1
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
2
|
Luo F, Cao J, Chen Q, Liu L, Yang T, Bai X, Ma W, Lin C, Zhou T, Zhan J, Huang Y, Yang Y, Zhao H, Zhang L. HDL-cholesterol confers sensitivity of immunotherapy in nasopharyngeal carcinoma via remodeling tumor-associated macrophages towards the M1 phenotype. J Immunother Cancer 2024; 12:e008146. [PMID: 38871480 DOI: 10.1136/jitc-2023-008146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The sustained effectiveness of anti-programmed cell death protein-1/programmed death-ligand 1 treatment is limited to a subgroup of patients with advanced nasopharyngeal carcinoma (NPC), and the specific biomarker determining the response to immunotherapy in NPC remains uncertain. METHODS We assessed the associations between pre-immunotherapy and post-immunotherapy serum lipoproteins and survival in a training cohort (N=160) and corroborated these findings in a validation cohort (N=100). Animal studies were performed to explore the underlying mechanisms. Additionally, the relationship between high-density lipoprotein-cholesterol (HDL-C) levels and M1/M2-like macrophages, as well as activated CD8+T cells in tumor tissues from patients with NPC who received immunotherapy, was investigated. RESULTS The lipoproteins cholesterol, HDL-C, low-density lipoprotein-cholesterol, triglycerides, apolipoprotein A-1 (ApoA1), and apolipoprotein B, were significantly altered after immunotherapy. Patients with higher baseline HDL-C or ApoA1, or those with increased HDL-C or ApoA1 after immunotherapy had longer progression-free survival, a finding verified in the validation cohort (p<0.05). Multivariate analysis revealed that baseline HDL-C and elevated HDL-C post-immunotherapy were independent predictors of superior PFS (p<0.05). Furthermore, we discovered that L-4F, an ApoA1 mimetic, could inhibit tumor growth in NPC xenografts. This effect was associated with L-4F's ability to polarize M2-like macrophages towards an M1-like phenotype via the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65, thereby alleviating immunosuppression in the tumor microenvironment. Importantly, in patients with NPC with high plasma HDL-C levels, the number of M2-like macrophages was significantly decreased, while M1-like macrophages and activated CD8+T cells were notably increased in those with high HDL-C levels. CONCLUSION Higher baseline HDL-C levels or an increase in HDL-C post-immunotherapy can enhance immunotherapeutic responses in patients with NPC by reprogramming M2-like macrophages towards the M1 phenotype. This suggests a potential role for prospectively exploring ApoA1 mimetics as adjuvant agents in combination with immunotherapy.
Collapse
Affiliation(s)
- Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lusha Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ting Yang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Bai
- Department of Radiotherapy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaozhuo Lin
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Zhan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Xu M, Tang J, Sun Q, Meng J, Chen G, Chang Y, Yao Y, Ji J, Luo H, Chen L, Lu M, Shi W. CENPN contributes to pancreatic carcinoma progression through the MDM2-mediated p53 signaling pathway. Arch Med Sci 2024; 20:1655-1671. [PMID: 39649279 PMCID: PMC11623148 DOI: 10.5114/aoms/171956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 12/10/2024] Open
Abstract
Introduction We undertook an in-depth investigation of the data pertaining to pancreatic adenocarcinoma (PAAD) to identify potential targets for the development of precision therapies. Material and methods The construction of a protein-protein interaction (PPI) network was based on overlapping differentially expressed genes (DEGs) identified in the GSE16515, GSE32676, and GSE125158 datasets. A subsequent bioinformatic analysis was performed on the interconnected genes within the PPI network, leading to the identification of the central gene, CENPN. In vitro experimentation such as CCK8 and Transwell experiments was employed to elucidate the impact of CENPN expression patterns on PAAD cell proliferation, migration, and invasion. Furthermore, the investigation revealed through comprehensive enrichment analysis that the pivotal signaling pathway associated with CENPN is the p53 signaling pathway. Results Following a comprehensive bioinformatic analysis of 161 concordant differentially expressed genes (DEGs) across three microarray datasets, CENPN emerged as the central gene under investigation. Overexpression of CENPN in pancreatic adenocarcinoma (PAAD) was associated with unfavorable patient outcomes and heightened sensitivity to four PAAD therapies: gemcitabine, docetaxel, paclitaxel, and sunitinib. Reduced CENPN expression impeded PAAD cell proliferation, migration, and invasion; however, these effects were counteracted upon upregulation of CENPN expression. Additionally, CENPN interacted with MDM2, promoting PAAD progression by targeting the p53 signaling pathway. Conclusions The findings of our study substantiate that CENPN is associated with the pathogenesis of PAAD. Consequently, CENPN appears to be a promising candidate for targeted precision therapy in clinical applications.
