1
|
Wang B, Liu Y, Li C, Xu M, Hua D. Amifostine-loaded Prussian blue nanoparticles for simultaneous efficient radioprotection and deep decorporation of radiocesium. Colloids Surf B Biointerfaces 2025; 254:114788. [PMID: 40381289 DOI: 10.1016/j.colsurfb.2025.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/15/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Radiocesium is highly water-soluble and easily accumulates in agricultural products and seafood. Ingestion of radiocesium results in internal irradiation, significantly increasing the risk of tissue and organ damage as well as carcinogenesis. In this paper, we develop a strategy for simultaneous radioprotection and decorporation of radiocesium by amifostine-loaded Prussian blue (Am@PB) nanoparticles. The nanoparticles are prepared through chemical coordination between amine/phosphate groups of amifostine and Fe (II)/Fe (III) sites of Prussian blue (PB). Am@PB nanoparticles mitigate radiation-induced damage to peripheral blood cells and organs, improving the survival rate of irradiated mice. This is due to the synergistic effects of the nano-enzymatic activity of PB component and the high reducibility of sulfhydryl groups generated through amifostine hydrolysis by alkaline phosphatase. Furthermore, the deep excretion of cesium is achieved via feces along the metabolic pathway of Am@PB, leading to an enhanced decorporation efficiency of over 50 % compared to orally administered commercial PB. This work provides a design strategy for efficient radioprotective decorporation agents with potential applications in the treatment of internal radiocesium contamination.
Collapse
Affiliation(s)
- Boyan Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuchen Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chengqi Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Hooshmand M, Sadeghi MR, Asoodeh A, Pourbadie HG, Mehni MK, Sayyah M. Administration of monophosphoryl lipid A shortly after traumatic brain injury blocks the following spatial and avoidance memory loss and neuroinflammation. Sci Rep 2024; 14:29408. [PMID: 39592660 PMCID: PMC11599587 DOI: 10.1038/s41598-024-80331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic brain injury (TBI) frequently leads to cognitive impairments. The toll-like receptor 4 (TLR4) ligand, Monophosphoryl lipid A (MPL), has shown promise in modulating neuroinflammatory responses after TBI. We investigated the effects of MPL on spatial memory, passive avoidance memory, neuronal survival, and inflammatory/anti-inflammatory cytokines in rat brain following mild-to-moderate TBI. Rats underwent a learning period in the Morris water maze and shuttle box, followed by TBI induction by controlled cortical impact. MPL was administered into the cerebral ventricle 20 min after TBI. Spatial memory was assessed 7 and 28 days later. Passive avoidance memory was assessed 2 and 6 days after TBI. MPL significantly improved the spatial memory deficit at 7 days but not 28 days after TBI. It also improved impairment of the avoidance memory at both 2 and 6 days after TBI. MPL prohibited the TBI-induced TNF-α increase and IL-10 decrease in the injured region at 7 days post-TBI period. MPL prevented the neuronal loss induced by TBI in the hippocampus. A single administration of MPL shortly after TBI alleviates short-term memory deficits, through anti-inflammatory and anti-cell loss activities. Repeated MPL administration may also inhibit the long-term memory deficits after TBI.
Collapse
Affiliation(s)
- Maryam Hooshmand
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biochemistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mahbobeh Kamrani Mehni
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Physiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohamad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Dai JH, Tan XR, Qiao H, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell 2024; 15:239-260. [PMID: 37946397 PMCID: PMC10984626 DOI: 10.1093/procel/pwad052] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The profound influence of microbiota in cancer initiation and progression has been under the spotlight for years, leading to numerous researches on cancer microbiome entering clinical evaluation. As promising biomarkers and therapeutic targets, the critical involvement of microbiota in cancer clinical practice has been increasingly appreciated. Here, recent progress in this field is reviewed. We describe the potential of tumor-associated microbiota as effective diagnostic and prognostic biomarkers, respectively. In addition, we highlight the relationship between microbiota and the therapeutic efficacy, toxicity, or side effects of commonly utilized treatments for cancer, including chemotherapy, radiotherapy, and immunotherapy. Given that microbial factors influence the cancer treatment outcome, we further summarize some dominating microbial interventions and discuss the hidden risks of these strategies. This review aims to provide an overview of the applications and advancements of microbes in cancer clinical relevance.
