1
|
Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, Jin WT, Sârbu I, AlShamsi F, Elsaid FG, Akhavan-Sigari R. Dual role of mesenchymal stem/stromal cells and their cell-free extracellular vesicles in colorectal cancer. Cell Biochem Funct 2024; 42:e3962. [PMID: 38491792 DOI: 10.1002/cbf.3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, Iraq
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Mushait, Saudi Arabia
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - April Ann Malquisto
- Abuyog Community College, Abuyog Leyte, Philippines
- ESL Science Teacher, Tacloban City, Tacloban, Philippines
- Department of Art Sciences and Education, Tacloban City, Philippines
| | - Wong Tze Jin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia
- Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, Romania
| | - Faisal AlShamsi
- Dubai Health Authority, Primary Health Care Department, Dubai, United Arab Emirates
| | - Fahmy Gad Elsaid
- Biology Department, College of Science, King Khalid University, Asir, Abha, Al-Faraa, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
2
|
Zhang Y, Fan A, Li Y, Liu Z, Yu L, Guo J, Hou J, Li X, Chen W. Single-cell RNA sequencing reveals that HSD17B2 in cancer-associated fibroblasts promotes the development and progression of castration-resistant prostate cancer. Cancer Lett 2023; 566:216244. [PMID: 37244445 DOI: 10.1016/j.canlet.2023.216244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Castration-resistant prostate cancer (CRPC) responds poorly to existing therapy and appears as the lethal consequence of prostate cancer (PCa) progression. The tumour microenvironment (TME) has been thought to play a crucial role in CRPC progression. Here, we conducted single-cell RNA sequencing analysis on two CRPC and two hormone-sensitive prostate cancer (HSPC) samples to reveal potential leading roles in castration resistance. We described the single-cell transcriptional landscape of PCa. Higher cancer heterogeneity was explored in CRPC, with stronger cell cycling status and heavier copy number variant burden of luminal cells. Cancer-associated fibroblasts (CAFs), which are one of the most critical components of TME, demonstrated unique expression and cell-cell communication features in CRPC. A CAFs subtype with high expression of HSD17B2 in CRPC was identified with inflammatory features. HSD17B2 catalyses the conversion of testosterone and dihydrotestosterone to their less active forms, which was associated with steroid hormone metabolism in PCa tumour cells. However, the characteristics of HSD17B2 in PCa fibroblasts remained unknown. We found that HSD17B2 knockdown in CRPC-CAFs could inhibit migration, invasion, and castration resistance of PCa cells in vitro. Further study showed that HSD17B2 could regulate CAFs functions and promote PCa migration through the AR/ITGBL1 axis. Overall, our study revealed the important role of CAFs in the formation of CRPC. HSD17B2 in CAFs regulated AR activation and subsequent ITGBL1 secretion to promote the malignant behaviour of PCa cells. HSD17B2 in CAFs could serve as a promising therapeutic target for CRPC.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aoyu Fan
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunpeng Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuolin Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu Yu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Hou
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Li
- School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wei Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Kasimanickam VR, Kasimanickam RK. In Silico Analysis of miRNA-Mediated Genes in the Regulation of Dog Testes Development from Immature to Adult Form. Animals (Basel) 2023; 13:ani13091520. [PMID: 37174557 PMCID: PMC10177090 DOI: 10.3390/ani13091520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
High-throughput in-silico techniques help us understand the role of individual proteins, protein-protein interaction, and their biological functions by corroborating experimental data as epitomized biological networks. The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. Differentially expressed (DE) canine testis miRNAs between healthy immature (2.2 ± 0.13 months; n = 4) and mature (11 ± 1.0 months; n = 4) dogs were utilized in this investigation. In silico analysis was performed using miRNet, STRING, and ClueGo programs. The determination of mRNA and protein expressions of predicted pivotal genes and their association with miRNA were studied. The results showed protein-protein interaction for the upregulated miRNAs, which revealed 978 enriched biological processes GO terms and 127 KEGG enrichment pathways, and for the down-regulated miRNAs revealed 405 significantly enriched biological processes GO terms and 72 significant KEGG enrichment pathways (False Recovery Rate, p < 0.05). The in-silico analysis of DE-miRNA's associated genes revealed their involvement in the governing of several key biological functions (cell cycle, cell proliferation, growth, maturation, survival, and apoptosis) in the testis as they evolve from immature to adult forms, mediated by several key signaling pathways (ErbB, p53, PI3K-Akt, VEGF and JAK-STAT), cytokines and hormones (estrogen, GnRH, relaxin, thyroid hormone, and prolactin). Elucidation of DE-miRNA predicted genes' specific roles, signal transduction pathways, and mechanisms, by mimics and inhibitors, which could perhaps offer diagnostic and therapeutic targets for infertility, cancer, and birth control.
Collapse
Affiliation(s)
- Vanmathy R Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ramanathan K Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Wu Y, Clark KC, Niranjan B, Chüeh AC, Horvath LG, Taylor RA, Daly RJ. Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts. Mol Oncol 2023; 17:469-486. [PMID: 36608258 PMCID: PMC9980303 DOI: 10.1002/1878-0261.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Reciprocal interactions between prostate cancer cells and carcinoma-associated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and co-cultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to mono-culture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL-17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-β superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell-fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Yunjian Wu
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Kimberley C. Clark
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Anderly C. Chüeh
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- University of SydneyNew South WalesAustralia
- Chris O'Brien LifehouseSydneyNew South WalesAustralia
| | - Renea A. Taylor
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
- Cancer Research Division, Peter MacCallum Cancer CentreThe University of MelbourneVictoriaAustralia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
5
|
Sasaki T, Yoshikawa Y, Kageyama T, Sugino Y, Kato M, Masui S, Nishikawa K, Inoue T. Prostate fibroblasts enhance androgen receptor splice variant 7 expression in prostate cancer cells. Prostate 2023; 83:364-375. [PMID: 36479717 DOI: 10.1002/pros.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/22/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Androgen receptor splice variant (AR-V) expression has been associated with prostate cancer (PCa) progression to castration-resistant PCa during androgen deprivation therapy, which reduces androgen production and inhibits androgen action in PCa cells. However, the mechanisms whereby aberrant AR-V expression is increased in PCa are still largely unknown. Fibroblasts in tumor stroma influence PCa initiation and aggressiveness, and which may play a crucial role in eliciting genetic changes during malignant transformation in human prostate epithelium. Here, our aim was to determine whether prostate fibroblasts in tumor stroma induce aberrant AR-V7 expression in PCa cells under low androgen concentration. METHODS We performed in vitro experiments using androgen-sensitive, AR-positive PCa cell lines (LNCaP and 22Rv1 cells), commercially available prostate stromal cells (PrSC), and primary cultured prostate fibroblasts (pcPrF) from PCa specimens collected from biopsies of patients with advanced PCa. PCa cells were cocultured with each of the three fibroblast lines (PrSC, pcPrF-M37, and pcPrF-M48). RESULTS The proliferation under low androgen concentration of LNCaP and 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48 was significantly increased compared to that of PCa cells cultured alone. Androgen receptor-full length (AR-FL) protein expression was increased in LNCaP and 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. AR-V7 protein expression was increased in 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. Under low androgen concentration, AR-V7 protein expression was slightly detected in LNCaP cells cocultured with PrSC or pcPrF-M37. Cytokine array analysis revealed that monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8) levels in the conditioned medium of 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48 were increased under low androgen concentration. High IL-8 concentration (30 ng/ml) resulted in significantly increased protein expression of AR-FL, AR-V7, and phospho-NF-κB p65 in 22Rv1 cells. In contrast, IL-8 antibody (1 µg/ml) decreased AR-V7 protein expression in 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. CONCLUSIONS pcPrF from PCa specimens increase the expression of aberrant AR-V7 in PCa cells. IL-8 may be a target for preventing the expression of aberrant AR-Vs in PCa.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yumi Yoshikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takumi Kageyama
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoru Masui
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kouhei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
6
|
CC chemokine receptor 2 (CCR2) expression promotes diffuse large B-Cell lymphoma survival and invasion. J Transl Med 2022; 102:1377-1388. [PMID: 35851856 DOI: 10.1038/s41374-022-00824-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
In recent years, CC chemokine receptor 2 (CCR2) has been found to be involved in tumor growth, angiogenesis, epithelial mesenchymal transition, metastasis, and immune escape. CCR2 overexpression was first identified as a poor prognostic predictor in diffuse large B-cell lymphoma (DLBCL) in our published article, but the mechanisms involved remain unknown. In this work, we collected data from another 138 patients with DLBCL data and verified the CCR2 expression level and its relationship to clinicopathological characteristics. Furthermore, we explored the possible mechanisms via in vitro and in vivo experiments. We showed that CCR2 overexpression was an independent prognostic marker and predicted shorter overall survival (OS) and progression-free survival (PFS) in patients with DLBCL. Blockade of CCR2 expression with a CCR2 antagonist inhibited tumor cell proliferation, migration, and anti-apoptosis ability in vitro by affecting the PI3K/Akt signaling pathway and the p38 MAPK signaling pathway. Furthermore, administration of a CCR2 antagonist decreased tumor growth and dissemination of DLBCL cells and increased survival time in the xenograft model. Our study demonstrates that CCR2 expression plays an important role in the development of DLBCL by stimulating cell proliferation, migration, and anti-apoptosis. Therefore, the inhibition of CCR2 may be a potential target for anticancer therapy in DLBCL.
