMD-0354 with GLS1 or LDHA inhibitors enhanced melanoma cell death. In vivo, IMD-0354 suppressed melanoma growth in a xenograft model. As a modulator of glutamine metabolism, IMD-0354 may serve as an important therapeutic and experimental tool that deserves further examination.
Collapse
Affiliation(s)
- Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Gaurav Pathria
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Susanne Heynen-Genel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Michael Jackson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Brian James
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jun Yin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - David A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
24
|
Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol 2021; 8:603837. [PMID: 33511116 PMCID: PMC7835483 DOI: 10.3389/fcell.2020.603837] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming has been widely recognized as a hallmark of malignancy. The uptake and metabolism of amino acids are aberrantly upregulated in many cancers that display addiction to particular amino acids. Amino acids facilitate the survival and proliferation of cancer cells under genotoxic, oxidative, and nutritional stress. Thus, targeting amino acid metabolism is becoming a potential therapeutic strategy for cancer patients. In this review, we will systematically summarize the recent progress of amino acid metabolism in malignancy and discuss their interconnection with mammalian target of rapamycin complex 1 (mTORC1) signaling, epigenetic modification, tumor growth and immunity, and ferroptosis. Finally, we will highlight the potential therapeutic applications.
Collapse
Affiliation(s)
- Zhen Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Lopes C, Pereira C, Medeiros R. ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation. Cancers (Basel) 2021; 13:E203. [PMID: 33429909 PMCID: PMC7828050 DOI: 10.3390/cancers13020203] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The role of the amino acid transporters ASCT2 and LAT1 in cancer has been explored throughout the years. In this review, we report their impact on the hallmarks of cancer, as well as their clinical significance. Overall, both proteins have been associated with cell death resistance through dysregulation of caspases and sustainment of proliferative signaling through mTOR activation. Furthermore, ASCT2 appears to play an important role in cellular energetics regulation, whereas LAT1 expression is associated with angiogenesis and invasion and metastasis activation. The molecular impact of these proteins on the hallmarks of cancer translates into various clinical applications and both transporters have been identified as prognostic factors in many types of cancer. Concerning their role as therapeutic targets, efforts have been undertaken to synthesize competitive or irreversible ASCT2 and LAT1 inhibitors. However, JHP203, a selective inhibitor of the latter, is, to the best of our knowledge, the only compound included in a Phase 1 clinical trial. In conclusion, considering the usefulness of ASCT2 and LAT1 in a variety of cancer-related pathways and cancer therapy/diagnosis, the development and testing of novel inhibitors for these transporters that could be evaluated in clinical trials represents a promising approach to cancer prognosis improvement.
Collapse
Affiliation(s)
- Catarina Lopes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- Research Department of the Portuguese League Against Cancer—North (LPCC-NRNorte), Estrada da Circunvalação, 4200-177 Porto, Portugal
| |
Collapse
|
26
|
Ma H, Wu J, Zhou M, Wu J, Wu Z, Lin L, Huang N, Liao W, Sun L. Inhibition of Glutamine Uptake Improves the Efficacy of Cetuximab on Gastric Cancer. Integr Cancer Ther 2021; 20:15347354211045349. [PMID: 34590499 PMCID: PMC8488517 DOI: 10.1177/15347354211045349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Treatment for advanced gastric cancer is challenging. Epidermal growth factor receptor (EGFR) contributes to the proliferation and development of gastric cancer (GC), and its overexpression is associated with unfavorable prognosis in GC. Cetuximab, a monoclonal antibody targeting EGFR, failed to improve the overall survival of gastric cancer patients indicated in phase III randomized trials. Glutamine is a vital nutrient for tumor growth and its metabolism contributes to therapeutic resistance, making glutamine uptake an attractive target for cancer treatment. The aim of the present study was to investigate whether intervention of glutamine uptake could improve the effect of cetuximab on GC. The results of MTT assay showed that by glutamine deprivation or inhibition of glutamine uptake, the viability of gastric carcinoma cells was inhibited more severely than that of human immortal gastric mucosa epithelial cells (GES-1). The expression of the key glutamine transporter alanine-serine-cysteine (ASC) transporter 2 (ASCT2; SLC1A5) was significantly higher in gastric carcinoma tissues and various gastric carcinoma cell lines than in normal gastric tissues and cells, as shown by immunohistochemistry and western blotting, while silencing ASCT2 significantly inhibited the viability and proliferation of gastric carcinoma cells. Consistent with previous studies, it was shown herein by MTT and EdU assays that cetuximab had a weak inhibitory effect on the cell viability of gastric carcinoma cells. However, inhibiting glutamine uptake by blockade of ASCT2 with l-γ-glutamyl-p-nitroanilide (GPNA) significantly enhanced the inhibitory effect of cetuximab on suppressing the proliferation of gastric cancer both in vitro and in vivo. Moreover, combining cetuximab and GPNA induced cell apoptosis considerably in gastric carcinoma cells, as shown by flow cytometry, and had a higher depressing effect on gastric cancer proliferation both in vitro and in vivo, as compared to either treatment alone. The present study suggested that inhibition of glutamine uptake may be a promising strategy for improving the inhibitory efficacy of cetuximab on advanced gastric cancer.