Collapse
Affiliation(s)
- Ming Xu
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jie Tang
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qiong Sun
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Meng
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guoyu Chen
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yunli Chang
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jieru Ji
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Hao Luo
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Lingling Chen
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Minxue Lu
- Department of Gastroenterology, Huzhou College Affiliated Nantaihu Hospital, Huzhou, Zhejiang, China
| | - Weiwei Shi
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Wang Y, Chen S, Xiao X, Yang F, Wang J, Zong H, Gao Y, Huang C, Xu X, Fang M, Zhang X, Gao C. Impact of apolipoprotein A1 on tumor immune microenvironment, clinical prognosis and genomic landscape in hepatocellular carcinoma. PRECISION CLINICAL MEDICINE 2023; 6:pbad021. [PMID: 38025972 PMCID: PMC10680024 DOI: 10.1093/pcmedi/pbad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Current knowledge on apolipoprotein A1 (APOA1) in hepatocellular carcinoma (HCC) is fragmented and even contradictory. Multi-dimensional analyses are required to comprehensively elucidate its value and underlying mechanism. Methods We collected 49 RNA-seq datasets, 40 cell line types data and 70 scRNA pan-cancer datasets public available, including 17 HCC datasets (1754 tumor samples), and enrolled 73 pairs of HCC tissue and 516 blood samples independently from our clinics. APOA1 impacting on the HCC tumor microenvironment (TME) was analyzed using intensive data mining. Methylation sequencing, flow cytometry, quantitative PCR, western blot, immunohistochemistry and clinical chemistry assays were conducted for wet experimental investigation. Results The APOA1 ontology fingerprint indicated that it played various crucial biological roles in HCC, primarily involved in cholesterol efflux. Consistent findings at histology, serology, and clinical follow-up revealed that high APOA1 was a good prognosis indicator of HCC. Hypermethylation in the APOA1 promoter region was found in clinical samples which is in accordance with the reduction of APOA1 in HCC. The cell cycle, DNA replication, mismatch repair pathways, and tumor cell proliferation were less observed in the HCC APOA1high subgroup. The favorable immunoregulatory abilities of APOA1 showed interesting findings: a positive correlation between APOA1 and anti-tumor immune cells (NK, CD8+ T cells) and a negative association with immune cells exerting immunosuppressive effects, including M2 macrophages. Conclusion This is an integrative multidimensional exploration of APOA1 using bioinformatics and experiments. Both the prognostic value and anti-tumor effects based on APOA1 panoramic exploration in the HCC TME demonstrate a new potential clinical target for HCC assessment and intervention in the future.
Collapse
Affiliation(s)
- Ying Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shipeng Chen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy, University Medical Center Groningen, University of Groningen, Groningen 9712 CP, The Netherlands
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinhan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Hui Zong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Xiaoyan Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
5
|
Xu Y, Luan G, Liu F, Zhang Y, Li Z, Liu Z, Yang T. Exosomal miR-200b-3p induce macrophage polarization by regulating transcriptional repressor ZEB1 in hepatocellular carcinoma. Hepatol Int 2023; 17:889-903. [PMID: 36930410 DOI: 10.1007/s12072-023-10507-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Accumulating evidence has elucidated that the interaction between cancer cells and M2 macrophages plays an important role in the tumorigenesis of hepatocellular carcinoma (HCC). However, the mechanism connecting tumor-derived exosomes, M2 polarization of macrophages, and liver metastasis remain unclear. Therefore, it is necessary to explore their influence on the tumor microenvironment of HCC. METHODS Transmission electron microscopy, nanometer particle testing, and special biomarker analysis were utilized to characterize exosomes, while the differential expression of microRNAs was evaluated using high-throughput sequencing technology. The functions of miR-200b-3p exosomes were confirmed using in vitro and in vivo assays. The interactions between microRNAs and ZEB1 as well as cancer cells and macrophages were measured using RNA pull-down and luciferase gene reporter assays. RESULTS Using in silico analysis, we identified high levels of miR-200b-3p exosome expression in patients with HCC, particularly with relapsed HCC. We demonstrated that HCC cell-derived miR-200b-3p exosomes were internalized by M0 macrophages and induced M2 polarization by downregulating ZEB1 and upregulating interleukin-4. As a result, the JAK/STAT signaling pathway was activated in M2 macrophages, leading to increased PIM1 and VEGFα expression. These cell factors accelerated the proliferation and metastasis of HCC, resulting in a feedback loop between HCC cells and M2 macrophages. CONCLUSION The study illustrates that HCC cell-derived miR-200b-3p exosomes facilitate the proliferation and polarization of macrophages by modulating cytokine secretion and the JAK/STAT signaling pathway, leading to the metastasis of HCC. These findings demonstrate the existence of a novel feedback loop between cancer cells and immune cells in the tumor microenvironment, presenting a new concept in cancer research.