Collapse
|
7
|
Chen C, Huang R, Zhou J, Guo L, Xiang S. Formation of pre-metastatic bone niche in prostate cancer and regulation of traditional chinese medicine. Front Pharmacol 2022; 13:897942. [PMID: 36059977 PMCID: PMC9428453 DOI: 10.3389/fphar.2022.897942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer with bone metastasis has a high cancer-specific mortality. Thus, it is essential to delineate the mechanism of bone metastasis. Pre-metastatic niche (PMN) is a concept in tumor metastasis, which is characterized by tumor-secreted factors, reprogramming of stromal cells, and immunosuppression by myeloid-derived suppressor cells (MDSC), which is induced by bone marrow-derived cells (BMDC) in the target organ. However, PMN does not explain the predilection of prostate cancer towards bone metastasis. In this review, we discuss the initiation of bone metastasis of prostate cancer from the perspective of PMN and tumor microenvironment in a step-wise manner. Furthermore, we present a new concept called pre-metastatic bone niche, featuring inherent BMDC, to interpret bone metastasis. Moreover, we illustrate the regulation of traditional Chinese medicine on PMN.
Collapse
|
8
|
Pennel KAF, Quinn JA, Nixon C, Inthagard J, van Wyk HC, Chang D, Rebus S, Hay J, Maka NN, Roxburgh CSD, Horgan PG, McMillan DC, Park JH, Roseweir AK, Steele CW, Edwards J. CXCL8 expression is associated with advanced stage, right sidedness, and distinct histological features of colorectal cancer. J Pathol Clin Res 2022; 8:509-520. [PMID: 35879507 PMCID: PMC9535100 DOI: 10.1002/cjp2.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
CXCL8 is an inflammatory chemokine elevated in the colorectal cancer (CRC) tumour microenvironment. CXCR2, the major receptor for CXCL8, is predominantly expressed by neutrophils. In the cancer setting, CXCL8 plays important roles in neutrophil chemotaxis, facilitating angiogenesis, invasion, and metastasis. This study aimed to assess the spatial distribution of CXCL8 mRNA expression in CRC specimens, explore associations with clinical characteristics, and investigate the underlying biology of aberrant CXCL8 levels. CXCR2 expression was also assessed in a second cohort of unique CRC primary tumours and synchronously resected matched liver metastases. A previously constructed tissue microarray consisting of a cohort of stage I-IV CRC patients undergoing surgical resection with curative intent (n = 438) was probed for CXCL8 via RNAscope®. Analysis was performed using HALO® digital pathology software to quantify expression in the tumour and stromal compartments. Scores were assessed for association with clinical characteristics. Mutational analyses were performed on a subset of these patients to determine genomic differences in patients with high CXCL8 expression. A second cohort of stage IV CRC patients with primary and matched metastatic liver tumours was stained via immunohistochemistry for CXCR2, and scores were assessed for clinical significance. CXCL8 expression within the stromal compartment was associated with reduced cancer-specific survival in the first cohort (p = 0.035), and this relationship was potentiated in right-sided colon cancer cases (p = 0.009). High CXCL8 within the stroma was associated with driving a more stromal-rich phenotype and the presence of metastases. When stromal CXCL8 scores were combined with tumour-infiltrating macrophage counts or systemic neutrophil counts, patients classified as high for both markers had significantly poorer prognosis. CXCR2+ immune cell infiltration was associated with increased stromal invasion in liver metastases (p = 0.037). These data indicate a role for CXCL8 in driving unfavourable tumour histological features and promoting metastases. This study suggests that inhibiting CXCL8/CXCR2 should be investigated in patients with right-sided colonic disease and stroma-rich tumours.
Collapse
Affiliation(s)
- Kathryn AF Pennel
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | | | - Jitwadee Inthagard
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Hester C van Wyk
- Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - David Chang
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - GPOL Group
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jennifer Hay
- Glasgow Tissue Research FacilityQueen Elizabeth University HospitalGlasgowUK
| | - Noori N Maka
- Department of PathologyQueen Elizabeth University HospitalGlasgowUK
| | - Campbell SD Roxburgh
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Paul G Horgan
- Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Donald C McMillan
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - James H Park
- Department of SurgeryQueen Elizabeth University HospitalGlasgowUK
| | | | - Colin W Steele
- CRUK Beatson InstituteGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
9
|
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022; 10:biomedicines10081778. [PMID: 35892678 PMCID: PMC9394279 DOI: 10.3390/biomedicines10081778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a “cold” tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.
Collapse
|
10
|
Maxwell PJ, McKechnie M, Armstrong CW, Manley JM, Ong CW, Worthington J, Mills IG, Longley DB, Quigley JP, Zoubeidi A, de Bono JS, Deryugina E, LaBonte MJ, Waugh DJ. Attenuating Adaptive VEGF-A and IL8 Signaling Restores Durable Tumor Control in AR Antagonist-Treated Prostate Cancers. Mol Cancer Res 2022; 20:841-853. [PMID: 35302608 PMCID: PMC9381111 DOI: 10.1158/1541-7786.mcr-21-0780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023]
Abstract
Inhibiting androgen signaling using androgen signaling inhibitors (ASI) remains the primary treatment for castrate-resistant prostate cancer. Acquired resistance to androgen receptor (AR)-targeted therapy represents a major impediment to durable clinical response. Understanding resistance mechanisms, including the role of AR expressed in other cell types within the tumor microenvironment, will extend the clinical benefit of AR-targeted therapy. Here, we show the ASI enzalutamide induces vascular catastrophe and promotes hypoxia and microenvironment adaptation. We characterize treatment-induced hypoxia, and subsequent induction of angiogenesis, as novel mechanisms of relapse to enzalutamide, highlighting the importance of two hypoxia-regulated cytokines in underpinning relapse. We confirmed AR expression in CD34+ vascular endothelium of biopsy tissue and human vascular endothelial cells (HVEC). Enzalutamide attenuated angiogenic tubule formation and induced cytotoxicity in HVECs in vitro, and rapidly induced sustained hypoxia in LNCaP xenografts. Subsequent reoxygenation, following prolonged enzalutamide treatment, was associated with increased tumor vessel density and accelerated tumor growth. Hypoxia increased AR expression and transcriptional activity in prostate cells in vitro. Coinhibition of IL8 and VEGF-A restored tumor response in the presence of enzalutamide, confirming the functional importance of their elevated expression in enzalutamide-resistant models. Moreover, coinhibition of IL8 and VEGF-A resulted in a durable, effective resolution of enzalutamide-sensitive prostate tumors. We conclude that concurrent inhibition of two hypoxia-induced factors, IL8 and VEGF-A, prolongs tumor sensitivity to enzalutamide in preclinical models and may delay the onset of enzalutamide resistance. IMPLICATIONS Targeting hypoxia-induced signaling may extend the therapeutic benefit of enzalutamide, providing an improved treatment strategy for patients with resistant disease.
Collapse
Affiliation(s)
- Pamela J. Maxwell
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Melanie McKechnie
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Christopher W. Armstrong
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Judith M. Manley
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Chee Wee Ong
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | - Ian G. Mills
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Daniel B. Longley
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - James P. Quigley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Elena Deryugina
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California
| | - Melissa J. LaBonte
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Corresponding Author: Melissa J. LaBonte, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT39 0DL, United Kingdom. Phone: 289-097-2789; E-mail:
| | - David J.J. Waugh
- Movember FASTMAN Centre of Excellence, Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,School of Biomedical Sciences, Queensland University of Technology, Brisbane Australia.,Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
11
|
Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:169-182. [PMID: 34904919 DOI: 10.1080/14737140.2022.2019018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) has a markedly poor prognosis as it progresses, and the prognosis is still unsatisfactory even with modern treatments. Cancer is composed of not only cancer cells, but also stroma consisting of various cell types. Cancer-associated fibroblasts (CAFs) are a major component of the stroma and the associated tumor microenvironment (TME). Particularly, CAFs are a critical component in elucidating the biological mechanisms of cancer progression and new therapeutic targets. This article outlines the TME formed by CAFs in NSCLC. AREAS COVERED Focusing on the TME in NSCLC, we discuss the mechanisms by which CAFs are involved in cancer progression, drug resistance, and the development of therapies targeting CAFs. EXPERT OPINION In the TME, CAFs profoundly contribute to tumor progression by interacting with cancer cells through direct contact or paracrine cytokine signaling. CAFs also interact with various other stromal components to establish a tumor-promoting immunosuppressive microenvironment and remodel the extracellular matrix. Furthermore, these effects are closely associated with drug resistance. Further elucidation of the stromal microenvironment, including CAFs, could prove to be crucial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
12
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
13
|
Kwon JTW, Bryant RJ, Parkes EE. The tumor microenvironment and immune responses in prostate cancer patients. Endocr Relat Cancer 2021; 28:T95-T107. [PMID: 34128831 PMCID: PMC8345898 DOI: 10.1530/erc-21-0149] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022]
Abstract
The landscape of cancer treatment has been transformed over the past decade by the success of immune-targeting therapies. However, despite sipuleucel-T being the first-ever approved vaccine for cancer and the first immunotherapy licensed for prostate cancer in 2010, immunotherapy has since seen limited success in the treatment of prostate cancer. The tumour microenvironment of prostate cancer presents particular barriers for immunotherapy. Moreover, prostate cancer is distinguished by being one of only two solid tumours where increased T cell-infiltration correlates with a poorer, rather than improved, outlook. Here, we discuss the specific aspects of the prostate cancer microenvironment that converge to create a challenging microenvironment, including myeloid-derived immune cells and cancer-associated fibroblasts. By exploring the immune microenvironment of defined molecular subgroups of prostate cancer, we propose an immunogenomic subtyping approach to single-agent and combination immune-targeting strategies that could lead to improved outcomes in prostate cancer treatment.
