1
|
Fu Z, Wang W, Gao Y. Understanding the impact of ER stress on lung physiology. Front Cell Dev Biol 2024; 12:1466997. [PMID: 39744015 PMCID: PMC11688383 DOI: 10.3389/fcell.2024.1466997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Human lungs consist of a distinctive array of cell types, which are subjected to persistent challenges from chemical, mechanical, biological, immunological, and xenobiotic stress throughout life. The disruption of endoplasmic reticulum (ER) homeostatic function, triggered by various factors, can induce ER stress. To overcome the elevated ER stress, an adaptive mechanism known as the unfolded protein response (UPR) is activated in cells. However, persistent ER stress and maladaptive UPR can lead to defects in proteostasis at the cellular level and are typical features of the lung aging. The aging lung and associated lung diseases exhibit signs of ER stress-related disruption in cellular homeostasis. Dysfunction resulting from ER stress and maladaptive UPR can compromise various cellular and molecular processes associated with aging. Hence, comprehending the mechanisms of ER stress and UPR components implicated in aging and associated lung diseases could enable to develop appropriate therapeutic strategies for the vulnerable population.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Tao S, Jing J, Wang Y, Li F, Ma H. Identification of Genes Related to Endoplasmic Reticulum Stress (ERS) in Chronic Obstructive Pulmonary Disease (COPD) and Clinical Validation. Int J Chron Obstruct Pulmon Dis 2023; 18:3085-3097. [PMID: 38162988 PMCID: PMC10757804 DOI: 10.2147/copd.s440692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Endoplasmic reticulum stress (ERS) is key in chronic obstructive pulmonary disease (COPD) incidence and progression. This study aims to identify potential ERS-related genes in COPD through bioinformatics analysis and clinical experiments. Methods We first obtained a COPD-related mRNA expression dataset (GSE38974) from the Gene Expression Omnibus (GEO) database. The R software was then used to identify potential differentially expressed genes (DEGs) of COPD-related ERS (COPDERS). Subsequently, the identified DEGs were subjected to protein-protein interaction (PPI), correlation, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Following that, qRT-PCR was used to examine the RNA expression of six ERS-related DEGs in blood samples obtained from the COPD and control groups. The genes were also subjected to microRNA analysis. Finally, a correlation analysis was performed between the DEGs and key clinical indicators. Results Six ERS-related DEGs (five upregulated and one downregulated) were identified based on samples drawn from 23 COPD patients and nine healthy individuals enrolled in the study. Enrichment analysis revealed multiple ERS-related pathways. The qRT-PCR and mRNA microarray bioinformatics analysis results showed consistent STC2, APAF1, BAX, and PTPN1 expressions in the COPD and control groups. Additionally, hsa-miR-485-5p was identified through microRNA prediction and DEG analysis. A correlation analysis between key genes and clinical indicators in COPD patients demonstrated that STC2 was positively and negatively correlated with eosinophil count (EOS) and lymphocyte count (LYM), respectively. On the other hand, PTPN1 showed a strong correlation with pulmonary function indicators. Conclusion Four COPDERS-related key genes (STC2, APAF1, BAX, and PTPN1) were identified through bioinformatics analysis and clinical validation, and the expressions of some genes exhibited a significant correlation with the selected clinical indicators. Furthermore, hsa-miR-485-5p was identified as a potential key target in COPDERS, but its precise mechanism remains unclear.
Collapse
Affiliation(s)
- Siming Tao
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Jing
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yide Wang
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Fengsen Li
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Hongxia Ma
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
3
|
Yu Y, Yang A, He X, Wu B, Wu Y, Li Y, Nie S, Xu B, Wang H, Yu G. Soluble epoxide hydrolase deficiency attenuates airway inflammation in COPD via IRE1α/JNK/AP-1 signaling pathway. J Inflamm (Lond) 2023; 20:36. [PMID: 37915073 PMCID: PMC10621191 DOI: 10.1186/s12950-023-00361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Soluble Epoxide Hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids and critically affects airway inflammation in chronic obstructive pulmonary disease (COPD). Considering the excessive endoplasmic reticulum stress is associated with the earlier onset of COPD. The role of sEH and endoplasmic reticulum stress in the pathogenesis of COPD remains unknown. METHOD 16 weeks of cigarette-exposed mice were used to detect the relationship between sEH and endoplasmic reticulum stress in COPD. Human epithelial cells were used in vitro to determine the regulation mechanism of sEH in endoplasmic reticulum stress induced by cigarette smoke. RESULTS sEH deficiency helps reduce emphysema formation after smoke exposure by alleviating endoplasmic reticulum stress response. sEH deficiency effectively reverses the upregulation of phosphorylation IRE1α and JNK and the nuclear expression of AP-1, alleviating the secretion of inflammatory factors induced by cigarette smoke extract. Furthermore, the treatment with endoplasmic reticulum stress and IRE1α inhibitor downregulated cigarette smoke extract-induced sEH expression and the secretion of inflammatory factors. CONCLUSION sEH probably alleviates airway inflammatory response and endoplasmic reticulum stress via the IRE1α/JNK/AP-1 pathway, which might attenuate lung injury caused by long-term smoking and provide a new pharmacological target for preventing and treating COPD.