Collapse
Affiliation(s)
- Huanrong Ma
- Southern Medical University, Guangzhou, P.R. China
| | - Jingjing Wu
- Southern Medical University, Guangzhou, P.R. China
| | - Minyu Zhou
- Southern Medical University, Guangzhou, P.R. China
| | - Jianhua Wu
- Southern Medical University, Guangzhou, P.R. China
| | - Zhenzhen Wu
- Southern Medical University, Guangzhou, P.R. China
| | - Li Lin
- Southern Medical University, Guangzhou, P.R. China
| | - Na Huang
- Southern Medical University, Guangzhou, P.R. China
| | - Wangjun Liao
- Southern Medical University, Guangzhou, P.R. China
| | - Li Sun
- Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
27
|
Scalise M, Console L, Rovella F, Galluccio M, Pochini L, Indiveri C. Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Cells 2020; 9:cells9092028. [PMID: 32899180 PMCID: PMC7565710 DOI: 10.3390/cells9092028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells perform a metabolic rewiring to sustain an increased growth rate and compensate for the redox stress caused by augmented energy metabolism. The metabolic changes are not the same in all cancers. Some features, however, are considered hallmarks of this disease. As an example, all cancer cells rewire the amino acid metabolism for fulfilling both the energy demand and the changed signaling routes. In these altered conditions, some amino acids are more frequently used than others. In any case, the prerequisite for amino acid utilization is the presence of specific transporters in the cell membrane that can guarantee the absorption and the traffic of amino acids among tissues. Tumor cells preferentially use some of these transporters for satisfying their needs. The evidence for this phenomenon is the over-expression of selected transporters, associated with specific cancer types. The knowledge of the link between the over-expression and the metabolic rewiring is crucial for understanding the molecular mechanism of reprogramming in cancer cells. The continuous growth of information on structure-function relationships and the regulation of transporters will open novel perspectives in the fight against human cancers.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Filomena Rovella
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) via Amendola 122/O, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-09-8449-2939
| |
Collapse
|
28
|
Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci 2020; 21:ijms21176014. [PMID: 32825551 PMCID: PMC7503725 DOI: 10.3390/ijms21176014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.
Collapse
|
29
|
Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacol Res 2020; 158:104844. [DOI: 10.1016/j.phrs.2020.104844] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
|
30
|
Xue M, Hong W, Jiang J, Zhao F, Gao X. Circular RNA circ-LDLRAD3 serves as an oncogene to promote non-small cell lung cancer progression by upregulating SLC1A5 through sponging miR-137. RNA Biol 2020; 17:1811-1822. [PMID: 32658600 DOI: 10.1080/15476286.2020.1789819] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are closely associated with the development of non-small cell lung cancer (NSCLC); however, it is still unclear whether circular RNA circ-LDLRAD3 participated in the regulation of NSCLC progression. In this study, we found that circ-LDLRAD3 was high-expressed and miR-137 was low-expressed in NSCLC tissues and cells compared to their normal counterparts, which showed negative correlations in NSCLC tissues. Further experiments validated that miR-137 could be sponged and inhibited by circ-LDLRAD3 in NSCLC cells. In addition, knock-down of circ-LDLRAD3 and miR-137 overexpression promoted NSCLC cell apoptosis, and inhibited cell proliferation and invasion. Similarly, upregulation of circ-LDLRAD3 or miR-137 ablation had opposite effects on the above cell functions. Besides, the glutamine transporter SLC1A5 was validated to be the downstream target of circ-LDLRAD3 and miR-137, and upregulated circ-LDLRAD3 increased SLC1A5 expression levels by downregulating miR-137. Furthermore, the effects of downregulated circ-LDLRAD3 on cell proliferation, apoptosis and mobility were all reversed by knocking down miR-137 and overexpressing SLC1A5. Taken together, this in vitro study found that knock-down of circ-LDLRAD3 inhibited the development of NSCLC by regulating miR-137/SLC1A5 axis.