Collapse
Affiliation(s)
- Ying Xu
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China.
| | | | - Feng Liu
- The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Yuhua Zhang
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Zhongchao Li
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China
| | - Ziming Liu
- Shandong Fist Medical University and Shandong Academy of Medical Science, Shandong, China
| | - Tao Yang
- Binzhou Medical University Hospital, Shandong, China
| |
Collapse
|
6
|
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomed Pharmacother 2023; 159:114257. [PMID: 36689836 DOI: 10.1016/j.biopha.2023.114257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer incidence and mortality rates are increasing annually. Treatment with surgery, chemotherapy and radiation therapy (RT) is unsatisfactory because many patients have advanced disease at the initial diagnosis. However, the emergence of immunotherapy promises to be an effective strategy to improve the outcome of advanced tumors. Immune checkpoint antibodies, which are at the forefront of immunotherapy, have had significant success but still leave some cancer patients without benefit. For more cancer patients to benefit from immunotherapy, it is necessary to find new drugs and combination therapeutic strategies to improve the outcome of advanced cancer patients and achieve long-term tumor control or even eradication. Peptides are promising choices for tumor immunotherapy drugs because they have the advantages of low production cost, high sequence selectivity, high tissue permeability, low toxicity and low immunogenicity etc., and the adjuvant matching and technologies like nanotechnology can further optimize the effects of peptides. In this review, we present the current status and mechanisms of research on peptides targeting multiple immune cells (T cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)) and immune checkpoints in tumor immunotherapy; and we summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including RT, chemotherapy, surgery, targeted therapy, cytokine therapy, adoptive cell therapy (ACT) and cancer vaccines. Finally, we discuss the current status of peptide applications in mRNA vaccine delivery.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
7
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
8
|
Dehghankelishadi P, Maritz MF, Dmochowska N, Badiee P, Cheah E, Kempson I, Berbeco RI, Thierry B. Formulation of simvastatin within high density lipoprotein enables potent tumour radiosensitisation. J Control Release 2022; 346:98-109. [PMID: 35447296 DOI: 10.1016/j.jconrel.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Preclinical, clinical and epidemiologic studies have established the potent anticancer and radiosensitisation effects of HMG-CoA reductase inhibitors (statins). However, the low bioavailability of oral statin formulations is a key barrier to achieving effective doses within tumour. To address this issue and ascertain the radiosensitisation potential of simvastatin, we developed a parenteral high density lipoprotein nanoparticle (HDL NP) formulation of this commonly used statin. A scalable method for the preparation of the simvastatin-HDL NPs was developed using a 3D printed microfluidic mixer. This enables the production of litre scale amounts of particles with minimal batch to batch variation. Simvastatin-HDL NPs enhanced the radiobiological response in 2D/3D head and neck squamous cell carcinoma (HNSCC) in vitro models. The simvastatin-HDL NPs radiosensitisation was comparable to that of 10 and 5 times higher doses of free drug in 2D and 3D cultures, respectively, which could be partially explained by more efficient cellular uptake of the statin in the nanoformulation as well as by the inherent biological activity of the HDL NPs on the cholesterol pathway. The radiosensitising potency of the simvastatin-HDL nanoformulation was validated in an immunocompetent MOC-1 HNSCC tumour bearing mouse model. This data supports the rationale of repurposing statins through reformulation within HDL NPs. Statins are safe and readily available molecules including as generic, and their use as radiosensitisers could lead to much needed effective and affordable approaches to improve treatment of solid tumours.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Edward Cheah
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Ross I Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
9
|
Ma J, Bai Y, Liu M, Jiao T, Chen Y, Yuan B, Liu B, Zeng L, Ming Z, Li W, Sun R, Yang X, Yang S. Pretreatment HDL-C and ApoA1 are predictive biomarkers of progression-free survival in patients with EGFR mutated advanced non-small cell lung cancer treated with TKI. Thorac Cancer 2022; 13:1126-1135. [PMID: 35274478 PMCID: PMC9013640 DOI: 10.1111/1759-7714.14367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We aimed to explore the correlation between blood lipids (high density lipoprotein cholesterol [HDL-C] and apolipoprotein A1 [ApoA1]) and epidermal growth factor receptor (EGFR) T790M mutation, as well as its predictive role in clinical efficacy and progression-free survial (PFS) in advanced non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (EGFR-TKI). METHODS We retrospectively collected information of 153 patients with advanced NSCLC harboring exon EGFR mutation and receiving EGFR-TKI. RESULTS The best cutoff value for HDL-C and ApoA1 was determined to be 1.15 and 1.14 mmol/l. The overall response rate (ORR) was 67.7% in the high HDL-C group and 46.6% in the low HDL-C group, respectively. The ORR of the high ApoA1 group showed a significant increase than that of the low ApoA1 group (68.1% vs. 38.5%). The mean ApoA1 level of the EGFR T790M mutation-positive group was significantly higher than that of the EGFR T790M mutation-negative group (1.13 g/l vs. 1.01 g/l). Patients with high ApoA1 levels were related to the EGFR T790M mutation (r = 0.324). (3) The median progression-free survival (PFS) of the high HDL-C group and low HDL-C group were 13.00 months and 10.20 months. The median PFS of the high ApoA1 group and the low ApoA1 group were 12.10 and 10.00 months, respectively. Multivariate Cox stepwise regression model analysis demonstrated ECOG PS, pathological type and HDL-C were confirmed as critical and independent predictors of PFS. CONCLUSIONS Patients with EGFR T790M mutations often show higher ApoA1 levels. Peripheral serum HDL-C and ApoA1 before treatment can be used as potential significant factors for predicting clinical efficacy and PFS in advanced NSCLC patients treated with EGFR-TKI.