Collapse
Affiliation(s)
- Yue Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Xin He
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Bo Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Yunxiao Li
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Shan Nie
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China.
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China.
| |
Collapse
|
4
|
Khedoe PPSJ, van Schadewijk WAAM, Schwiening M, Ng-Blichfeldt JP, Marciniak SJ, Stolk J, Gosens R, Hiemstra PS. Cigarette smoke restricts the ability of mesenchymal cells to support lung epithelial organoid formation. Front Cell Dev Biol 2023; 11:1165581. [PMID: 37795260 PMCID: PMC10546195 DOI: 10.3389/fcell.2023.1165581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Adequate lung epithelial repair relies on supportive interactions within the epithelial niche, including interactions with WNT-responsive fibroblasts. In fibroblasts from patients with chronic obstructive pulmonary disease (COPD) or upon in vitro cigarette smoke exposure, Wnt/β-catenin signalling is distorted, which may affect interactions between epithelial cells and fibroblasts resulting in inadequate lung repair. We hypothesized that cigarette smoke (CS), the main risk factor for COPD, interferes with Wnt/β-catenin signalling in fibroblasts through induction of cellular stress responses, including oxidative- and endoplasmic reticulum (ER) stress, and thereby alters epithelial repair support potential. Therefore, we assessed the effect of CS-exposure and the ER stress inducer Thapsigargin (Tg) on Wnt/β-catenin signalling activation in MRC-5 fibroblasts, and on their ability to support lung epithelial organoid formation. Exposure of MRC-5 cells for 15 min with 5 AU/mL CS extract (CSE), and subsequent 6 h incubation induced oxidative stress (HMOX1). Whereas stimulation with 100 nM Tg increased markers of both the integrated stress response (ISR - GADD34/PPP1R15A, CHOP) and the unfolded protein response (UPR - XBP1spl, GADD34/PPP1R15A, CHOP and HSPA5/BIP), CSE only induced GADD34/PPP1R15A expression. Strikingly, although treatment of MRC-5 cells with the Wnt activator CHIR99021 upregulated the Wnt/β-catenin target gene AXIN2, this response was diminished upon CSE or Tg pre-exposure, which was confirmed using a Wnt-reporter. Furthermore, pre-exposure of MRC-5 cells to CSE or Tg, restricted their ability to support organoid formation upon co-culture with murine pulmonary EpCam+ cells in Matrigel at day 14. This restriction was alleviated by pre-treatment with CHIR99021. We conclude that exposure of MRC-5 cells to CSE increases oxidative stress, GADD34/PPP1R15A expression and impairs their ability to support organoid formation. This inhibitory effect may be restored by activating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- P. P. S. J. Khedoe
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - M. Schwiening
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J. P. Ng-Blichfeldt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - S. J. Marciniak
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J. Stolk
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| | - R. Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
5
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau, Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia.
| |
Collapse
|
6
|
Yu Y, Yang A, Yu G, Wang H. Endoplasmic Reticulum Stress in Chronic Obstructive Pulmonary Disease: Mechanisms and Future Perspectives. Biomolecules 2022; 12:1637. [PMID: 36358987 PMCID: PMC9687722 DOI: 10.3390/biom12111637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
The endoplasmic reticulum (ER) is an integral organelle for maintaining protein homeostasis. Multiple factors can disrupt protein folding in the lumen of the ER, triggering ER stress and activating the unfolded protein response (UPR), which interrelates with various damage mechanisms, such as inflammation, apoptosis, and autophagy. Numerous studies have linked ER stress and UPR to the progression of chronic obstructive pulmonary disease (COPD). This review focuses on the mechanisms of other cellular processes triggered by UPR and summarizes drug intervention strategies targeting the UPR pathway in COPD to explore new therapeutic approaches and preventive measures for COPD.