Collapse
Affiliation(s)
- Min Xue
- Department of Respiratory Medicine, Minhang Hospital, Fudan University , Shanghai, China
| | - Weijun Hong
- Department of Respiratory Medicine, Minhang Hospital, Fudan University , Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University , Shanghai, China
| | - Fang Zhao
- Department of Laboratory, Minhang Hospital, Fudan University , Shanghai, China
| | - Xiwen Gao
- Department of Respiratory Medicine, Minhang Hospital, Fudan University , Shanghai, China
| |
Collapse
|
31
|
Parker SJ, Amendola CR, Hollinshead KER, Yu Q, Yamamoto K, Encarnación-Rosado J, Rose RE, LaRue MM, Sohn ASW, Biancur DE, Paulo JA, Gygi SP, Jones DR, Wang H, Philips MR, Bar-Sagi D, Mancias JD, Kimmelman AC. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discov 2020; 10:1018-1037. [PMID: 32341021 DOI: 10.1158/2159-8290.cd-19-0959] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSC). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine cross-talk between PSCs and PDAC is orchestrated by the utilization of specific transporters. PSCs utilize SLC1A4 and other transporters to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer. SIGNIFICANCE: This work identifies critical neutral amino acid transporters involved in channeling alanine between pancreatic stellate and PDAC cells. Targeting PDAC-specific alanine uptake results in a metabolic crisis impairing metabolism, proliferation, and tumor growth. PDAC cells specifically activate and require SLC38A2 to fuel their alanine demands that may be exploited therapeutically.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Seth J Parker
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Caroline R Amendola
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Kate E R Hollinshead
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Qijia Yu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keisuke Yamamoto
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Joel Encarnación-Rosado
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Rebecca E Rose
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Madeleine M LaRue
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Albert S W Sohn
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Doug E Biancur
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark R Philips
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University School of Medicine, New York, New York.
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| |
Collapse
|
32
|
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochem Res 2020; 45:1268-1286. [DOI: 10.1007/s11064-019-02934-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
33
|
Hara Y, Minami Y, Yoshimoto S, Hayashi N, Yamasaki A, Ueda S, Masuko K, Masuko T. Anti-tumor effects of an antagonistic mAb against the ASCT2 amino acid transporter on KRAS-mutated human colorectal cancer cells. Cancer Med 2020; 9:302-312. [PMID: 31709772 PMCID: PMC6943164 DOI: 10.1002/cam4.2689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations are detected in numerous human cancers, but there are few effective drugs for KRAS-mutated cancers. Transporters for amino acids and glucose are highly expressed on cancer cells, possibly to maintain rapid cell growth and metabolism. Alanine-serine-cysteine transporter 2 (ASCT2) is a primary transporter for glutamine in cancer cells. In this study, we developed a novel monoclonal antibody (mAb) recognizing the extracellular domain of human ASCT2, and investigated whether ASCT2 can be a therapeutic target for KRAS-mutated cancers. Rats were immunized with RH7777 rat hepatoma cells expressing human ASCT2 fused to green fluorescent protein (GFP). Splenocytes from the immunized rats were fused with P3X63Ag8.653 mouse myeloma cells, and selected and cloned hybridoma cells secreting Ab3-8 mAb were established. This mAb reacted with RH7777 transfectants expressing ASCT2-GFP proteins in a GFP intensity-dependent manner. Ab3-8 reacted with various human cancer cells, but not with non-cancer breast epithelial cells or ASCT2-knocked out HEK293 and SW1116 cells. In SW1116 and HCT116 human colon cancer cells with KRAS mutations, treatment with Ab3-8 reduced intracellular glutamine transport, phosphorylation of AKT and ERK, and inhibited in vivo tumor growth of these cells in athymic mice. Inhibition of in vivo tumor growth by Ab3-8 was not observed in HT29 colon and HeLa uterus cancer cells with wild-type KRAS. These results suggest that ASCT2 is an excellent therapeutic target for KRAS-mutated cancers.