Collapse
Affiliation(s)
- Juan Ma
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ying Bai
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Jiao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yuan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxuan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongjuan Ming
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiying Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Wang B, Shen Y, Liu T, Tan L. ERα promotes transcription of tumor suppressor gene ApoA-I by establishing H3K27ac-enriched chromatin microenvironment in breast cancer cells. J Zhejiang Univ Sci B 2021; 22:1034-1044. [PMID: 34904415 DOI: 10.1631/jzus.b2100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apolipoprotein A-I (ApoA-I), the main protein component of high-density lipoprotein (HDL), plays a pivotal role in reverse cholesterol transport (RCT). Previous studies indicated a reduction of serum ApoA-I levels in various types of cancer, suggesting ApoA-I as a potential cancer biomarker. Herein, ectopically overexpressed ApoA-I in MDA-MB-231 breast cancer cells was observed to have antitumor effects, inhibiting cell proliferation and migration. Subsequent studies on the mechanism of expression regulation revealed that estradiol (E2)/estrogen receptor α (ERα) signaling activates ApoA-I gene transcription in breast cancer cells. Mechanistically, our ChIP-seq data showed that ERα directly binds to the estrogen response element (ERE) site within the ApoA-I gene and establishes an acetylation of histone 3 lysine 27 (H3K27ac)-enriched chromatin microenvironment. Conversely, Fulvestrant (ICI 182780) treatment blocked ERα binding to ERE within the ApoA-I gene and downregulated the H3K27ac level on the ApoA-I gene. Treatment with p300 inhibitor also significantly decreased the ApoA-I messenger RNA (mRNA) level in MCF7 cells. Furthermore, the analysis of data from The Cancer Genome Atlas (TCGA) revealed a positive correlation between ERα and ApoA-I expression in breast cancer tissues. Taken together, our study not only revealed the antitumor potential of ApoA-I at the cellular level, but also found that ERα promotes the transcription of ApoA-I gene through direct genomic effects, and p300 may act as a co-activator of ERα in this process.
Collapse
Affiliation(s)
- Bingjie Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yinghui Shen
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Tianyu Liu
- Colorectal Cancer Center, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Proteomic Profiling of Plasma-Derived Biomarkers in Patients with Bladder Cancer: A Step towards Clinical Translation. Life (Basel) 2021; 11:life11121294. [PMID: 34947825 PMCID: PMC8704559 DOI: 10.3390/life11121294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer is a life-threatening disease and a major cause of cancer-associated complications. The main challenges confronted during the clinical management of bladder cancer are associated with recurrence and disease progression to the muscle-invasive phenotype. Improved early detection of the disease is of paramount importance to prevent disease progression and improve survival. Hence, novel clinically applicable biomarkers for early detection are warranted. Methods: In the current study, a comparative proteomic approach was undertaken using plasma samples to identify protein biomarkers associated with the muscle-invasive phenotype of bladder carcinoma. Isolated plasma proteins were depleted, DIGE-labeled, then subjected to conventional 2D electrophoresis followed by mass spectrometry for identification of differentially expressed proteins. Western blot was used for data validation. Results: Fourteen differentially expressed proteins with statistically significant changes in abundance between the cancer group and control group were identified. Three differentially expressed proteins were selected for validation, among which apolipoprotein A1 exhibited high specificity and sensitivity (AUC = 0.906). Ingenuity pathway analysis identified IFN-γ and TNF-α as the main signaling hub for the differentially regulated proteins. Conclusion: Our findings provide additional insight into understanding bladder cancer pathogenesis. Our data identified potential non-invasive plasma-derived biomarker proteins that merit additional investigation to validate its clinical usefulness to prevent bladder cancer progression.