Collapse
Affiliation(s)
| | | | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Zhang Q, He X, Yu Q, Liu Y, Zhu Y, Yang L, Shang P, Zhang J, Liu H, Feng F. Endoplasmic reticulum stress regulates pyroptosis in BPDE-induced BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1768-1780. [PMID: 35297523 DOI: 10.1002/tox.23524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzo(a)pyrene(B(a)P), as the main representative of polycyclic aromatic hydrocarbons, can promote inflammation and many chronic pulmonary diseases. However, the underlying mechanism of Benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE)-induced human bronchial epithelial cell pyroptosis related to endoplasmic reticulum stress (ERS) has not been elucidated. This study focused on the effects of BPDE on ERS and pyroptosis in human bronchial epithelial cells (BEAS-2B), and explored the relationship between ERS and pyroptosis. BEAS-2B cells were stimulated with 0.50, 0.75, and 1.00 μmol/L BPDE for 24 h to detect ERS and pyroptosis. After inhibition of ERS with 4-phenylbutyrate (4-PBA), pyroptosis of BEAS-2B cells was tested. The results showed that BPDE decreased the cell viability, changed the morphological structure of endoplasmic reticulum and increased the expression levels of GRP78 and p-PERK. After BPDE treatment, the cell membrane was damaged and incomplete under transmission electron microscope; Hoechst 33342/PI fluorescence staining showed that the number of PI-positive cells was enhanced. The expression levels of GSDMD-N, cleaved-caspase 1, and cleaved-IL-1β were elevated, and the expression levels of IL-1β, IL-18, and NLRP3 protein were improved. In BPDE combined with 4-PBA intervention group, the rate of PI-positive cells was reduced, the expression levels of GRP78, GSDMD-N, and cleaved-caspase 1 were decreased, and the expression levels of IL-1β, IL-18, and NLRP3 were decreased. In conclusion, BPDE could induce ERS and pyroptosis in BEAS-2B cells, and ERS may promote the occurrence of BPDE-induced pyroptosis.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xi He
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yitong Liu
- College of Public Health, University of Southern California, Los Angeles, California, USA
| | - Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, Henan, China
| | - Jiatong Zhang
- Department of Disease Control and Prevention, Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Tang L, Zhong X, Gong H, Tuerxun M, Ma T, Ren J, Xie C, Zheng A, Abudureheman Z, Abudukadeer A, Aini P, Yilamujiang S, Li L. Analysis of the association of ANO3/MUC15, COL4A4, RRBP1, and KLK1 polymorphisms with COPD susceptibility in the Kashi population. BMC Pulm Med 2022; 22:178. [PMID: 35513865 PMCID: PMC9074245 DOI: 10.1186/s12890-022-01975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Chronic obstructive pulmonary disease (COPD) is a complex, multifactorial, polygenic disease. The rate of occurrence of COPD in the Kashi population (Uyghur) is significantly higher than that observed nationwide. The identification of COPD-related genes in the Chinese Uyghur population could provide useful insights that could help us understand this phenomenon. Our previous whole-exome sequencing study of three Uyghur families with COPD demonstrated that 72 mutations in 55 genes might be associated with COPD; these included rs15783G > A in the anoctamin 3 (ANO3) gene/mucin 15 (MUC15) gene, rs1800517G > A in the collagen type IV alpha 4 chain (COL4A4) gene, rs11960G > A in the ribosome binding protein 1 (RRBP1) gene, and rs5516C > G in the kallikrein 1 (KLK1) gene. This case–control study aimed to further validate the association of the four mutations with COPD in the Chinese Uyghur population. Methods Sanger sequencing was used for the genotyping of four polymorphisms (ANO3/MUC15 rs15783, COL4A4 rs1800517, RRBP1 rs11960, and KLK1 rs5516) in 541 unrelated Uyghur COPD patients and 534 Uyghur healthy controls. We then conducted stratified analyses based on the smoking status and airflow limitation severity, to explore the correlation between selected gene polymorphisms and COPD. Results ANO3/MUC15 rs15783 and KLK1 rs5516 polymorphisms could significantly reduce COPD risk (p < 0.05), but COL4A4 rs1800517 and RRBP1 rs11960 polymorphisms were not correlated with COPD in the entire population. In a stratified analysis of smoking status, non-smokers with the ANO3/MUC15 rs15783G/G genotype (OR = 0.63, p = 0.032) or COL4A4 rs1800517 allele G (OR = 0.80, p = 0.023) had a reduced risk of COPD. Smokers with the RRBP1 rs11960A/G genotype had a lower risk of COPD (OR = 0.41, p = 0.025). The KLK1 rs5516G > C polymorphism was associated with a decreased risk of COPD (OR < 1, p < 0.05), irrespective of the smoking status of individuals. No significant association with COPD severity was observed in individuals with these four polymorphisms (p > 0.05). Conclusion We identified four previously unreported mutations (ANO3/MUC15 rs15783, COL4A4 rs1800517, RRBP1 rs11960, and KLK1 rs5516) that might decrease the COPD risk in individuals with different smoking statuses in the Chinese Uyghur population. Our findings provide new light for the genetic risk factors associated with the occurrence of COPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01975-3.