Collapse
Affiliation(s)
- Yuta Hara
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Yushi Minami
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Soshi Yoshimoto
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Natsumi Hayashi
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Akitaka Yamasaki
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Shiho Ueda
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Kazue Masuko
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| | - Takashi Masuko
- Cell Biology LaboratorySchool of PharmacyKindai UniversityHigashi‐OsakaOsakaJapan
| |
Collapse
|
34
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
35
|
Wang L, Liu Y, Zhao TL, Li ZZ, He JY, Zhang BJ, Du HZ, Jiang JW, Yuan ST, Sun L. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:117-128. [PMID: 30668314 DOI: 10.1016/j.phymed.2018.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Topotecan (TPT) is a Topo I inhibitor and shows obvious anti-cancer effects on gastric cancer. Cancer cells reprogram their metabolic pathways to increase nutrients uptake, which has already been a hallmark of cancer. But the effect of TPT on metabolism in gastric cancer remains unknown. PURPOSE To investigate the effect of TPT on metabolism in gastric cancer. METHODS ATP production was measured by ATP Assay kit. Glucose and glutamine uptake were measured by Glucose (HK) Assay Kit and Glutamine/Glutamate Determination Kit respectively. To detect glutathione (GSH) concentration and reactive oxygen species (ROS) generation, GSH and GSSG Assay Kit and ROS Assay Kit were adopted. Apoptosis rates, mitochondrial membrane potential (MMP) were determined by flow cytometry and protein levels were analyzed by immumohistochemical staining and western blotting. RESULTS TPT increased ATP production. TPT promoted glucose uptake possibly via up-regulation of hexokinase 2 (HK2) or glucose transporter 1 (GLUT1) expression, while decreased glutamine uptake by down-regulation of ASCT2 expression. ASCT2 inhibitor GPNA and ASCT2 knockdown significantly suppressed the growth of gastric cancer cells. Inhibition of ASCT2 reduced glutamine uptake which led to decreased production of GSH and increased ROS level. ASCT2 knockdown induced apoptosis via the mitochondrial pathway and weakened anti-cancer effect of TPT. CONCLUSION TPT inhibits glutamine uptake via down-regulation of ASCT2 which causes oxidative stress and induces apoptosis through the mitochondrial pathway. Moreover, TPT inhibits proliferation partially via ASCT2. These observations reveal a previously undescribed mechanism of ASCT2 regulated gastric cancer proliferation and demonstrate ASCT2 is a potential anti-cancer target of TPT.
Collapse
Affiliation(s)
- Lai Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Yang Liu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Ting-Li Zhao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Zheng-Zheng Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Jin-Yong He
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Ben-Jia Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Hong-Zhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Huang jia hu Road West, Wuhan, China
| | - Jing-Wei Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China.
| |
Collapse
|
36
|
Abstract
Oncogenic signalling and metabolic alterations are interrelated in cancer cells. mTOR, which is frequently activated in cancer, controls cell growth and metabolism. mTOR signalling regulates amino acid, glucose, nucleotide, fatty acid and lipid metabolism. Conversely, metabolic inputs, such as amino acids, activate mTOR. In this Review, we discuss how mTOR signalling rewires cancer cell metabolism and delineate how changes in metabolism, in turn, sustain mTOR signalling and tumorigenicity. Several drugs are being developed to perturb cancer cell metabolism. However, their efficacy as stand-alone therapies, similar to mTOR inhibitors, is limited. Here, we discuss how the interdependence of mTOR signalling and metabolism can be exploited for cancer therapy.