Collapse
Affiliation(s)
- J T W Kwon
- Department of Oncology, University of Oxford, Oxford, UK
| | - R J Bryant
- Department of Oncology, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - E E Parkes
- Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, Taniguchi K. Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci 2021; 22:ijms22115421. [PMID: 34063828 PMCID: PMC8196678 DOI: 10.3390/ijms22115421] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation, especially chronic inflammation, plays a pivotal role in tumorigenesis and metastasis through various mechanisms and is now recognized as a hallmark of cancer and an attractive therapeutic target in cancer. In this review, we discuss recent advances in molecular mechanisms of how inflammation promotes tumorigenesis and metastasis and suppresses anti-tumor immunity in various types of solid tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancer as well as hematopoietic malignancies.
Collapse
Affiliation(s)
- Sana Hibino
- Research Center for Advanced Science and Technology, Department of Inflammology, The University of Tokyo, Tokyo 153-0041, Japan;
| | - Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hidenori Kasahara
- National Center for Global Health and Medicine, Department of Stem Cell Biology, Research Institute, Tokyo 162-8655, Japan;
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan;
| | | | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence: ; Tel.: +81-11-706-5050
| |
Collapse
|
15
|
Chen L, Wang YY, Li D, Wang C, Wang SY, Shao SH, Zhu ZY, Zhao J, Zhang Y, Ruan Y, Han BM, Xia SJ, Jiang CY, Zhao FJ. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Lett 2021; 503:138-150. [PMID: 33503448 DOI: 10.1016/j.canlet.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The androgen receptor (AR) is expressed in prostate fibroblasts in addition to normal prostate epithelial cells and prostate cancer (PCa) cells. Moreover, AR activation in fibroblasts dramatically influences prostate cancer (PCa) cell behavior. Androgen deprivation leads to deregulation of AR downstream target genes in both fibroblasts and PCa cells. Here, we identified LIM domain only 2 (LMO2) as an AR target gene in prostate fibroblasts using ChIP-seq and revealed that LMO2 can be repressed directly by AR through binding to androgen response elements (AREs), which results in LMO2 overexpression after AR deactivation due to normal prostate fibroblasts to cancer-associated fibroblasts (CAFs) transformation or androgen deprivation therapy. Next, we investigated the mechanisms of LMO2 overexpression in fibroblasts and the role of this event in non-cell-autonomous promotion of PCa cells growth in the androgen-independent manner through paracrine release of IL-11 and FGF-9. Collectively, our data suggest that AR deactivation deregulates LMO2 expression in prostate fibroblasts, which induces castration resistance in PCa cells non-cell-autonomously through IL-11 and FGF-9.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yue-Yang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Cheng Wang
- Department of Urology, Jiangsu Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Shi-Yuan Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Si-Hui Shao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng-Yang Zhu
- Clinical Medical College, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
16
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
17
|
Cioni B, Zaalberg A, van Beijnum JR, Melis MHM, van Burgsteden J, Muraro MJ, Hooijberg E, Peters D, Hofland I, Lubeck Y, de Jong J, Sanders J, Vivié J, van der Poel HG, de Boer JP, Griffioen AW, Zwart W, Bergman AM. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat Commun 2020; 11:4498. [PMID: 32908142 PMCID: PMC7481219 DOI: 10.1038/s41467-020-18313-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy. Anti-androgen therapy inhibits prostate cancer (PC) progression, and is thought to act directly on cancer cells. Here the authors show that androgen receptor is expressed on normal and PC-associated macrophages, and its stimulation alters macrophage secretome to promote migration of cultured PC cell lines.
Collapse
Affiliation(s)
- Bianca Cioni
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Judy R van Beijnum
- Angiogenesis laboratory, Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Monique H M Melis
- Molecular Genetics, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | | - Mauro J Muraro
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Erik Hooijberg
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Yoni Lubeck
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joyce Sanders
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Judith Vivié
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Henk G van der Poel
- Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis laboratory, Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands. .,, Oncode Institute, The Netherlands.
| | - Andries M Bergman
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Relevant Cytokines in the B Cell Lymphoma Micro-Environment. Cancers (Basel) 2020; 12:cancers12092525. [PMID: 32899476 PMCID: PMC7564074 DOI: 10.3390/cancers12092525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble protein factors with importance in intercellular communication and, as such, play pivotal roles in the pathogenesis of B cell malignancies. Evidence from in vitro cultures permitted us to choose example cytokines that bind to different biochemical receptor types. Activated malignant B cells or stromal fibroblasts and macrophages prominently secrete the chemokines CCL3 or CXCL12 and CXCL13, respectively. Apart from helper T cells, various cell types of the B cell lymphoma microenvironment are capable of producing the cytokines IL-4, IL-6, IL-10 and TNFα. Owing to its impact on the development of myeloid cells, CSF-1 is among important soluble factors in the B cell lymphoma microenvironment. Inhibitors of B cell receptor-associated kinases often act via the blockade of cytokine production, but also prevent cytokine effects, e.g., chemotaxis. Increments in blood levels in chronic lymphocytic leukemia patients compared to healthy donors and normalization upon treatment with ibrutinib can be explained by producing cell types and modulation of cytokine production observed in vitro.
Collapse
|
19
|
de Bono JS, Guo C, Gurel B, De Marzo AM, Sfanos KS, Mani RS, Gil J, Drake CG, Alimonti A. Prostate carcinogenesis: inflammatory storms. Nat Rev Cancer 2020; 20:455-469. [PMID: 32546840 DOI: 10.1038/s41568-020-0267-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.
Collapse
Affiliation(s)
- Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | - Karen S Sfanos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Kikuchi H, Maishi N, Annan DA, Alam MT, Dawood RIH, Sato M, Morimoto M, Takeda R, Ishizuka K, Matsumoto R, Akino T, Tsuchiya K, Abe T, Osawa T, Miyajima N, Maruyama S, Harabayashi T, Azuma M, Yamashiro K, Ameda K, Kashiwagi A, Matsuno Y, Hida Y, Shinohara N, Hida K. Chemotherapy-Induced IL8 Upregulates MDR1/ABCB1 in Tumor Blood Vessels and Results in Unfavorable Outcome. Cancer Res 2020; 80:2996-3008. [PMID: 32536602 DOI: 10.1158/0008-5472.can-19-3791] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
Tumor endothelial cells (TEC) lining tumor blood vessels actively contribute to tumor progression and metastasis. In addition to tumor cells, TEC may develop drug resistance during cancer treatment, allowing the tumor cells to survive chemotherapy and metastasize. We previously reported that TECs resist paclitaxel treatment via upregulation of ABCB1. However, whether TEC phenotypes are altered by anticancer drugs remains to be clarified. Here, we show that ABCB1 expression increases after chemotherapy in urothelial carcinoma cases. The ratio of ABCB1-positive TEC before and after first-line chemotherapy in urothelial carcinoma tissues (n = 66) was analyzed by ABCB1 and CD31 immunostaining. In 42 cases (64%), this ratio increased after first-line chemotherapy. Chemotherapy elevated ABCB1 expression in endothelial cells by increasing tumor IL8 secretion. In clinical cases, ABCB1 expression in TEC correlated with IL8 expression in tumor cells after first-line chemotherapy, leading to poor prognosis. In vivo, the ABCB1 inhibitor combined with paclitaxel reduced tumor growth and metastasis compared with paclitaxel alone. Chemotherapy is suggested to cause inflammatory changes in tumors, inducing ABCB1 expression in TEC and conferring drug resistance. Overall, these findings indicate that TEC can survive during chemotherapy and provide a gateway for cancer metastasis. Targeting ABCB1 in TEC represents a novel strategy to overcome cancer drug resistance. SIGNIFICANCE: These findings show that inhibition of ABCB1 in tumor endothelial cells may improve clinical outcome, where ABCB1 expression contributes to drug resistance and metastasis following first-line chemotherapy.