Collapse
Affiliation(s)
- Lifeng Tang
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Hui Gong
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Maimaitiaili Tuerxun
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Tao Ma
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Chengxin Xie
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Aifang Zheng
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Zulipikaer Abudureheman
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Ayiguzali Abudukadeer
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Paierda Aini
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Subinuer Yilamujiang
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China. .,Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, 844000, Xinjiang, People's Republic of China.
| |
Collapse
|
9
|
ROS-Responsive miR-150-5p Downregulation Contributes to Cigarette Smoke-Induced COPD via Targeting IRE1α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5695005. [PMID: 35571237 PMCID: PMC9098354 DOI: 10.1155/2022/5695005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been reported in human diseases, in which chronic obstructive pulmonary disease (COPD) is included. Herein, we assessed the role along with the possible mechanisms of miR-150-5p in cigarette smoke- (CS-) induced COPD. The plasma miR-150-5p expression was lower in patients with COPD and acute exacerbation of COPD (AECOPD) and was related to disease diagnosis, disease severity, and lung function. Consistently, exposure to CS for 3 months or 3 days reduced miR-150-5p in the plasma and lung tissues of mice, and CS extract (CSE) inhibited miR-150-5p in human bronchial epithelial cells (HBECs) in a concentration along with time-dependent approach. In vitro, miR-150-5p overexpression decreased the contents of inflammatory factors interleukin- (IL-) 6, IL-8 along with cyclooxygenase-2 (COX-2), and endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP) 78 and C/-EBP homologous protein (CHOP) and promoted cell migrate. Mechanistically, miR-150-5p could bind with the 3′-untranslated region (UTR) of inositol requiring enzyme 1α (IRE1α), while IRE1α overexpression obliterated the impacts of miR-150-5p. Besides, N-acetyl-cysteine (NAC) reversed CSE-induced miR-150-5p downregulation and its downstream effects. In vivo, miR-150-5p overexpression counteracted CS-triggered IRE1α upregulation, inflammation, and ER stress in the lung tissues of mice. In conclusion, our findings illustrated that ROS-mediated downregulation of miR-150-5p led to CS-induced COPD by inhibiting IRE1α expression, suggesting to serve as a useful biomarker for diagnosing and treating COPD.
Collapse
|
10
|
Lin CR, Bahmed K, Kosmider B. Dysregulated Cell Signaling in Pulmonary Emphysema. Front Med (Lausanne) 2022; 8:762878. [PMID: 35047522 PMCID: PMC8762198 DOI: 10.3389/fmed.2021.762878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Pulmonary emphysema is characterized by the destruction of alveolar septa and irreversible airflow limitation. Cigarette smoking is the primary cause of this disease development. It induces oxidative stress and disturbs lung physiology and tissue homeostasis. Alveolar type II (ATII) cells have stem cell potential and can repair the denuded epithelium after injury; however, their dysfunction is evident in emphysema. There is no effective treatment available for this disease. Challenges in this field involve the large complexity of lung pathophysiological processes and gaps in our knowledge on the mechanisms of emphysema progression. It implicates dysregulation of various signaling pathways, including aberrant inflammatory and oxidative responses, defective antioxidant defense system, surfactant dysfunction, altered proteostasis, disrupted circadian rhythms, mitochondrial damage, increased cell senescence, apoptosis, and abnormal proliferation and differentiation. Also, genetic predispositions are involved in this disease development. Here, we comprehensively review studies regarding dysregulated cell signaling, especially in ATII cells, and their contribution to alveolar wall destruction in emphysema. Relevant preclinical and clinical interventions are also described.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Xu X, Li Q, Li L, Zeng M, Zhou X, Cheng Z. Endoplasmic reticulum stress/XBP1 promotes airway mucin secretion under the influence of neutrophil elastase. Int J Mol Med 2021; 47:81. [PMID: 33760106 PMCID: PMC7979262 DOI: 10.3892/ijmm.2021.4914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is an important reaction of airway epithelial cells in response to various stimuli, and may also be involved in the mucin secretion process. In the present study, the effect of ER stress on neutrophil elastase (NE)-induced mucin (MUC)5AC production in human airway epithelial cells was explored. 