Collapse
Affiliation(s)
| | - Sujin Park
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
37
|
The role of ASCT2 in cancer: A review. Eur J Pharmacol 2018; 837:81-87. [DOI: 10.1016/j.ejphar.2018.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/10/2018] [Accepted: 07/09/2018] [Indexed: 01/18/2023]
|
38
|
Liu H, Hu J, Pan H, Luo D, Huang M, Xu W. CSN5 Promotes Hepatocellular Carcinoma Progression by SCARA5 Inhibition Through Suppressing β-Catenin Ubiquitination. Dig Dis Sci 2018; 63:155-165. [PMID: 29189991 DOI: 10.1007/s10620-017-4855-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increasing evidence has suggested that E3 Ubiquitin Ligase CSN5 is a newly characterized oncogene involved in various types of cancer. Scavenger receptor class A member 5 (SCARA5) is an important regulator of biological processes in cancer cells. However, the roles and relationship of CSN5 and SCARA5 in hepatocellular carcinoma (HCC) remain unclear. METHODS We used RT-PCR, Western blot, and immunohistochemistry to measure CSN5 and SCARA5 expression in HCC tissues and corresponding non-tumor tissues. The CSN5 gene was overexpressed or silenced with lentiviral vectors in HCC cells. Cell proliferation was measured using CCK8 assay. And, the cell migration and invasion were analyzed by transwell assay. RESULTS We found that the expressions of CSN5 and SCARA5 are inversely correlated in HCC tissues, and CSN5 expression levels were negatively correlated with the levels of SCARA5 in various HCC cells. Furthermore, we found that high level of CSN5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis, but low level of SCARA5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis. Additionally, survival of patients with lower expression of CNS5 was significantly better than that of higher expression group, but the survival of patients with higher expression of SCARA5 was significantly better than that of lower expression group. Moreover, knockdown of CSN5 increased SCARA5 expression and inhibited the proliferation and metastasis of HCC cells in vitro and in vivo. Finally, we found that CSN5 regulated SCARA5 expression by modulating β-catenin. Mechanistically, our results indicate that CSN5 can decrease β-catenin ubiquitination to enhance the protein expression of SCARA5 in HCC cells. CONCLUSIONS Our data identified CSN5 as a critical oncoprotein involved in progression of HCC cells, which could serve as a potential therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Junwen Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.,Department of General Surgery, The Third Affiliated Hospital of Nanchang University, No. 128 Xiangshan North Road, Nanchang, 330008, Jiangxi Province, China
| | - Hua Pan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Dilai Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Mingwen Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
39
|
Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth. Front Oncol 2017; 7:306. [PMID: 29376023 PMCID: PMC5770653 DOI: 10.3389/fonc.2017.00306] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
The concept that cancer is a metabolic disease is now well acknowledged: many cancer cell types rely mostly on glucose and some amino acids, especially glutamine for energy supply. These findings were corroborated by overexpression of plasma membrane nutrient transporters, such as the glucose transporters (GLUTs) and some amino acid transporters such as ASCT2, LAT1, and ATB0,+, which became promising targets for pharmacological intervention. On the basis of their sodium-dependent transport modes, ASCT2 and ATB0+ have the capacity to sustain glutamine need of cancer cells; while LAT1, which is sodium independent will have the role of providing cancer cells with some amino acids with plausible signaling roles. According to the metabolic reprogramming of many types of cancer cells, glucose is mainly catabolized by aerobic glycolysis in tumors, while the fate of Glutamine is completed at mitochondrial level where the enzyme Glutaminase converts Glutamine to Glutamate. Glutamine rewiring in cancer cells is heterogeneous. For example, Glutamate is converted to α-Ketoglutarate giving rise to a truncated form of Krebs cycle. This reprogrammed pathway leads to the production of ATP mainly at substrate level and regeneration of reducing equivalents needed for cells growth, redox balance, and metabolic energy. Few studies on hypothetical mitochondrial transporter for Glutamine are reported and indirect evidences suggested its presence. Pharmacological compounds able to inhibit Glutamine metabolism may represent novel drugs for cancer treatments. Interestingly, well acknowledged targets for drugs are the Glutamine transporters of plasma membrane and the key enzyme Glutaminase.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|