Collapse
Affiliation(s)
- Jia-Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| |
Collapse
|
4
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Zivkovic Radojevic M, Milosavljevic N, Miladinovic TB, Janković S, Folic M. Review of compounds that exhibit radioprotective and/or mitigatory effects after application of diagnostic or therapeutic ionizing radiation. Int J Radiat Biol 2023; 99:594-603. [PMID: 35930681 DOI: 10.1080/09553002.2022.2110308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Exposure to ionizing radiation can be accidental or for medical purposes. Analyzes of the frequency of radiation damage in the general population, it has been determined that by far the most common are those that occur as a result of diagnostic or therapeutic procedures. Damage caused by radiation, either accidentally or for therapeutic purposes, can be reduced by the use of radioprotectors, mitigators or other therapeutic agents. A detailed research of the available literature shows that there is little systematized data of potentially radioprotective and/or mitigating effects of drugs from the personal therapy of patients during the application of therapeutic ionizing radiation. The aim of this paper is to present review of compounds, especially personal therapy drugs, that exhibit radioprotective and/or mitigating effects after the application of diagnostic or therapeutic ionizing radiation. CONCLUSIONS Given the widespread use of ionizing radiation for diagnostic and therapeutic purposes, there is a clear need to create a strategy and recommendations of relevant institutions for the use of radioprotectors and mitigators in everyday clinical practice, with individual evaluation of the patient's condition and selection of the compounds that will show the greatest benefit in terms of radioprotection.
Collapse
Affiliation(s)
| | - Neda Milosavljevic
- Centre for Radiation Oncology, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Tatjana B Miladinovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Slobodan Janković
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Marko Folic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| |
Collapse
|
6
|
Activating toll-like receptor 4 after traumatic brain injury inhibits neuroinflammation and the accelerated development of seizures in rats. Exp Neurol 2022; 357:114202. [PMID: 35970203 DOI: 10.1016/j.expneurol.2022.114202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
Toll-like receptor 4 (TLR4) signaling plays a detrimental role in traumatic brain injury (TBI) pathology. Pharmacologic or genetic inactivating TLR4 diminish TBI inflammation and neurological complications. Nonetheless, TLR4 priming alleviates TBI inflammation and seizure susceptibility. We investigated impact of postconditioning with TLR4 agonist monophosphoryl lipid A (MPL) on TBI neuroinflammation and epileptogenesis in rats. TBI was induced in temporo-parietal cortex of rats by Controlled Cortical Impact device. Then rats received a single dose (0.1 μg/rat) of MPL by intracerebroventricular injection. After 24 h, CCI-injured rats received intraperitoneal injection of pentylenetetrazole 35 mg/kg once every other day until acquisition of generalized seizures. The injury size, number of survived neurons, and brain protein level of TNF-α, TGF-β, IL-10, and arginase1 (Arg1) were determined. Astrocytes and macrophage/microglia activation/polarization was assessed by double immunostaining with anti GFAP/Arg1 or anti Iba1/Arg1 antibodies. The CCI-injured rats developed generalized seizures after 5.9 ± 1.3 pentylenetetrazole injections (p < 0.001, compared to 12.3 ± 1.4 injections for sham-operated rats). MPL treatment returned the accelerated rate of epileptogenesis in TBI state to the sham-operated level. MPL did not change damage volume but attenuated number of dead neurons (p < 0.01). MPL decreased TNF-α overexpression (6 h post-TBI p < 0.0001), upregulated expression of TGF-β (48 h post-TBI, p < 0.0001), and IL-10 (48 h post-TBI, p < 0.0001) but did not change Arg1 expression. GFAP/Arg1 and Iba1/Arg1 positive cells were detected in TBI area with no significant change following MPL administration. MPL administration after TBI reduces vulnerability to seizure acquisition through down regulating neural death and inflammation, and up-regulating anti-inflammatory cytokines. This capacity along with the clinical safety, makes MPL a potential candidate for development of drugs against neurological deficits of TBI.
Collapse
|
7
|
Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021; 608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer is still a major threat for human life, and the cancer immunotherapy can be more optimized to prolong life. However, the effect of immunotherapy is not encouraging. In order to achieve outstanding immune effect, it is necessary to strengthen antigens uptake of antigen presenting cells. Adjuvants were added to vaccines to achieve this purpose, which could be divided into two types: as an immunostimulatory molecule, the innate immunities of the body were triggered; or as a delivery carrier, and antigens were cross-delivery through the "cytoplasmic pathway" and released at a specific location. This paper reviewed the relevant research status of tumor vaccine immune adjuvants in recent years. Among the review, the function, combination strategies and derivatives of lipid A were discussed in detail. In addition, some suggestions on the existing problems and research direction of lipids as tumor vaccine adjuvants were put forward.