Collapse
Affiliation(s)
- Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan.,Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Randa Ibrahim Hassan Dawood
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiro Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Ryo Takeda
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keita Ishizuka
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuji Matsumoto
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Tomoshige Akino
- Department of Urology, Sapporo City General Hospital, Sapporo, Hokkaido, Japan.,Department of Urology, Tonan Hospital, Sapporo, Hokkaido, Japan
| | - Kunihiko Tsuchiya
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoto Miyajima
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Satoru Maruyama
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Toru Harabayashi
- Department of Urology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Manabu Azuma
- Department of Pathology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | | | - Kaname Ameda
- Hokkaido Hinyokika Kinen Hospital, Sapporo, Hokkaido, Japan
| | - Akira Kashiwagi
- Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. .,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
Vidotto T, Melo CM, Castelli E, Koti M, Dos Reis RB, Squire JA. Emerging role of PTEN loss in evasion of the immune response to tumours. Br J Cancer 2020; 122:1732-1743. [PMID: 32327707 PMCID: PMC7283470 DOI: 10.1038/s41416-020-0834-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in PTEN activate the phosphoinositide 3-kinase (PI3K) signalling network, leading to many of the characteristic phenotypic changes of cancer. However, the primary effects of this gene on oncogenesis through control of the PI3K-AKT-mammalian target of rapamycin (mTOR) pathway might not be the only avenue by which PTEN affects tumour progression. PTEN has been shown to regulate the antiviral interferon network and thus alter how cancer cells communicate with and are targeted by immune cells. An active, T cell-infiltrated microenvironment is critical for immunotherapy success, which is also influenced by mutations in DNA damage repair pathways and the overall mutational burden of the tumour. As PTEN has a role in the maintenance of genomic integrity, it is likely that a loss of PTEN affects the immune response at two different levels and might therefore be instrumental in mediating failed responses to immunotherapy. In this review, we summarise findings that demonstrate how the loss of PTEN function elicits specific changes in the immune response in several types of cancer. We also discuss ongoing clinical trials that illustrate the potential utility of PTEN as a predictive biomarker for immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Thiago Vidotto
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Erick Castelli
- Department of Pathology, Medicine School of Botucatu, Paulista State University, Botucatu, Brazil
| | - Madhuri Koti
- Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | - Jeremy A Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
22
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
23
|
Menicacci B, Margheri F, Laurenzana A, Chillà A, Del Rosso M, Giovannelli L, Fibbi G, Mocali A. Chronic Resveratrol Treatment Reduces the Pro-angiogenic Effect of Human Fibroblast "Senescent-Associated Secretory Phenotype" on Endothelial Colony-Forming Cells: The Role of IL8. J Gerontol A Biol Sci Med Sci 2020; 74:625-633. [PMID: 30084946 DOI: 10.1093/gerona/gly175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Senescent cells are characterized by an increased secretion of inflammatory and growth factors, known as the "senescence-associated secretory phenotype" (SASP), producing a pro-tumoral and pro-angiogenic microenvironment. This work proposes chronic resveratrol treatment (5 µM for 5 weeks, termed R5) of senescent MRC5 fibroblasts as a mean to mimic and target the angiogenic trait of stromal fibroblast SASP. Senescent fibroblast conditioned medium (CM sen) was effective in enhancing the angiogenic properties of endothelial colony-forming cells (ECFCs), that is, invasive activity and capillary morphogenesis capability in vitro, that were significantly reduced when conditioned media were collected after resveratrol pretreatment (CM senR5). The attenuation of ECFC angiogenic phenotype induced by CM senR5 was accompanied by reduced protein levels of epidermal growth factor and urokinase plasminogen activator receptors (EGFR, uPAR), and by a related decreased activation of receptor-tyrosine-kinase signaling pathways. IL8 levels were found reduced in CM senR5 compared to CM sen, with the associated reduction of IL8-CXCR2 binding in ECFCs. IL8-subtraction mitigated the pro-angiogenic features of CM sen and the associated intracellular signaling in ECFCs, indicating a prominent role of IL8 in the pro-angiogenic effects of CM sen. IL8 modulation is an important mechanism underlying the antiangiogenic activity of resveratrol on MRC5 SASP.
Collapse
Affiliation(s)
- Beatrice Menicacci
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence.,Department of Medical Biotechnologies, University of Siena
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence
| | - Lisa Giovannelli
- Department NeuroFarBa, Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Science "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence
| |
Collapse
|
24
|
Mesenchymal Stem Cells Attract Endothelial Progenitor Cells via a Positive Feedback Loop between CXCR2 and CXCR4. Stem Cells Int 2019; 2019:4197164. [PMID: 31885605 PMCID: PMC6915119 DOI: 10.1155/2019/4197164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/04/2019] [Accepted: 09/11/2019] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can attract host endothelial progenitor cells (EPCs) to promote vascularization in tissue-engineered constructs (TECs). Nevertheless, the underlying mechanism remains vague. This study is aimed at investigating the roles of CXCR2 and CXCR4 in the EPC migration towards MSCs. In vitro, Transwell assays were performed to evaluate the migration of EPCs towards MSCs. Antagonists and shRNAs targeting CXCR2, CXCR4, and JAK/STAT3 were applied for the signaling blockade. Western blot and RT-PCR were conducted to analyze the molecular events in EPCs. In vivo, TECs were constructed and subcutaneously implanted into GFP+ transgenic mice. Signaling inhibitors were injected in an orientated manner into TECs. Recruitment of host CD34+ cells was evaluated by immunofluorescence. Eventually, we demonstrated that CXCR2 and CXCR4 were both highly expressed in migrated EPCs and indispensable for MSC-induced EPC migration. CXCR2 and CXCR4 strongly correlated with each other in the way that the expression of CXCR2 and CXCR2-mediated migration depends on the activity of CXCR4 and vice versa. Further studies documented that both of CXCR2 and CXCR4 activated STAT3 signaling, which in turn regulated the expression of CXCR2 and CXCR4, as well as cell migration. In summary, we firstly introduced a reciprocal crosstalk between CXCR2 and CXCR4 in the context of EPC migration. This feedback loop plays critical roles in the migration of EPCs towards MSCs.
Collapse
|
25
|
Wang W, Wu D, He X, Hu X, Hu C, Shen Z, Lin J, Pan Z, He Z, Lin H, Wang M. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett 2019; 460:18-28. [PMID: 31207321 DOI: 10.1016/j.canlet.2019.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Accumulating evidence indicates that CCL18 and the long non-coding RNA, HOTAIR, have critical roles in cancer progression and metastasis, but the correlation between CCL18 and HOTAIR in esophageal squamous cell carcinoma (ESCC) and their downstream molecular mechanisms remain unclear. Overexpression of CCL18 in ESCC tissues was associated with a worse survival in patients with ESCC. CCL18 enhanced the invasiveness of ESCC cells in a dose-dependent manner, whereas CCL18 knockdown inhibited their invasiveness. In particular, CCL18 expression was positively associated with HOTAIR expression in ESCC tissues. Furthermore, CCL18 upregulated the expression of HOTAIR, and knockdown of HOTAIR alleviated the CCL18-induced invasiveness of ESCC cells. HOTAIR may act as a competing endogenous RNA and could effectively becoming a sponge for miR-130a-5p, thereby modulating the derepression of ZEB1 and promoting epithelial-mesenchymal transition in ESCC. Our study suggests that CCL18 contributes to the malignant progression of esophageal cancer by upregulating HOTAIR expression. HOTAIR overexpression may promote tumor invasiveness and progression in ESCC, given that HOTAIR functions as a miR-130a-5p sponge, positively regulating ZEB1. This provides new therapeutic targets for early diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Wenjian Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Duoguang Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaotian He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xueting Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhiwen Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhanghai He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
26
|
Yao L, Shi W, Gu J. Micro-RNA 205-5p is Involved in the Progression of Gastric Cancer and Targets Phosphatase and Tensin Homolog (PTEN) in SGC-7901 Human Gastric Cancer Cells. Med Sci Monit 2019; 25:6367-6377. [PMID: 31444971 PMCID: PMC6724565 DOI: 10.12659/msm.915970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the role of micro-RNA 205-5p (miR-205-5p) in the progression of gastric cancer, and the target of miR-205-5p in human gastric cancer cells in vitro. Material/Methods Expression of miR-205-5p and PTEN in gastric cancer tissue samples and adjacent normal gastric tissue from 35 patients was studied using immunohistochemistry and in situ hybridization. SGC-7901 human gastric cancer cells included a normal control (NC) group, a group transfected with empty vector (Vector), a group treated with miR-205-5p inhibitor (miR-inhibitor), and a group treated with miR-205-5p inhibitor and small interfering PTEN mRNA (miR-inhibitor+si-PTEN). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measured miR-205-5p expression, cell proliferation was measured by MTT assay, cell apoptosis by flow cytometry, transwell and wound healing assays measured cell migration, and transmission electron microscopy (TEM) showed ultrastructural changes in SGC-7901 cells. PTEN, AKT and p-AKT protein expression were measured using Western blot. The correlation between miR-205-5p and PTEN was analyzed using a dual-luciferase reporter assay. Results Increased expression of miR-205-5p and PTEN in gastric cancer tissues were correlated with tumor stage. In SGC-7901 cells, miR-205-5p mRNA expression in the miR-inhibitor and miR-inhibitor+si-PTEN groups was significantly lower than that in the NC group (P<0.001). In the miR-inhibitor group, cell proliferation was significantly decreased, and apoptosis was significantly increased (P<0.001). Conclusions In gastric cancer, increased expression of miR-205-5p was associated with tumor stage, and in SGC-7901 cells PTEN was a target gene for miR-205-5p.