Collapse
|
12
|
Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
13
|
Zhu Z, Yang Y, Fan L, Ye S, Lou K, Hua X, Huang Z, Shi Q, Gao G. Low serum level of apolipoprotein A1 may predict the severity of COVID-19: A retrospective study. J Clin Lab Anal 2021; 35:e23911. [PMID: 34260764 PMCID: PMC8373354 DOI: 10.1002/jcla.23911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dyslipidemia has been observed in patients with coronavirus disease 2019 (COVID-19). This study aimed to investigate blood lipid profiles in patients with COVID-19 and to explore their predictive values for COVID-19 severity. METHODS A total of 142 consecutive patients with COVID-19 were included in this single-center retrospective study. Blood lipid profile characteristics were investigated in patients with COVID-19 in comparison with 77 age- and gender-matched healthy subjects, their predictive values for COVID-19 severity were analyzed by using multivariable logistic regression analysis, and their prediction efficiencies were evaluated by using receiver operator characteristic (ROC) curves. RESULTS There were 125 and 17 cases in the non-severe and severe groups, respectively. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein A1 (ApoA1) gradually decreased across the groups in the following order: healthy controls, non-severe group, and severe group. ApoA1 was identified as an independent risk factor for COVID-19 severity (adjusted odds ratio [OR]: 0.865, 95% confidence interval [CI]: 0.800-0.935, p < 0.001), along with interleukin-6 (IL-6) (adjusted OR: 1.097, 95% CI: 1.034-1.165, p = 0.002). ApoA1 exhibited the highest area under the ROC curve (AUC) among all single markers (AUC: 0.896, 95% CI: 0.834-0.941); moreover, the risk model established using ApoA1 and IL-6 enhanced prediction efficiency (AUC: 0.977, 95% CI: 0.932-0.995). CONCLUSION Blood lipid profiles in patients with COVID-19 are quite abnormal compared with those in healthy subjects, especially in severe cases. Serum ApoA1 may represent a good indicator for predicting the severity of COVID-19.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Blood TransfusionHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Yayun Yang
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Clinical LaboratoryHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Lingyan Fan
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Acute Infectious DiseasesHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Shuyuan Ye
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Clinical LaboratoryHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Kehong Lou
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Clinical LaboratoryHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Xin Hua
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Clinical LaboratoryHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Zuoan Huang
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Experimental Medical ScienceHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Qiaoyun Shi
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Experimental Medical ScienceHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Guosheng Gao
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Department of Clinical LaboratoryHwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| |
Collapse
|
14
|
Chiu CF, Chang HY, Huang CY, Mau CZ, Kuo TT, Lee HC, Huang SY. Betulinic Acid Affects the Energy-Related Proteomic Profiling in Pancreatic Ductal Adenocarcinoma Cells. Molecules 2021; 26:molecules26092482. [PMID: 33923185 PMCID: PMC8123215 DOI: 10.3390/molecules26092482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Yine Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chen-Zou Mau
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
| | - Tzu-Ting Kuo
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
| | - Hsiu-Chuan Lee
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (H.-C.L.); (S.-Y.H.)
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (H.-C.L.); (S.-Y.H.)
| |
Collapse
|
15
|
Kolpakov AR, Knyazev RA. Endogenous Cardiotonics: Search And Problems. Cardiovasc Hematol Disord Drug Targets 2021; 21:95-103. [PMID: 33874876 DOI: 10.2174/1871529x21666210419121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
Medicinal preparations currently used for the treatment of patients with chronic cardiac failure involve those that reduce the heart load (vasodilators, diuretics, beta-blockers, and angiotensin-converting enzyme (ACE) inhibitors). Cardiotonic drugs with the cAMP-dependent mechanism are unsuitable for long-term administration due to the intensification of metabolic processes and an increase in the oxygen demand of the myocardium and all tissues of the body. For many years, digoxin has remained the only preparation enhancing the efficiency of myocardial performance. The detection of digoxin and ouabain in intact animals has initiated a search for other compounds with cardiotonic activity. The review summarizes current data on the effect exerted on the heart performance by endogenous compounds, from simple, such as NO and CO, to steroids, fatty acids, polypeptides, and proteins. Controversial questions and problems with the introduction of scientific achievements into clinical practice are discussed. The results obtained by the authors and their colleagues after many years of studies on the cardiotropic properties of serum lipoproteins are also reported. The experimentally established cardiotonic activity of apoprotein A-1, which is accompanied by a decrease in the relative consumption of oxygen, maybe of great interest.