16HBE14o-airway epithelial cells were cultured and pre-treated with the reactive oxygen species (ROS) inhibitor, N-acetylcysteine (NAC), or the ER stress chemical inhibitor, 4-phenylbutyric acid (4-PBA), or the cells were transfected with inositol-requiring kinase 1α (IRE1α) small interfering RNA (siRNA) or X-box-binding protein 1 (XBP1) siRNA, respectively, and subsequently incubated with NE. The results obtained revealed that NE increased ROS production in the 16HBE14o-cells, with marked increases in the levels of ER stress-associated proteins, such as glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phosphorylated protein kinase R-like endoplasmic reticulum kinase (pPERK) and phosphorylated (p)IRE1α. The protein and mRNA levels of spliced XBP1 were also increased, and the level of MUC5AC protein was notably increased. The ROS scavenger NAC and ER stress inhibitor 4-PBA were found to reduce ER stress-associated protein expression and MUC5AC production and secretion. Further analyses revealed that MUC5AC secretion was also attenuated by IRE1α and XBP1 siRNAs, accompanied by a decreased mRNA expression of spliced XBP1. Taken together, these results demonstrate that NE induces ER stress by promoting ROS production in 16HBE14o-airway epithelial cells, leading to increases in MUC5AC protein production and secretion via the IRE1α and XBP1 signaling pathways.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Shinan, Qingdao 266071, P.R. China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Man Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Zhaozhong Cheng
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Shinan, Qingdao 266071, P.R. China
| |
Collapse
|
13
|
Zhang Q, Wang T, Jin J, Shi X, Huang A, Ma Z, Li J, Wang S, Z. Ma R, Fang Q. Rcn3 Suppression Was Responsible for Partial Relief of Emphysema as Shown by Specific Type II Alveolar Epithelial Cell Rcn3 CKO Mouse Model. Int J Chron Obstruct Pulmon Dis 2021; 16:147-158. [PMID: 33531801 PMCID: PMC7847372 DOI: 10.2147/copd.s272711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), characterized by irreversible airflow limitation, is a highly prevalent lung disease worldwide and imposes increasing disease burdens globally. Emphysema is one of the primary pathological features contributing to the irreversible decline of pulmonary function in COPD patients, but the pathogenetic mechanisms remain unclear. Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein localized in the secretory pathway of living cells. Rcn3 in type II alveolar epithelial cell (AECIIs) has been reported to play a critical role in regulating perinatal lung development and bleomycin-induced lung injury-repair processes. We hypothesized that Rcn3 deficiency is associated with the development of emphysema during COPD, which is associated with the dysfunction of injury-repair modulated by alveolar epithelial cells. MATERIALS AND METHODS We examined Rcn3 expression in lung specimens from COPD patients and non-COPD control patients undergoing lung lobectomy or pneumonectomy. Two mouse models of emphysema were established by cigarette smoke (CS) exposure and intratracheal instillation of porcine pancreatic elastase (PPE). Rcn3 expression was detected in the lung tissues from these mice. Furthermore, conditional knockout (CKO) mice with Rcn3 deletion specific to AECIIs were used to explore the role of Rcn3 in PPE-induced emphysema progression. Rcn3 protein expression in lung tissues was evaluated by Western blot and immunohistochemistry. Rcn3 mRNA expression in lung tissues was detected by qPCR. RESULTS Rcn3 expression was significantly increased in the lung specimens from COPD patients versus non-COPD patients and the level of Rcn3 increase was associated with the degree of emphysema. Rcn3 expression were also significantly up-regulated in both CS-induced and PPE-induced emphysematous mouse lungs. Moreover, the selective ablation of Rcn3 in AECIIs significantly alleviated severity of the mouse emphysema in response to intratracheal installation of PPE. CONCLUSION Our data, for the first time, indicated that suppression of Rcn3 expression in AECIIs has a beneficial effect on PPE-induced emphysema.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Tong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Xiaoqian Shi
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Aiben Huang
- Beijing Shijitan Hospital, Capital Medical University, Beijing100038, People’s Republic of China
| | - Zhenru Ma
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Jiujie Li
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Shiyu Wang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Runlin Z. Ma
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Qiuhong Fang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| |
Collapse
|
14
|