Collapse
Affiliation(s)
- Lina Yao
- Department of Clinical Laboratory, The First People's Hospital of Changzhou, Changzhou, Jiangsu, Chile
| | - Weifeng Shi
- Department of Clinical Laboratory, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| | - Jianwen Gu
- Department of Clinical Laboratory, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
27
|
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2019; 60:225-237. [PMID: 31212021 DOI: 10.1016/j.semcancer.2019.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm that give rise to several mesenchymal lineages, including osteoblasts, adipocytes, chondrocytes and myocytes. Their potent ability to home to tumors coupled with their differentiation potential and immunosuppressive function positions MSCs as key regulators of tumor fate. Here we review the existing knowledge on the involvement of MSCs in multiple tumor-promoting processes, including angiogenesis, epithelial-mesenchymal transition, metastasis, immunosuppression and therapy resistance. We also discuss the clinical potential of MSC-based therapy for cancer.
Collapse
Affiliation(s)
- Michael Timaner
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, and Division of Gastroenterology, Wan Fang Hospital, and Graduate Institutes of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei Taiwan; National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Yuval Shaked
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
28
|
Unver N. Macrophage chemoattractants secreted by cancer cells: Sculptors of the tumor microenvironment and another crucial piece of the cancer secretome as a therapeutic target. Cytokine Growth Factor Rev 2019; 50:13-18. [PMID: 31151747 DOI: 10.1016/j.cytogfr.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Beyond their essential role in leukocyte homing in the context of inflammation, chemokines orchestrate the host response to cancer progression. Chemokines are key accelerators in the amplification of inflammatory signals and metastasis in the distal zone of tumors, indicating possible immune editing of tumor cells in the microenvironment. This review summarizes the main macrophage-attracting chemokines secreted from cancer cells and how these mediators can be targeted to improve cancer immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Nese Unver
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
29
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
30
|
Li YL, Shi ZH, Wang X, Gu KS, Zhai ZM. Prognostic significance of monocyte chemoattractant protein-1 and CC chemokine receptor 2 in diffuse large B cell lymphoma. Ann Hematol 2018; 98:413-422. [PMID: 30374624 DOI: 10.1007/s00277-018-3522-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Aberrant monocyte chemoattractant protein-1 (MCP-1) and CC chemokine receptor 2 (CCR2) expression in malignant tissues have been reported; however, their role in hematological malignancies prognosis remains little known. The aim of this study was to investigate the prognostic value of MCP-1 and CCR2 expression in patients with diffuse large B cell lymphoma (DLBCL). The study included 221 patients with DLBCL. MCP-1 and CCR2 expression was analyzed by immunohistochemical staining and its correlations with clinicopathologic features and prognosis were evaluated. High expression of MCP-1 or CCR2 was correlated with clinicopathological characteristics, and an adverse prognostic factor for overall survival (OS) and progression-free survival (PFS) of DLBCL patients. Also, significant positive correlation between MCP-1 and CCR2 expression was revealed (r = 0.545, P < 0.001). Patients with high MCP-1 or high CCR2 expression had significantly poorer OS and PFS than those with low MCP-1 or low CCR2 expression (OS: P < 0.001, P < 0.001; PFS: P < 0.001, P < 0.001), respectively, even in the rituximab era, and MCP-1 or CCR2 expression could further identify high-risk patients otherwise classified as low/intermediate risk by the International Prognostic Index (IPI) alone. Furthermore, incorporation of MCP-1 or CCR2 expression into the IPI score could improve prognostic value for OS. This is the first report describing the clinicopathological features and survival outcome according to expression of MCP-1 and CCR2 in DLBCL.
Collapse
Affiliation(s)
- Yan-Li Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Zhi-Hu Shi
- Department of Pathology, Anhui Ji Min Cancer Hospital, Hefei, Anhui, 230012, People's Republic of China
| | - Xian Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Zhi-Min Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
31
|
Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight 2018; 3:99911. [PMID: 30232274 DOI: 10.1172/jci.insight.99911] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. Similarities between tumors and healing wounds include fibroblast recruitment and activation, extracellular matrix (ECM) component deposition, infiltration of immune cells, neovascularization, and cellular lineage plasticity. However, unlike a wound that heals, the edges of a tumor are constantly expanding. Cell migration occurs both inward and outward as the tumor proliferates and invades adjacent tissues, often disregarding organ boundaries. The focus of our review is cancer associated fibroblast (CAF) cellular heterogeneity and plasticity and the acellular matrix components that accompany these cells. We explore how similarities and differences between healing wounds and tumor stroma continue to evolve as research progresses, shedding light on possible therapeutic targets that can result in innovative stromal-based treatments for cancer.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Ryan C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
32
|
Caggia S, Chunduri H, Millena AC, Perkins JN, Venugopal SV, Vo BT, Li C, Tu Y, Khan SA. Novel role of Giα2 in cell migration: Downstream of PI3-kinase-AKT and Rac1 in prostate cancer cells. J Cell Physiol 2018; 234:802-815. [PMID: 30078221 DOI: 10.1002/jcp.26894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Tumor cell motility is the essential step in cancer metastasis. Previously, we showed that oxytocin and epidermal growth factor (EGF) effects on cell migration in prostate cancer cells require Giα2 protein. In the current study, we investigated the interactions among G-protein coupled receptor (GPCR), Giα2, PI3-kinase, and Rac1 activation in the induction of migratory and invasive behavior by diverse stimuli. Knockdown and knockout of endogenous Giα2 in PC3 cells resulted in attenuation of transforming growth factor β1 (TGFβ1), oxytocin, SDF-1α, and EGF effects on cell migration and invasion. In addition, knockdown of Giα2 in E006AA cells attenuated cell migration and overexpression of Giα2 in LNCaP cells caused significant increase in basal and EGF-stimulated cell migration. Pretreatment of PC3 cells with Pertussis toxin resulted in attenuation of TGFβ1- and oxytocin-induced migratory behavior and PI3-kinase activation without affecting EGF-induced PI3-kinase activation and cell migration. Basal- and EGF-induced activation of Rac1 in PC3 and DU145 cells were not affected in cells after Giα2 knockdown. On the other hand, Giα2 knockdown abolished the migratory capability of PC3 cells overexpressing constitutively active Rac1. The knockdown or knockout of Giα2 resulted in impaired formation of lamellipodia at the leading edge of the migrating cells. We conclude that Giα2 protein acts at two different levels which are both dependent and independent of GPCR signaling to induce cell migration and invasion in prostate cancer cells and its action is downstream of PI3-kinase-AKT-Rac1 axis.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - HimaBindu Chunduri
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Ana C Millena
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Jonathan N Perkins
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Smrruthi V Venugopal
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - BaoHan T Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| |
Collapse
|
33
|
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, Wessels LFA, Zwart W, Bergman AM. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol 2018; 12:1308-1323. [PMID: 29808619 PMCID: PMC6068356 DOI: 10.1002/1878-0261.12327] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer‐associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High‐grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR‐expressing CAF‐like cells. Testosterone (R1881) exposure did not affect CAF‐like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881‐exposed CAF‐like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP‐seq) was performed and motif search suggested that AR in CAF‐like cells bound the chromatin through AP‐1‐elements upon R1881 exposure, inducing enhancer‐mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF‐like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF‐like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.