Collapse
Affiliation(s)
- Arkady R Kolpakov
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| | - Roman A Knyazev
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| |
Collapse
|
16
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 2021; 23:11. [PMID: 33591433 DOI: 10.1007/s11883-021-00906-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states. RECENT FINDINGS Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1. APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Collapse
Affiliation(s)
- Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Bikash Manandhar
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
17
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Cui L, Yang G, Ye J, Yao Y, Lu G, Chen J, Fang L, Lu S, Zhou J. Dioscin elicits anti-tumour immunity by inhibiting macrophage M2 polarization via JNK and STAT3 pathways in lung cancer. J Cell Mol Med 2020; 24:9217-9230. [PMID: 32618105 PMCID: PMC7417694 DOI: 10.1111/jcmm.15563] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Tumour‐associated macrophage (TAM) is an important component in tumour microenvironment. Generally, TAM exhibits the function of M2‐like macrophage, which was closely related to angiogenesis and tumour progression. Dioscin, a natural steroidal saponin, has shown its powerful anti‐tumour activity recently. However, the mechanism of dioscin involved in immune regulation is still obscure. Here, we observed dioscin induced macrophage M2‐to‐M1 phenotype transition in vitro and inhibited IL‐10 secretion. Meanwhile, the phagocytosis of macrophages was enhanced. In subcutaneous lung tumour models, dioscin inhibited the augmentation of M2 macrophage populations. Furthermore, dioscin down‐regulated STAT3 and JNK signalling pathways in macrophages in vitro. In BMDMs, activating JNK and inhibiting STAT3 induce macrophages to M1 polarization while inhibiting JNK and activating STAT3 to M2 polarization. Additionally, condition mediums from dioscin‐pre‐treated macrophages inhibited the migration of 3LL cells and the tube‐formation capacity of HUVECs. What's more, dioscin‐mediated macrophage polarization inhibited the in vivo metastasis of 3LL cells. In conclusion, dioscin may act as a new anti‐tumour agent by inhibiting TAMs via JNK and STAT3 pathways in lung cancer.
Collapse
Affiliation(s)
- Luyun Cui
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Ye
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junjun Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjie Fang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Zhang Y, Zheng L. Apolipoprotein: prospective biomarkers in digestive tract cancer. Transl Cancer Res 2020; 9:3712-3720. [PMID: 35117733 PMCID: PMC8799137 DOI: 10.21037/tcr-19-2106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
Digestive tract cancer, which is characterized by high morbidity and mortality, seriously affects the quality of life of patients worldwide. The digestive tract has abundant blood supply and nutriment, providing a suitable environment for tumor cells. Under chemical, physical, and biological stimuli, the activated cancer-related genes promote tumorigenesis. The synthesis of apolipoprotein occurs in the liver, intestine, and other digestive organs. However, the functions of apolipoproteins are not limited to lipid metabolism. An increasing number of studies have revealed that apolipoproteins take part in the regulation of tumor behavior. Apolipoprotein A (apoA) has recently been acknowledged as a beneficial indicator of several cancers, including colon, hepatocellular, and pancreatic cancer. Apolipoprotein E (apoE) can affect tumor susceptibility on account of genetic polymorphism. Levels of apolipoprotein C (apoC), B (apoB), and D (apoD) also impact tumor progression and the prognosis of patients. However, because of individual, racial, and genetic differences, a consensus has not yet been reached. Based on clinical data and analysis, apolipoproteins could be a novel target and marker in tumor therapy and prevention.
Collapse
Affiliation(s)
- Yibo Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
20
|
Peng M, Zhang Q, Liu Y, Guo X, Ju J, Xu L, Gao Y, Chen D, Mu D, Zhang R. Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Front Pharmacol 2020; 11:576. [PMID: 32425796 PMCID: PMC7204910 DOI: 10.3389/fphar.2020.00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
L-4F is an apolipoprotein A-I (ApoA-I) mimetic peptide, it was engineered to imitate the anti-inflammatory and anti-oxidative activity of ApoA-I. In this paper, H7 cell was used to construct a mouse model of pancreatic cancer in situ, and the mice were treated with L-4F. Then, the development of pancreatic cancer and myeloid-derived suppressor cells (MDSCs) infiltration were investigated in vivo. After L-4F treatment, the differentiation, proliferation and apoptosis of MDSCs were detected in vitro. Moreover, we test its effects on the immunosuppressive function of MDSCs ex vivo. The results show that L-4F significantly reduced the tumorigenicity of H7 cells. L-4F suppressed granulocytic myeloid-derived suppressor cells (PMN-MDSCs) differentiation and inhibited the accumulation of PMN-MDSCs in the mouse spleen and tumor tissue. L-4F weakened the immunosuppressive function of MDSCs, resulting in decreased production of ROS and H2O2 by MDSCs, and increased T cell proliferation, interferon γ and tumor necrosis factor β secretion, and CD3+CD4+ T and CD3+CD8+ T cell infiltration into the mouse spleen and pancreatic cancer tissue. Furthermore, L-4F significantly down regulated the STAT3 signaling pathway in PMN-MDSCs. These results indicated that L-4F exerts an effective anti-tumor and immunomodulatory effect in pancreatic cancer by inhibiting PMN-MDSCs.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqing Liu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Medical University, Tianjin, China
| | - Jiyu Ju
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Dongzhen Mu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
21
|