Bradley KL, Stokes CA, Marciniak SJ, Parker LC, Condliffe AM. Role of unfolded proteins in lung disease. Thorax 2021; 76:92-99. [PMID: 33077618 PMCID: PMC7803888 DOI: 10.1136/thoraxjnl-2019-213738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Clare A Stokes
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | | | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Nguyen ND, Memon TA, Burrell KL, Almestica-Roberts M, Rapp E, Sun L, Scott AF, Rower JE, Deering-Rice CE, Reilly CA. Transient Receptor Potential Ankyrin-1 and Vanilloid-3 Differentially Regulate Endoplasmic Reticulum Stress and Cytotoxicity in Human Lung Epithelial Cells After Pneumotoxic Wood Smoke Particle Exposure. Mol Pharmacol 2020; 98:586-597. [PMID: 32938721 DOI: 10.1124/molpharm.120.000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
This study investigated the roles of transient receptor potential (TRP) ankyrin-1 (TRPA1) and TRP vanilloid-3 (TRPV3) in regulating endoplasmic reticulum stress (ERS) and cytotoxicity in human bronchial epithelial cells (HBECs) treated with pneumotoxic wood smoke particulate matter (WSPM) and chemical agonists of each channel. Functions of TRPA1 and TRPV3 in pulmonary epithelial cells remain largely undefined. This study shows that TRPA1 activity localizes to the plasma membrane and endoplasmic reticulum (ER) of cells, whereas TRPV3 resides primarily in the ER. Additionally, treatment of cells using moderately cytotoxic concentrations of pine WSPM, carvacrol, and other TRPA1 agonists caused ERS as a function of both TRPA1 and TRPV3 activities. Specifically, ERS and cytotoxicity were attenuated by TRPA1 inhibition, whereas inhibiting TRPV3 exacerbated ERS and cytotoxicity. Interestingly, after treatment with pine WSPM, TRPA1 transcription was suppressed, whereas TRPV3 was increased. TRPV3 overexpression in HBECs conferred resistance to ERS and an attenuation of ERS-associated cell cycle arrest caused by WSPM and multiple prototypical ERS-inducing agents. Alternatively, short hairpin RNA-mediated knockdown of TRPV3, like the TRPV3 antagonist, exacerbated ERS. This study reveals previously undocumented roles for TRPA1 in promoting pathologic ERS and cytotoxicity elicited by pneumotoxic WSPM and TRPA1 agonists, and a unique role for TRPV3 in fettering pathologic facets of the integrated ERS response. SIGNIFICANCE STATEMENT: These findings provide new insights into how wood smoke particulate matter and other transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-3 (TRPV3) agonists can affect human bronchial epithelial cells and highlight novel physiological and pathophysiological roles for TRPA1 and TRPV3 in these cells.
Collapse
Affiliation(s)
- Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Katherine L Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Abigail F Scott
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Shi Z, Yin Y, Li C, Ding H, Mu N, Wang Y, Jin S, Ma H, Liu M, Zhou J. Lipocalin-2-induced proliferative endoplasmic reticulum stress participates in Kawasaki disease-related pulmonary arterial abnormalities. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1000-1012. [PMID: 32915407 DOI: 10.1007/s11427-019-1772-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
Clinical cases have reported pulmonary arterial structural and functional abnormalities in patients with Kawasaki disease (KD); however, the underlying mechanisms are unclear. In this study, a KD rat model was established via the intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE). The results showed that pulmonary arterial functional and structural abnormalities were observed in KD rats. Furthermore, proliferative endoplasmic reticulum stress (ER stress) was observed in the pulmonary arteries of KD rats. Notably, the level of lipocalin-2 (Lcn 2), a trigger factor of inflammation, was remarkably elevated in the plasma and lung tissues of KD rats; increased Lcn 2 levels following LCWE stimulation may result from polymorphonuclear neutrophils (PMNs). Correspondingly, in cultured pulmonary artery smooth muscle cells (PASMCs), Lcn 2 markedly augmented the cleavage and nuclear localization of activating transcription factor-6 (ATF6), upregulated the transcription of glucose regulated protein 78 (GRP78) and neurite outgrowth inhibitor (NOGO), and promoted PASMCs proliferation. However, proapoptotic C/EBP homologous protein (CHOP) and caspase 12 levels were not elevated. Treatment with 4-phenyl butyric acid (4-PBA, a specific inhibitor of ER stress) inhibited PASMCs proliferation induced by Lcn 2 and attenuated pulmonary arterial abnormalities and right ventricular hypertrophy and reduced right ventricular systolic pressure in KD rats. In conclusion, Lcn 2 remarkably facilitates proliferative ER stress in PASMCs, which probably accounts for KD-related pulmonary arterial abnormalities.
Collapse
Affiliation(s)
- Zhaoling Shi
- Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Shanshan Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China.