Collapse
Affiliation(s)
- Zhiling Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lin Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Li S, Shao L, Xu T, Jiang X, Yang G, Dong L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother 2021; 137:111401. [PMID: 33761615 DOI: 10.1016/j.biopha.2021.111401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the three main treatments for tumors. Almost 70% of tumor patients undergo radiotherapy at different periods. Although radiotherapy can enhance the local control rate of tumors and patients' quality of life, normal tissues often show radiation damage following radiotherapy. In recent years, several studies have shown that exosomes could be biomarkers for diseases and be involved in the treatment of radiation damage. Exosomes are nanoscale vesicles containing complex miRNAs and proteins. They can regulate the inflammatory response, enhance the regeneration effect of damaged tissue, and promote the repair of damaged tissues and cells, extending their survival time. In addition, their functions are achieved by paracrine signaling. In this review, we discuss the potential of exosomes as biomarkers and introduce the impact of exosomes on radiation damage in different organs and the hematopoietic system in detail.
Collapse
Affiliation(s)
- Sijia Li
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihong Shao
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Tiankai Xu
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Xin Jiang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Guozi Yang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
General principles of developing novel radioprotective agents for nuclear emergency. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Lee JS, Lee NR, Kashif A, Yang SJ, Nam AR, Song IC, Gong SJ, Hong MH, Kim G, Seok PR, Lee MS, Sung KH, Kim IS. S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells. Front Immunol 2020; 11:1258. [PMID: 32903598 PMCID: PMC7438788 DOI: 10.3389/fimmu.2020.01258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
S100A8 and S100A9 function as essential factors in inflammation and also exert antitumor or tumorigenic activity depending on the type of cancer. Chronic eosinophilic leukemia (CEL) is a rare hematological malignancy having elevated levels of eosinophils and characterized by the presence of the FIP1L1-PDGFRA fusion gene. In this study, we examined the pro-apoptotic mechanisms of S100A8 and S100A9 in FIP1L1-PDGFRα+ eosinophilic cells and hypereosinophilic patient cells. S100A8 and S100A9 induce apoptosis of the FIP1L1-PDGFRα+ EoL-1 cells via TLR4. The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. S100A8 and S100A9 suppressed the FIP1L1-PDGFRα-mediated signaling pathway by downregulating FIP1L1-PDGFRα mRNA and protein expression and triggered cell apoptosis by regulating caspase 9/3 pathway and Bcl family proteins. S100A8 and S100A9 also induced apoptosis of imatinib-resistant EoL-1 cells (EoL-1-IR). S100A8 and S100A9 blocked tumor progression of xenografted EoL-1 and EoL-1-IR cells in NOD-SCID mice and evoked apoptosis of eosinophils derived from hypereosinophilic syndrome as well as chronic eosinophilic leukemia. These findings may contribute to a progressive understanding of S100A8 and S100A9 in the pathogenic and therapeutic mechanism of hematological malignancy.