Yang DD, Chen ZH, Wang DS, Yu HE, Lu JH, Xu RH, Zeng ZL. Prognostic value of the serum apolipoprotein B to apolipoprotein A-I ratio in metastatic colorectal cancer patients. J Cancer 2020; 11:1063-1074. [PMID: 31956353 PMCID: PMC6959062 DOI: 10.7150/jca.35659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The aim of our research was to assess the prognostic value of the apolipoprotein B (ApoB) to apolipoprotein A-I (ApoA-I) ratio (ApoB/ApoA-I) in metastatic colorectal cancer (mCRC) patients. Methods: We randomly assigned 838 patients into the training cohort (n=578) and the validation cohort (n=260). The cut-off value of the ApoB/ApoA-I in the training cohort identified by a receiver operating characteristic (ROC) curve was 0.69 and was further validated in the validation cohort. A propensity score matching (PSM) analysis was carried out to eliminate the imbalance in the baseline characteristics of the high and low ApoB/ApoA-I group. The PSM cohort of 542 mCRC patients was generated. We also validated our main findings and conclusions with an independent cohort (n=150). Univariate and multivariate analyses were conducted to explore the independent prognostic value of the ApoB/ApoA-I in the training cohort (n=578), the validation cohort (n=260), the PSM cohort (n=542) and the independent cohort (n=150). Results: Patients in the high ApoB/ApoA-I group had significantly shorter overall survival compared to those in the low ApoB/ApoA-I group in the training cohort, the validation cohort, the PSM cohort and the independent cohort (P <0.01). Multivariate analysis indicated that the ApoB/ApoA-I was an independent prognostic index for OS in the training cohort [hazard ratio (HR):1.371; 95% confidence interval (CI):1.205-1.870, P=0.045], the validation cohort (HR: 1.924; 95% CI: 1.360-2.723, P<0.001), the PSM cohort (HR: 1.599; 95% CI: 1.287-1.988, P<0.001) and the independent cohort (HR: 1.949; 95% CI: 1.014-3.747, P=0.046). Conclusions: An increased baseline serum ApoB/ApoA-I is an independent prognostic factor for a poor prognosis in mCRC patients.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Zhan-Hong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China.,Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - De-Shen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Hong-En Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Jia-Huan Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong fengdong Road, Guangzhou, 510060, China
| |
Collapse
|
22
|
Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019; 9:7807-7825. [PMID: 31695802 PMCID: PMC6831480 DOI: 10.7150/thno.37194] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peptide-based materials hold great promise as immunotherapeutic agents for the treatment of many malignant cancers. Extensive studies have focused on the development of peptide-based cancer vaccines and delivery systems by mimicking the functional domains of proteins with highly specific immuno-regulatory functions or tumor cells fate controls. However, a systemic understanding of the interactions between the different peptides and immune systems remains unknown. This review describes the role of peptides in regulating the functions of the innate and adaptive immune systems and provides a comprehensive focus on the design, categories, and applications of peptide-based cancer vaccines. By elucidating the impacts of peptide length and formulations on their immunogenicity, peptide-based immunomodulating agents can be better utilized and dramatic breakthroughs may also be realized. Moreover, some critical challenges for translating peptides into large-scale synthesis, safe delivery, and efficient cancer immunotherapy are posed to improve the next-generation peptide-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
23
|
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J, Du G. Apolipoproteins and cancer. Cancer Med 2019; 8:7032-7043. [PMID: 31573738 PMCID: PMC6853823 DOI: 10.1002/cam4.2587] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of apolipoproteins in cardiovascular disease has been well investigated, but their participation in cancer has only been explored in a few published studies which showed a close link with certain kinds of cancer. In this review, we focused on the function of different kinds of apolipoproteins in cancers, autophagy, oxidative stress, and drug resistance. The potential application of apolipoproteins as biomarkers for cancer diagnosis and prognosis was highlighted, together with an investigation of their potential as drug targets for cancer treatment. Many important roles of apolipoproteins and their mechanisms in cancers were reviewed in detail and future perspectives of apolipoprotein research were discussed.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
25
|
Henrich SE, Thaxton CS. An update on synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther 2019; 19:515-528. [DOI: 10.1080/14737140.2019.1624529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stephen E. Henrich
- Department of Urology, Simpson Querrey Institute for BioNanotechnology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - C. Shad Thaxton
- Department of Urology, Simpson Querrey Institute for BioNanotechnology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Morin EE, Li XA, Schwendeman A. HDL in Endocrine Carcinomas: Biomarker, Drug Carrier, and Potential Therapeutic. Front Endocrinol (Lausanne) 2018; 9:715. [PMID: 30555417 PMCID: PMC6283888 DOI: 10.3389/fendo.2018.00715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
High-density lipoprotein (HDL) have long been studied for their protective role against cardiovascular diseases, however recently relationship between HDL and cancer came into focus. Several epidemiological studies have shown an inverse correlation between HDL-cholesterol (HDL-C) and cancer risk, and some have even implied that HDL-C can be used as a predictive measure for survival prognosis in for specific sub-population of certain types of cancer. HDL itself is an endogenous nanoparticle capable of removing excess cholesterol from the periphery and returning it to the liver for excretion. One of the main receptors for HDL, scavenger receptor type B-I (SR-BI), is highly upregulated in endocrine cancers, notably due to the high demand for cholesterol by cancer cells. Thus, the potential to exploit administration of cholesterol-free reconstituted or synthetic HDL (sHDL) to deplete cholesterol in endocrine cancer cell and stunt their growth of use chemotherapeutic drug loaded sHDL to target payload delivery to cancer cell has become increasingly attractive. This review focuses on the role of HDL and HDL-C in cancer and application of sHDLs as endocrine cancer therapeutics.