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
18
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
19
|
Miao K, Zhang L, Pan T, Wang Y. Update on the role of endoplasmic reticulum stress in asthma. Am J Transl Res 2020; 12:1168-1183. [PMID: 32355534 PMCID: PMC7191165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Asthma has long attracted extensive attention because of its recurring symptoms of reversible airflow obstruction, airway hyperresponsiveness (AHR) and airway inflammation. Although accumulating evidence has enabled gradual increases in understanding of the pathogenesis of asthma, many questions regarding the mechanisms underlying asthma onset and progression remain unanswered. Recent advances delineating the potential functions of endoplasmic reticulum (ER) stress in meeting the need for an airway hypersensitivity response have revealed critical roles of unfolded protein response (UPR) pathways in asthma. In this review, we highlight the roles of ER stress and UPR activation in the etiology, pathogenesis and treatment of asthma and discuss whether the related mechanisms could be targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
20
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
21
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|
22
|
Ji EH, Elzakra N, Chen W, Cui L, Lee ES, Sun B, Messadi D, Xia T, Zhu Y, Hu S. E-cigarette aerosols induce unfolded protein response in normal human oral keratinocytes. J Cancer 2019; 10:6915-6924. [PMID: 31839827 PMCID: PMC6909953 DOI: 10.7150/jca.31319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/20/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: Since the introduction in 2004, global usage of e-cigarettes (ECs) has risen exponentially. However, the risks of ECs on oral health are uncertain. The purpose of this study is to understand if EC aerosol exposure impacts the gene pathways of normal human oral keratinocytes (NHOKs), particularly the unfolded protein response (UPR) pathway. Materials and methods: EC aerosols were generated reproducibly with a home-made puffing device and impinged into the culture medium for NHOKs. DNA microarrays were used to profile the gene expression changes in NHOKs treated with EC aerosols, and the Ingenuity Pathway Analysis (IPA) was used to reveal signaling pathways altered by the EC aerosols. Quantitative PCR was used to validate the expression changes of significantly altered genes. Results: DNA microarray profiling followed by IPA revealed a number of signaling pathways, such as UPR, cell cycle regulation, TGF-β signaling, NRF2-mediated oxidative stress response, PI3K/AKT signaling, NF-κB signaling, and HGF signaling, activated by EC aerosols in NHOKs. The UPR pathway genes, C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4), X box binding protein 1 (XBP1), and inositol-requiring enzyme 1 alpha (IRE1α) were all significantly up-regulated in EC aerosol-treated NHOKs whereas immunoglobulin heavy-chain binding protein (BIP) and PRKR-like ER kinase (PERK) were slightly up-regulated. qPCR analysis results were found to be well correlated with those from the DNA microarray analysis. The most significantly changed genes in EC aerosol-treated NHOKs versus untreated NHOKs were CHOP, ATF4, XBP1, IRE1α and BIP. Meanwhile, Western blot analysis confirmed that CHOP, GRP78 (BIP), ATF4, IRE1α and XBP1s (spliced XBP1) were significantly up-regulated in NHOKs treated with EC aerosols. Conclusion: Our results indicate that EC aerosols up-regulate the UPR pathway genes in NHOKs, and the induction of UPR response is mediated by the PERK - EIF2α - ATF4 and IRE1α - XBP1 pathways.