Collapse
Affiliation(s)
- Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, South Korea
| | - Na Rae Lee
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea
| | - A Reum Nam
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea.,Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Soo-Jung Gong
- Department of Internal Medicine, Eulji Medical Center, Eulji University School of Medicine, Daejeon, South Korea
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Pu Reum Seok
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Kee-Hyung Sung
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - In Sik Kim
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea.,Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| |
Collapse
|
11
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol 2020; 11:1210. [PMID: 32765484 PMCID: PMC7381287 DOI: 10.3389/fimmu.2020.01210] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-Like Receptor 4 (TLR4) is one of the receptors of innate immunity. It is activated by Pathogen- and Damage-Associated Molecular Patterns (PAMPs and DAMPs) and triggers pro-inflammatory responses that belong to the repertoire of innate immune responses, consequently protecting against infectious challenges and boosting adaptive immunity. Mild TLR4 stimulation by non-toxic molecules resembling its natural agonist (lipid A) provided efficient vaccine adjuvants. The non-toxic TLR4 agonist monophosphoryl lipid A (MPLA) has been approved for clinical use. This suggests the development of other TLR4 agonists as adjuvants or drugs for cancer immunotherapy. TLR4 excessive activation by a Gram-negative bacteria lipopolysaccharide (LPS) leads to sepsis, while TLR4 stimulation by DAMPs is a common mechanism in several inflammatory and autoimmune diseases. TLR4 inhibition by small molecules and antibodies could therefore provide access to innovative therapeutics targeting sepsis as well as acute and chronic inflammations. The potential use of TLR4 antagonists as anti-inflammatory drugs with unique selectivity and a new mechanism of action compared to corticosteroids or other non-steroid anti-inflammatory drugs fueled the search for compounds of natural or synthetic origin able to block or inhibit TLR4 activation and signaling. The wide spectrum of clinical settings to which TLR4 inhibitors can be applied include autoimmune diseases (rheumatoid arthritis, inflammatory bowel diseases), vascular inflammation, neuroinflammations, and neurodegenerative diseases. The last advances (from 2017) in TLR4 activation or inhibition by small molecules (molecular weight <2 kDa) are reviewed here. Studies on pre-clinical validation of new chemical entities (drug hits) on cellular or animal models as well as new clinical studies on previously developed TLR4 modulators are reported. Innovative TLR4 modulators discovered by computer-assisted drug design and an artificial intelligence approach are described. Some "old" TLR4 agonists or antagonists such as MPLA or Eritoran are under study for repositioning in different pharmacological contexts. The mechanism of action of the molecules and the level of TLR4 involvement in their biological activity are critically discussed.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Liu Z, Cao K, Liao Z, Chen Y, Lei X, Wei Q, Liu C, Sun X, Yang Y, Cai J, Gao F. Monophosphoryl lipid A alleviated radiation-induced testicular injury through TLR4-dependent exosomes. J Cell Mol Med 2020; 24:3917-3930. [PMID: 32135028 PMCID: PMC7171420 DOI: 10.1111/jcmm.14978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/08/2019] [Accepted: 10/26/2019] [Indexed: 01/02/2023] Open
Abstract
Radiation protection on male testis is an important task for ionizing radiation-related workers or people who receive radiotherapy for tumours near the testicle. In recent years, Toll-like receptors (TLRs), especially TLR4, have been widely studied as a radiation protection target. In this study, we detected that a low-toxicity TLR4 agonist monophosphoryl lipid A (MPLA) produced obvious radiation protection effects on mice testis. We found that MPLA effectively alleviated testis structure damage and cell apoptosis induced by ionizing radiation (IR). However, as the expression abundance differs a lot in distinct cells and tissues, MPLA seemed not to directly activate TLR4 singling pathway in mice testis. Here, we demonstrated a brand new mechanism for MPLA producing radiation protection effects on testis. We observed a significant activation of TLR4 pathway in macrophages after MPLA stimulation and identified significant changes in macrophage-derived exosomes protein expression. We proved that after MPLA treatment, macrophage-derived exosomes played an important role in testis radiation protection, and specially, G-CSF and MIP-2 in exosomes are the core molecules in this protection effect.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.,Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Zebin Liao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qun Wei
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xuejun Sun
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.,Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
TLR4 Agonist Monophosphoryl Lipid A Alleviated Radiation-Induced Intestinal Injury. J Immunol Res 2019; 2019:2121095. [PMID: 31275998 PMCID: PMC6589195 DOI: 10.1155/2019/2121095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/03/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
The small intestine is one of the most sensitive organs to irradiation injury, and the development of high effective radioprotectants especially with low toxicity for intestinal radiation sickness is urgently needed. Monophosphoryl lipid A (MPLA) was found to be radioprotective in our previous study, while its effect against the intestinal radiation injury remained unknown. In the present study, we firstly determined the intestinal apoptosis after irradiation injury according to the TUNEL assay. Subsequently, we adopted the immunofluorescence technique to assess the expression levels of different biomarkers including Ki67, γ-H2AX, and defensin 1 in vivo. Additionally, the inflammatory cytokines were detected by RT-PCR. Our data indicated that MPLA could protect the intestine from ionizing radiation (IR) damage through activating TLR4 signal pathway and regulating the inflammatory cytokines. This research shed new light on the protective effect of the novel TLR4 agonist MPLA against intestine detriment induced by IR.
Collapse
|
15
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Shabeeb D, Musa AE, Fallah H, Najafi M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13:3-16. [PMID: 29911259 PMCID: PMC6381372 DOI: 10.1007/s12079-018-0473-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|