Collapse
Affiliation(s)
- Bianca Cioni
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Monique H M Melis
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johan van Burgsteden
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Suzan Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Emma Hodel
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Daniele Spinozzi
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Henk van der Poel
- Division of Urology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| |
Collapse
|
34
|
Comen EA, Bowman RL, Kleppe M. Underlying Causes and Therapeutic Targeting of the Inflammatory Tumor Microenvironment. Front Cell Dev Biol 2018; 6:56. [PMID: 29946544 PMCID: PMC6005853 DOI: 10.3389/fcell.2018.00056] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Historically, the link between chronic inflammation and cancer has long been speculated. Only more recently, pre-clinical and epidemiologic data as well as clinical evidence all point to the role of the tumor microenvironment as inextricably connected to the neoplastic process. The tumor microenvironment (TME), a complex mix of vasculature, inflammatory cells, and stromal cells is the essential "soil" helping to modulate tumor potential. Increasingly, evidence suggests that chronic inflammation modifies the tumor microenvironment, via a host of mechanisms, including the production of cytokines, pro-inflammatory mediators, angiogenesis, and tissue remodeling. Inflammation can be triggered by a variety of different pressures, such as carcinogen exposure, immune dysfunction, dietary habits, and obesity, as well as genetic alterations leading to oncogene activation or loss of tumor suppressors. In this review, we examine the concept of the tumor microenvironment as related to both extrinsic and intrinsic stimuli that promote chronic inflammation and in turn tumorigenesis. Understanding the common pathways inherent in an inflammatory response and the tumor microenvironment may shed light on new therapies for both primary and metastatic disease. The concept of personalized medicine has pushed the field of oncology to drill down on the genetic changes of a cancer, in the hopes of identifying individually targeted agents. Given the complexities of the tumor microenvironment, it is clear that effective oncologic therapies will necessitate targeting not only the cancer cells, but their dynamic relationship to the tumor microenvironment as well.
Collapse
Affiliation(s)
- Elizabeth A. Comen
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robert L. Bowman
- Center for Hematopoietic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria Kleppe
- Center for Hematopoietic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
35
|
Angelucci C, D'Alessio A, Iacopino F, Proietti G, Di Leone A, Masetti R, Sica G. Pivotal role of human stearoyl-CoA desaturases (SCD1 and 5) in breast cancer progression: oleic acid-based effect of SCD1 on cell migration and a novel pro-cell survival role for SCD5. Oncotarget 2018; 9:24364-24380. [PMID: 29849946 PMCID: PMC5966257 DOI: 10.18632/oncotarget.25273] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
The influence of cell membrane fluidity on cancer progression has been established in different solid tumors. We previously reported that “cancer-associated fibroblasts” (CAFs) induced epithelial-mesenchymal transition and increased cell membrane fluidity and migration in poorly (MCF-7) and highly invasive (MDA-MB-231) breast cancer cells. We also found that the membrane fluidity regulating enzyme stearoyl-CoA desaturase 1 (SCD1) was upregulated in tumor cells co-cultured with CAFs and established its essential role for both intrinsic and CAF-driven tumor cell motility. Here, we further explored the mechanisms involved in the SCD1-based modulation of breast cancer cell migration and investigated the role of the other human SCD isoform, SCD5. We showed that the addition of oleic acid, the main SCD1 product, nullified the inhibitory effects produced on MCF-7 and MDA-MB-231 cell migration by SCD1 depletion (pharmacological or siRNA-based). Conversely, SCD5 seemed not involved in the regulation of cancer cell motility. Interestingly, a clear induction of necrosis was observed as a result of the depletion of SCD5 in MCF-7 cells, where the expression of SCD5 was found to be upregulated by CAFs. The necrotic effect was rescued by a 48-h treatment of cells with oleic acid. These results provide further insights in understanding the role of SCD1 in both intrinsic and CAF-stimulated mammary tumor cell migration, unveiling the metabolic basis of this desaturase-triggered effect. Moreover, our data suggest the ability of CAFs to promote the maintenance of tumor cell survival by the induction of SCD5 levels.
Collapse
Affiliation(s)
- Cristiana Angelucci
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Alessio D'Alessio
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Fortunata Iacopino
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Gabriella Proietti
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Alba Di Leone
- Unità Operativa di Chirurgia Senologica, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Roma, Italia
| | - Riccardo Masetti
- Unità Operativa di Chirurgia Senologica, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Roma, Italia
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
36
|
Liu Y, Zhang J, Sun X, Su Q, You C. Down-regulation of miR-29b in carcinoma associated fibroblasts promotes cell growth and metastasis of breast cancer. Oncotarget 2018; 8:39559-39570. [PMID: 28465475 PMCID: PMC5503632 DOI: 10.18632/oncotarget.17136] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 02/27/2017] [Indexed: 01/08/2023] Open
Abstract
Carcinoma associated fibroblasts (CAFs) play important roles in breast cancer development and progression. Recent studies show that microRNAs (miRNAs) are the main regulators in CAFs. MiR-29b is one of the significant down-regulated miRNAs in CAFs from the miRNA screening. The role of miR-29b in the interaction between CAFs and breast cancer is still unclear. In the present study, we investigated the effects of CAFs on breast cancer cell proliferation and metastasis regulated by miR-29b. We found that fibroblasts activated by co-cultured breast cancer cells produced higher levels of some chemokines like CCL11, CXCL14, which accelerated breast cancer cell growth and induced drug resistance and metastasis. Increased miR-29b expression in activated fibroblasts could suppress the activating p38-STAT1 signal pathway in breast cancer cells. We also found that the expression of CCL11 and CXCL14 could be regulated by miR-29b in CAFs. Our results illustrate that down-regulation of miR-29b in CAFs plays an important role in tumor stroma by activating p38-STAT1 in breast cancer cells. The study indicates that cancer cells and fibroblasts interaction promotes breast cancer cell growth, drug resistance, migration and invasion due to the lack of miR-29b expression in CAFs.
Collapse
Affiliation(s)
- Yonglei Liu
- Research Center, Linyi People's Hospital, Shandong, China.,Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingling Zhang
- Research Center, Linyi People's Hospital, Shandong, China
| | - Xiangjun Sun
- Department of Surgery, Linyi People's Hospital, Shandong, China
| | - Quanping Su
- Research Center, Linyi People's Hospital, Shandong, China
| | - Cuiping You
- Research Center, Linyi People's Hospital, Shandong, China
| |
Collapse
|
37
|
Liotti F, De Pizzol M, Allegretti M, Prevete N, Melillo RM. Multiple anti-tumor effects of Reparixin on thyroid cancer. Oncotarget 2018; 8:35946-35961. [PMID: 28415590 PMCID: PMC5482629 DOI: 10.18632/oncotarget.16412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Expression of IL-8 and its receptors CXCR1 and CXCR2 is a common occurrence in human epithelial thyroid cancer (TC). In human TC samples, IL-8 expression is associated with tumor progression. IL-8 enhances proliferation, survival, motility, and leads to the maintenance of stemness features and tumor-initiating ability of TC cells. Here, we studied the effects of Reparixin (formerly Repertaxin), a small molecular weight CXCR1 and CXCR2 inhibitor, on the malignant phenotype of various TC cell lines. Results Reparixin impaired the viability of epithelial thyroid cancerous cells, but not that of the non-malignant counterpart. Reparixin treatment significantly decreased TC cell survival, proliferation, Epithelial-to-Mesenchymal Transition (EMT) and stemness. CXCR1 and CXCR2 silencing abolished these effects. Reparixin sensitized TC cells to Docetaxel and Doxorubicin in culture. Used as single agent, Reparixin significantly inhibited TC cell tumorigenicity in immunodeficient mice. Finally, Reparixin potentiated the effects of Docetaxel on TC cell xenotransplants in mice. Materials and Methods We assessed the effects of Reparixin on TC cell viability (by growth curves, BrdU incorporation, TUNEL assay), EMT (by RT-PCR, Flow Cytometry, Migration assays), stemness (by RT-PCR, Flow Cytometry, sphere-formation and self-renewal), and tumorigenicity (by xenotransplantation in nude mice). Conclusions The present study suggests that Reparixin, both alone and in combination with classic chemotherapics, represents a novel potential therapeutic strategy for aggressive forms of TC.