Collapse
Affiliation(s)
- Emily E. Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Xiang-An Li
- Department of Physiology, Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J Pharmacol Sci 2018; 137:290-298. [PMID: 30098910 DOI: 10.1016/j.jphs.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/10/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has remained a major cause of cancer-related deaths. A hallmark of pancreatic cancer is extensive stromal reactions, resulting in a unique tumor microenvironment, especially the involvement of macrophages. These tumor-educated cells limit the efficacy of chemotherapy. Therefore, it is necessary to identify an effective treatment strategy. In this study, we aimed to explore the anti-tumor and immunomodulatory effects of osthole on pancreatic cancer. We found that osthole suppressed Panc 02 cell migration and proliferation and induced apoptosis as shown in vitro. Osthole also attenuated the development of pancreatic cancer in mice by inhibiting tumor-infiltrating M2 macrophages in our study. Additionally, osthole inhibited the polarization of primary bone marrow cells into M2 macrophages and inhibited the expression of MRC1, CCL22 and TGF-β in the M2 polarization process in vitro. Detection of the related signaling pathways revealed that osthole exerted immunomodulatory effects on M2 macrophages by down-regulating p-STAT6 and the p-ERK1/2-C/EBP β axis. These results indicated that osthole has effective anti-tumor and immunomodulatory effects on pancreatic cancer.
Collapse
|
28
|
ApoA-1 Mimetic Peptide ELK-2A2K2E Decreases Inflammatory Factor Levels Through the ABCA1-JAK2-STAT3-TTP Axis in THP-1–Derived Macrophages. J Cardiovasc Pharmacol 2018; 72:60-67. [DOI: 10.1097/fjc.0000000000000594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Shang Z, Wang J, Wang X, Yan H, Cui B, Jia C, Wang Q, Cui X, Li J, Ou T. Preoperative serum apolipoprotein A-I levels predict long-term survival in non-muscle-invasive bladder cancer patients. Cancer Manag Res 2018; 10:1177-1190. [PMID: 29795989 PMCID: PMC5958942 DOI: 10.2147/cmar.s165213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this study was to elucidate the association between apolipoprotein A-I (Apo A-I) and overall survival (OS) as well as cancer-specific survival (CSS) in non-muscle-invasive bladder cancer (NMIBC) patients undergoing transurethral resection of bladder tumor (TURBT). Patients and methods We retrospectively collected data of 470 eligible patients diagnosed with NMIBC and who received TURBT between January 2004 and December 2011. Pretreatment blood indexes were examined. The association of Apo A-I with clinicopathological characteristics was further analyzed by dichotomizing our sample into those with Apo A-I ≤ 1.19 g/L (low Apo A-I group) and those with Apo A-I > 1.19 g/L (high Apo A-I group). OS and CSS were estimated by Kaplan–Meier analysis and the log-rank test was used to compare differences between groups. Univariate and multivariate Cox regression analyses were plotted to assess the prognostic value of Apo A-I in NMIBC patients. In addition, subgroup analyses were performed according to the risk classification of the International Bladder Cancer Group. Results In the overall population, patients in the high Apo A-I group had greater 5-year OS and 5-year CSS rates as compared to those in the low Apo A-I group. Kaplan–Meier survival analysis revealed that higher albumin, Apo A-I, and hemoglobin levels were associated with greater OS and CSS while elevated neutrophil–lymphocyte ratio was associated with worse OS and CSS in the overall and high-risk population rather than low- and intermediate-risk population. Furthermore, Apo A-I was shown to be an independent predictor in the overall population (for OS, hazard ratio [HR], 0.364, 95% confidence interval [CI], 0.221–0.598, p < 0.001; for CSS, HR, 0.328, 95% CI, 0.185–0.583, p < 0.001) and high-risk patients (for OS, HR, 0.232, 95% CI 0.121–0.443, p < 0.001; for CSS, HR, 0.269, 95% CI, 0.133–0.541, p < 0.001). Conclusion These results suggest that Apo A-I level could potentially serve as a useful prognostic indicator for therapeutic decision making in NMIBC patients.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jukun Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Xu Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Bo Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Xin Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jin Li
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|