Collapse
Affiliation(s)
- Eoon Hye Ji
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Naseim Elzakra
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Wei Chen
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Li Cui
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Eon S Lee
- Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Bingbing Sun
- Division of Nanomedicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Diana Messadi
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of Nanomedicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yifang Zhu
- Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Shen Hu
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Schmoldt C, Vazquez-Armendariz AI, Shalashova I, Selvakumar B, Bremer CM, Peteranderl C, Wasnick R, Witte B, Gattenlöhner S, Fink L, Vadász I, Morty RE, Pleschka S, Seeger W, Günther A, Herold S. IRE1 Signaling As a Putative Therapeutic Target in Influenza Virus–induced Pneumonia. Am J Respir Cell Mol Biol 2019; 61:537-540. [DOI: 10.1165/rcmb.2019-0123le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Carole Schmoldt
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Irina Shalashova
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Balachandar Selvakumar
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos AiresBuenos Aires, Argentina
| | - Corinna M. Bremer
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Christin Peteranderl
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Roxana Wasnick
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | | | - Stefan Gattenlöhner
- University Hospital GiessenGiessen, Germany
- Justus-Liebig University GiessenGiessen, Germany
| | - Ludger Fink
- Institute of Pathology and CytologyWetzlar, Germanyand
| | - István Vadász
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Rory E. Morty
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germany
| | - Stephan Pleschka
- Justus-Liebig University GiessenGiessen, Germany
- Institute of Medical VirologyGiessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos AiresBuenos Aires, Argentina
| | - Andreas Günther
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| | - Susanne Herold
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Excellence Cluster Cardio-Pulmonary InstituteGiessen, Germany
| |
Collapse
|
24
|
Jeong JS, Kim JS, Kim SR, Lee YC. Defining Bronchial Asthma with Phosphoinositide 3-Kinase Delta Activation: Towards Endotype-Driven Management. Int J Mol Sci 2019; 20:ijms20143525. [PMID: 31323822 PMCID: PMC6679152 DOI: 10.3390/ijms20143525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) pathways play a critical role in orchestrating the chronic inflammation and the structural changes of the airways in patients with asthma. Recently, a great deal of progress has been made in developing selective and effective PI3K-targeted therapies on the basis of a vast amount of studies on the roles of specific PI3K isoforms and fine-tuned modulators of PI3Ks in a particular disease context. In particular, the pivotal roles of delta isoform of class I PI3Ks (PI3K-δ) in CD4-positive type 2 helper T cells-dominant disorders such as asthma have been consistently reported since the early investigations. Furthermore, there has been great advancement in our knowledge of the implications of PI3K-δ in various facets of allergic inflammation. This has involved the airway epithelial interface, adaptive T and B cells, potent effector cells (eosinophils and neutrophils), and, more recently, subcellular organelles (endoplasmic reticulum and mitochondria) and cytoplasmic innate immune receptors such as NLRP3 inflammasome, all of which make this PI3K isoform an important druggable target for treating asthma. Defining subpopulations of asthma patients with PI3K-δ activation, namely PI3K-δ-driven asthma endotype, may therefore provide us with a novel framework for the treatment of the disease, particularly for corticosteroid-resistant severe form, an important unresolved aspect of the current asthma management. In this review, we specifically summarize the recent advancement of our knowledge on the critical roles of PI3K-δ in the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
- Jae Seok Jeong
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| |
Collapse
|
25
|
Yoon YS, Jin M, Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:369-380. [PMID: 30735057 DOI: 10.1080/17476348.2019.1580576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The prevalence of chronic obstructive pulmonary disease (COPD) increases exponentially with aging. Its pathogenesis, however, is not well known and aside from smoking cessation, there are no disease-modifying treatments for this disease. Areas covered: COPD is associated with accelerating aging and aging-related diseases. In this review, we will discuss the hallmarks of aging including genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication, which may be involved in COPD pathogenesis. Expert commentary: COPD and the aging process share similar molecular and cellular changes. Aging-related molecular pathways may represent novel therapeutic targets and biomarkers for COPD.
Collapse
Affiliation(s)
- Young Soon Yoon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , Dongguk University Ilsan Hospital , Goyang , South Korea
| | - Minhee Jin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,c Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
26
|
Abstract
Defining features of chronic airway diseases include abnormal and persistent inflammatory processes, impaired airway epithelial integrity and function, and increased susceptibility to recurrent respiratory infections. Phosphoinositide 3-kinases (PI3K) are lipid kinases, which contribute to multiple physiological and pathological processes within the airway, with abnormal PI3K signalling contributing to the pathogenesis of several respiratory diseases. Consequently, the potential benefit of targeting PI3K isoforms has received considerable attention, being viewed as a viable therapeutic option in inflammatory and infectious lung disorders. The class I PI3K isoform, PI3Kδ (Phosphoinositide 3-kinases δ) is of particular interest given its multiple roles in modulating innate and adaptive immune cell functions, airway inflammation and corticosteroid sensitivity. In this mini-review, we explore the role of PI3Kδ in airway inflammation and infection, focusing on oxidative stress, ER stress, histone deacetylase 2 and neutrophil function. We also describe the importance of PI3Kδ in adaptive immune cell function, as highlighted by the recently described Activated PI3K Delta Syndrome, and draw attention to some of the potential clinical applications and benefits of targeting this molecule.
Collapse
|
27
|
Polverino F, Celli BR, Owen CA. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018758528. [PMID: 29468936 PMCID: PMC5826015 DOI: 10.1177/2045894018758528] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/21/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. Early research into the pathogenesis of COPD focused on the contributions of injury to the extracellular matrix and pulmonary epithelial cells. More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the "vascular COPD phenotype" including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested on cell culture systems, animal models of COPD, and/or smokers and COPD patients.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bartolome R. Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|