Collapse
Affiliation(s)
- Federica Liotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy
| | | | | | - Nella Prevete
- Dipartimento di Scienze Mediche Traslazionali, University of Naples "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR "G. Salvatore", Naples, Italy
| | - Rosa Marina Melillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR "G. Salvatore", Naples, Italy
| |
Collapse
|
38
|
Chemokine CXCL3 mediates prostate cancer cells proliferation, migration and gene expression changes in an autocrine/paracrine fashion. Int Urol Nephrol 2018. [DOI: 10.1007/s11255-018-1818-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Jiang CY, Yu JJ, Ruan Y, Wang XH, Zhao W, Wang XJ, Zhu YP, Gao Y, Hao KY, Chen L, Han BM, Xia SJ, Zhao FJ. LIM domain only 2 over-expression in prostate stromal cells facilitates prostate cancer progression through paracrine of Interleukin-11. Oncotarget 2018; 7:26247-58. [PMID: 27028859 PMCID: PMC5041978 DOI: 10.18632/oncotarget.8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
Mechanisms of stromal-epithelial crosstalk are essential for Prostate cancer (PCa) tumorigenesis and progression. Peripheral zone of the prostate gland possesses a stronger inclination for PCa than transition zone. We previously found a variety of genes that differently expressed among different prostate stromal cells, including LIM domain only 2 (LMO2) which highly expressed in peripheral zone derived stromal cells (PZSCs) and PCa associated fibroblasts (CAFs) compared to transition zone derived stromal cells (TZSCs). Studies on its role in tumors have highlighted LMO2 as an oncogene. Herein, we aim to study the potential mechanisms of stromal LMO2 in promoting PCa progression. The in vitro cells co-culture and in vivo cells recombination revealed that LMO2 over-expressed prostate stromal cells could promote the proliferation and invasiveness of either prostate epithelial or cancer cells. Further protein array screening confirmed that stromal LMO2 stimulated the secretion of Interleukin-11 (IL-11), which could promote proliferation and invasiveness of PCa cells via IL-11 receptor α (IL11Rα) – STAT3 signaling. Moreover, stromal LMO2 over-expression could suppress miR-204-5p which was proven to be a negative regulator of IL-11 expression. Taken together, results of our study demonstrate that prostate stromal LMO2 is capable of stimulating IL-11 secretion and by which activates IL11Rα – STAT3 signaling in PCa cells and then facilitates PCa progression. These results may make stromal LMO2 responsible for zonal characteristic of PCa and as a target for PCa microenvironment-targeted therapy.
Collapse
Affiliation(s)
- Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun-Jie Yu
- Department of Urology, Subei People's Hospital of Jiangsu Province, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Xiao-Hai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xing-Jie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi-Ping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuan Gao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kui-Yuan Hao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
40
|
Yang J, Lv X, Chen J, Xie C, Xia W, Jiang C, Zeng T, Ye Y, Ke L, Yu Y, Liang H, Guan XY, Guo X, Xiang Y. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget 2017; 7:15632-47. [PMID: 26701209 PMCID: PMC4941266 DOI: 10.18632/oncotarget.6695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Distant metastasis remains the major failure of nasopharyngeal carcinoma (NPC). In this study, the roles of chemokine C-C motif ligand 2 (CCL2), and its receptor chemokine C-C motif receptor type 2 (CCR2) on NPC metastasis were investigated. Serum CCL2 and CCL2/CCR2 expression level were remarkably increased in NPC patients compared to non-tumor patients by ELISA and IHC analyses. High expressions of CCL2/CCR2 were significantly associated with NPC metastasis and poor overall survival (OS). High expression of CCR2 is an independent adverse prognostic factor of OS and distant metastasis free survival (DMFS). Overexpressions of CCL2 and CCR2 were detected in high-metastatic NPC cell lines. Upregulating CCL2 and CCR2 respectively in low-metastatic NPC cell lines could promote cell migration and invasion, and exogenous CCL2 enhanced the motility in CCR2-overexpressing cells. On the other hand, downregulating CCL2 and CCR2 respectively in high-metastatic NPC cell lines by shRNA could decrease cell migration and invasion. However, exogenous CCL2 could not rescue the weaken ability of motility of CCR2-silencing cells. In nude mouse model, distant metastasis was significantly facilitated in either CCL2-overexpressing or CCR2-overexpressing groups, which was more obvious in CCR2-overexpressing group. Also, distant metastasis was considerably inhibited in either CCL2-silencing or CCR2-silencing groups. Dual overexpression of CCL2/CCR2 could activate extracellular signal-regulated kinase (ERK1/2) signaling pathway, which sequentially induced matrix metalloproteinase (MMP) 2 and 9 upregulations in the downstream. In conclusion, CCL2-CCR2 axis could promote NPC metastasis by activating ERK1/2-MMP2/9 pathway. This study helps to develop novel therapeutic targets for distant metastasis in NPC.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinna Chen
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Changqing Xie
- Internal Medicine Residency Program, Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Weixiong Xia
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chen Jiang
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yahui Yu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
41
|
Jiang X, Wang J, Chen X, Hong Y, Wu T, Chen X, Xia J, Cheng B. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation. Oncotarget 2017; 7:16262-72. [PMID: 26919103 PMCID: PMC4941312 DOI: 10.18632/oncotarget.7585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 11/29/2022] Open
Abstract
Chemokine (C-C motif) ligand 18 (CCL18) has been implicated in the pathogenesis and progression of various cancers; however, in oral squamous cell carcinoma (OSCC), the role of CCL18 is unknown. In this study, we found that CCL18 was overexpressed in primary OSCC tissues and was associated with an advanced clinical stage. CCL18 was found in both the cytoplasm and cell membrane of OSCC cells and was predominantly produced by cancer epithelial cells, as opposed to tumor-infiltrating macrophages. In vitro studies indicated that the effects of endogenous CCL18 on OSCC cell growth, migration, and invasion could be blocked by treatment with a neutralizing anti-CCL18 antibody or CCL18 knockdown, while exogenous recombinant CCL18 (rCCL18) rescued those effects. Akt was activated in rCCL18-treated OSCC cells, while LY294002, a pan-PI3K inhibitor, abolished both endogenous and exogenous CCL18-induced OSCC cell invasion. In vivo, LY294002 treatment attenuated rCCL18-induced OSCC cell growth. Our results indicate that CCL18 acts in an autocrine manner via Akt activation to stimulate OSCC cell growth and invasion during OSCC progression. They also provide a potential therapeutic target for the treatment of oral cancer.
Collapse
Affiliation(s)
- Xiao Jiang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.,Guangdong Provincial Stomatological Hospital, Guangzhou, Guangdong 510280, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xijuan Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yun Hong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xiaobing Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| |
Collapse
|
42
|
Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise Review: Cancer Cells, Cancer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development. Stem Cells Transl Med 2017; 6:2115-2125. [PMID: 29072369 PMCID: PMC5702541 DOI: 10.1002/sctm.17-0138] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self-renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro-or anti-tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management. Stem Cells Translational Medicine 2017;6:2115-2125.
Collapse
Affiliation(s)
- Federica Papaccio
- Dipartimento Medico‐Chirurgico di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania ‘L. Vanvitelli’NaplesItaly
| | - Francesca Paino
- Dipartimento di Medicina Sperimentale, Sezione di Sezione di BiotecnologieIstologia Medica e Biologia Molecolare, Università degli Studi della Campania ‘L. Vanvitelli’NaplesItaly
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUnited Kingdom
- Dipartimento di Biochimica, Biofisica, e Patologia GeneraleUniversità degli Studi della Campania ‘L. Vanvitelli’NaplesItaly
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Sezione di Sezione di BiotecnologieIstologia Medica e Biologia Molecolare, Università degli Studi della Campania ‘L. Vanvitelli’NaplesItaly
| | - Vincenzo Desiderio
- Dipartimento di Medicina Sperimentale, Sezione di Sezione di BiotecnologieIstologia Medica e Biologia Molecolare, Università degli Studi della Campania ‘L. Vanvitelli’NaplesItaly
| | - Virginia Tirino
- Dipartimento di Medicina Sperimentale, Sezione di Sezione di BiotecnologieIstologia Medica e Biologia Molecolare, Università degli Studi della Campania ‘L. Vanvitelli’NaplesItaly
| |
Collapse
|
43
|
Abstract
AbstractRecent studies showed that inflammation is a critical cause for initiation and/or development of many cancers. In prostate cancer (PC), the inflammatory cells usually populate an immune-competent organ. This inflammatory organ can be involved in the initiation and progression of PC. Here, we mainly focus on the role of inflammation in the PC and progression of castration-resistant PC (CRPC). Moreover, we summarize the roles of inflammation factors (such as chemokines and cytokines) in PC and CRPC. Taken together, this review gives an insight into therapy for PC and CRPC through anti-inflammation.
Collapse
|
44
|
Poon C, Chowdhuri S, Kuo CH, Fang Y, Alenghat FJ, Hyatt D, Kani K, Gross ME, Chung EJ. Protein Mimetic and Anticancer Properties of Monocyte-Targeting Peptide Amphiphile Micelles. ACS Biomater Sci Eng 2017; 3:3273-3282. [PMID: 29302619 DOI: 10.1021/acsbiomaterials.7b00600] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) stimulates the migration of monocytes to inflammatory sites, leading to the progression of many diseases. Recently, we described a monocyte-targeting peptide amphiphile micelle (MCP-1 PAM) incorporated with the chemokine receptor CCR2 binding motif of MCP-1, which has a high affinity for monocytes in atherosclerotic plaques. We further report here the biomimetic components of MCP-1 PAMs and the influence of the nanoparticle upon binding to monocytes. We report that MCP-1 PAMs have enhanced secondary structure compared to the MCP-1 peptide. As a result, MCP-1 PAMs displayed improved binding and chemoattractant properties to monocytes, which upregulated the inflammatory signaling pathways responsible for monocyte migration. Interestingly, when MCP-1 PAMs were incubated in the presence of prostate cancer cells in vitro, the particle displayed anticancer efficacy by reducing CCR2 expression. Given that monocytes play an important role in tumor cell migration and invasion, our results demonstrate that PAMs can improve the native biofunctional properties of the peptide and may be used as an effective inhibitor to prevent chemokine-receptor interactions that promote disease progression.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
| | - Sampreeti Chowdhuri
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
| | - Cheng-Hsiang Kuo
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Francis J Alenghat
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Danielle Hyatt
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Kian Kani
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90089, United States
| | - Mitchell E Gross
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
| |
Collapse
|
45
|
Anti-glioma Activity of Dapsone and Its Enhancement by Synthetic Chemical Modification. Neurochem Res 2017; 42:3382-3389. [PMID: 28852934 DOI: 10.1007/s11064-017-2378-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
The sulfone dapsone is an old antibiotic used for the treatment of mycobacterial and protozoal infections. We postulated before that dapsone might possess biological activity exceeding its anti-infectious properties and that it could potentially be repurposed for the treatment of glioma. To test this hypothesis, we treated established and primary cultured glioma cells with dapsone or several dapsone analogues which we previously synthesized (D2-D5) and determined effects on proliferation, anchorage-independent growth and migration. While dapsone and its synthetic analogues D2-D5 displayed only modest anti-proliferative activity, important neoplastic features such as anchorage-independent growth, clonogenic survival and directed migration were significantly inhibited by dapsone treatment. Moreover, dapsone analogues D3, D4 and D5 yielded even enhanced anti-glioma activity against different pro-neoplastic features. Overall these data suggest that dapsone provides activity against glioma which can be further enhanced by molecular modifications. These compounds could potentially serve as a therapeutic adjunct to the treatment of gliomas in a repurposing approach.
Collapse
|
46
|
Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells. PLoS One 2017; 12:e0182584. [PMID: 28783760 PMCID: PMC5544245 DOI: 10.1371/journal.pone.0182584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP), the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS)-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of TGP (312.5 μg /mL). As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL)-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.
Collapse
|
47
|
Lopez-Bujanda Z, Drake CG. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. J Leukoc Biol 2017; 102:393-406. [PMID: 28550116 PMCID: PMC6608078 DOI: 10.1189/jlb.5vmr1116-491rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer mortality in men in the United States. As is the case for other tumor types, accumulating evidence suggests an important role for myeloid-derived cells in the promotion and progression of prostate cancer. Here, we briefly describe myeloid-derived cells that interact with tumor cells and what is known about their immune suppressive function. We next discuss new evidence for tumor cell-mediated myeloid infiltration via the PI3K/PTEN/AKT signaling pathway and an alternative mechanism for immune evasion that may be regulated by an endoplasmic reticulum stress response. Finally, we discuss several interventions that target myeloid-derived cells to treat prostate cancer.
Collapse
Affiliation(s)
- Zoila Lopez-Bujanda
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
48
|
An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis 2017; 8:e2932. [PMID: 28703802 PMCID: PMC5550865 DOI: 10.1038/cddis.2017.319] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022]
Abstract
Stromal cells, infiltrating immune cells, paracrine factors and extracellular matrix have been extensively studied in cancers. However, autocrine factors produced by tumor cells and communications between autocrine factors and intracellular signaling pathways in the development of drug resistance, cancer stem-like cells (CSCs) and tumorigenesis have not been well investigated, and the precise mechanism and tangible approaches remain elusive. Here we reveal a new mechanism by which cytokines produced by breast cancer cells after chemotherapy withdrawal activate both Wnt/β-catenin and NF-κB pathways, which in turn further promote breast cancer cells to produce and secrete cytokines, forming an autocrine inflammatory forward-feedback loop to facilitate the enrichment of drug-resistant breast cancer cells and/or CSCs. Such an unexpected autocrine forward-feedback loop and CSC enrichment can be effectively blocked by inhibition of Wnt/β-catenin and NF-κB signaling. It can also be diminished by IL8-neutralizing antibody or blockade of IL8 receptors CXCR1/2 with reparixin. Administration of reparixin after chemotherapy withdrawal effectively attenuates tumor masses in a human xenograft model and abolishes paclitaxel-enriched CSCs in the secondary transplantation. These results are partially supported by the latest clinical data set. Breast cancer patients treated with chemotherapeutic drugs exhibited poor survival rate (66.7 vs 282.8 months, P=0.00071) and shorter disease-free survival time if their tumor samples expressed high level of IL8, CXCR1, CXCR2 genes and Wnt target genes. Taken together, this study provides new insights into the communication between autocrine niches and signaling pathways in the development of chemotherapy resistance and CSCs; it also offers a tangible approach in breast cancer treatment.
Collapse
|
49
|
Xiang Z, Zhou ZJ, Xia GK, Zhang XH, Wei ZW, Zhu JT, Yu J, Chen W, He Y, Schwarz RE, Brekken RA, Awasthi N, Zhang CH. A positive crosstalk between CXCR4 and CXCR2 promotes gastric cancer metastasis. Oncogene 2017; 36:5122-5133. [PMID: 28481874 DOI: 10.1038/onc.2017.108] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The molecular mechanism underlying gastric cancer (GC) invasion and metastasis is still poorly understood. In this study, we tried to investigate the roles of CXCR4 and CXCR2 signalings in gastric cancer metastasis. A highly invasive gastric cancer cell model was established. Chemokines receptors were profiled to search for the accountable ones. Then the underlying molecular mechanism was investigated using both in vitro and in vivo techniques, and the clinical relevance of CXCR4 and CXCR2 expression was studied in gastric cancer samples. CXCR4 and CXCR2 were highly expressed in a high invasive gastric cancer cell model and in gastric cancer tissues. Overexpression of CXCR4 and CXCR2 was associated with more advanced tumor stage and poorer survival for GC patients. CXCR4 and CXCR2 expression strongly correlated with each other in the way that CXCR2 expression changed accordingly with the activity of CXCR4 signaling and CXCR4 expression also changed in agreement with CXCR2 activity. Further studies demonstrated CXCR4 and CXCR2 can both activated NF-κB and STAT3 signaling, while NF-κBp65 can then transcriptionally activate CXCR4 and STAT3 can activate CXCR2 expression. This crosstalk between CXCR4 and CXCR2 contributed to EMT, migration and invasion of gastric cancer. Finally, Co-inhibition of CXCR4 and CXCR2 is more effective in reducing gastric cancer metastasis. Our results demonstrated that CXCR4 and CXCR2 cross-activate each other to promote the metastasis of gastric cancer.
Collapse
Affiliation(s)
- Z Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z-J Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - G-K Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - X-H Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z-W Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - J-T Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - J Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - W Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Y He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastrointestinal Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - R E Schwarz
- Indiana University School of Medicine, South Bend, and IU Health Goshen Center for Cancer Care, Goshen, IN, USA
| | - R A Brekken
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - N Awasthi
- Indiana University School of Medicine, South Bend, and IU Health Goshen Center for Cancer Care, Goshen, IN, USA
| | - C-H Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Talesa VN, Ferri I, Bellezza G, Love HD, Sidoni A, Antognelli C. Glyoxalase 2 Is Involved in Human Prostate Cancer Progression as Part of a Mechanism Driven By PTEN/PI3K/AKT/mTOR Signaling With Involvement of PKM2 and ERα. Prostate 2017; 77:196-210. [PMID: 27696457 DOI: 10.1002/pros.23261] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glyoxalase 2 (Glo2), together with glyoxalase 1 (Glo1), forms the main scavenging system of methylglyoxal, a potent pro-apoptotic agent mainly generated by glycolysis. An increased rate of glycolysis is a well known signature of cancer cells. As a survival strategy, Glo1 is overexpressed in many human malignant cells, including prostate cancer (PCa), where it plays a crucial role in progression. No information is available on the role of Glo2 in the same ambit. PCa is the most common malignancy affecting men in the western world. Progression to a lethal hormone-refractory PCa represents the major concern in this pathology. Therefore, a deeper understanding of the molecular mechanisms underlying PCa invasiveness and metastasis is urgently needed in order to develop novel therapeutic targets for this incurable state of the malignancy. METHODS Glo2 and Glo1 expression was examined in clinical samples of PCa by immunohistochemistry and in different PCa cell models by western blotting and quantitative real-time polymerase chain reaction. Gene silencing/overexpression and scavenging/inhibitory agents were used for functional analyses. RESULTS We demonstrated that Glo2, together with Glo1, represents a novel mechanism in PCa progression as part of a pathway driven by PTEN/PI3K/AKT/mTOR signaling with involvement of PKM2 and ERα. Importantly, Glo1/Glo2 silencing did not alter the behavior of benign cells. CONCLUSIONS Targeting glyoxalases metabolic pathway may represent a strategy to selectively inhibit advanced PCa. Prostate 77:196-210, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincenzo N Talesa
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angelo Sidoni
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|