1
|
Quaresima B, Scicchitano S, Faniello MC, Mesuraca M. Role of solute carrier transporters in ovarian cancer (Review). Int J Mol Med 2025; 55:24. [PMID: 39611477 PMCID: PMC11637498 DOI: 10.3892/ijmm.2024.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Solute carrier (SLC) transporters are involved in various biological processes associated with metabolic reprogramming and cancer, supporting the increased requirement of nutrients and energy. Over the past decade, there have been significant advancements in understanding the expression and function of SLCs in ovarian cancer (OC). This gynecological condition has a high mortality rate and limited treatment options; thus, early diagnosis remains a target clinically. OC exhibits complexity and heterogeneity, resulting in different clinical characteristics, resistance to chemotherapy drugs and poor prognosis. Additionally, SLCs have a different expression pattern between healthy and tumor tissue, and consequently, their inhibition or activation could modify signaling pathways involved in the tumor growth process, such as cell proliferation, apoptosis and drug accumulation. The present review aims to consolidate current data to provide a comprehensive understanding of the potential importance of SLCs in OC. Additionally, it seeks to offer guidance for further research on utilizing SLCs as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Barbara Quaresima
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | | | - Maria Mesuraca
- Correspondence to: Dr Maria Mesuraca or Dr Barbara Quaresima, Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy, E-mail: , E-mail:
| |
Collapse
|
2
|
Zhang Y, Jafari M, Zhang T, Sui D, Sagresti L, Merz KM, Hu J. Molecular insights into substrate translocation in an elevator-type metal transporter. Nat Commun 2024; 15:9665. [PMID: 39516201 PMCID: PMC11549095 DOI: 10.1038/s41467-024-54048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The Zrt/Irt-like protein (ZIP) metal transporters are key players in maintaining the homeostasis of a panel of essential microelements. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator transporter, but how the metal substrate moves along the transport pathway and how the transporter changes conformation to allow alternating access remain to be elucidated. Here, we combine structural, biochemical, and computational approaches to investigate the process of metal substrate translocation along with the global structural rearrangement. Our study reveals an upward hinge motion of the transport domain in a high-resolution crystal structure of a cross-linked variant, elucidates the mechanisms of metal release from the transport site into the cytoplasm and activity regulation by a cytoplasmic metal-binding loop, and unravels an unusual elevator mode in enhanced sampling simulations that distinguishes BbZIP from other elevator transporters. This work provides important insights into the metal transport mechanism of the ZIP family.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Majid Jafari
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Tuo Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dexin Sui
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Luca Sagresti
- Scuola Normale Superiore, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Pisa, Italy
| | - Kenneth M Merz
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
- Center for Computational Life Sciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Guo H, Wang S, Zhang H, Li J, Wang C, Liu Z, Chen J, Wang K, Wei X, Wei Q, Xu X. Research progress on the molecular structure, function, and application in tumor therapy of zinc transporter ZIP4. Int J Biol Sci 2024; 20:5910-5924. [PMID: 39664563 PMCID: PMC11628325 DOI: 10.7150/ijbs.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
ZIP4, a pivotal member of the ZIP family, is the causative gene for the hereditary disorder AE (acrodermatitis enteropathica) in humans, and plays an essential role in regulating zinc ion balance within cells. While research on the molecular structure of ZIP4 continues, there remains a lack of full understanding regarding the stereo-structural conformation of ZIP4 molecules. Currently, there are two hypotheses concerning the transport of zinc ions into the cytoplasm by ZIP4, with some contradictions between experimental studies. Recent investigations have revealed that ZIP4 is involved in tumor growth, metastasis, drug tolerance, and various other processes. Most studies suggest that ZIP4 regulates the malignant biological behavior of tumors through zinc ions as a second messenger: however, latest research has identified that ZIP4 itself binds to Ephrin-B1 to regulate tumor metastasis. This review provides a comprehensive summary of the molecular structure of ZIP4 and its mechanism for transporting zinc ions while also exploring mutual regulation between zinc ions and ZIP4. Furthermore, it summarizes recent research progress on the role of ZIP4 in tumors and discusses its potential as a target for anticancer therapy based on an extensive analysis of research findings. These insights can guide future investigations into the role of ZIP4 in tumors.
Collapse
Affiliation(s)
- Haijun Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shaohua Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Shaoxing city Keqiao District TCM hospital Medical Alliance General Hospital, Shaoxing, 312000, China
| | - Hui Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, 310053, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
- Institute of Translational Medical, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
4
|
Hu J, Jiang Y. Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. Crit Rev Biochem Mol Biol 2024; 59:245-266. [PMID: 39431645 DOI: 10.1080/10409238.2024.2405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent d-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Zhang Y, Jafari M, Zhang T, Sui D, Sagresti L, Merz KM, Hu J. Molecular insights into substrate translocation in an elevator-type metal transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613805. [PMID: 39345646 PMCID: PMC11429975 DOI: 10.1101/2024.09.18.613805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The Zrt/Irt-like protein (ZIP) metal transporters are key players in maintaining the homeostasis of a panel of essential microelements. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator transporter, but how the metal substrate moves along the transport pathway and how the transporter changes conformation to allow alternating access remain to be elucidated. Here, we combined structural, biochemical, and computational approaches to investigate the process of metal substrate translocation along with the global structural rearrangement. Our study revealed an upward hinge motion of the transport domain in a high-resolution crystal structure of a cross-linked variant, elucidated the mechanisms of metal release from the transport site into the cytoplasm and activity regulation by a cytoplasmic metal-binding loop, and unraveled an unusual elevator mode in enhanced sampling simulations that distinguishes BbZIP from other elevator transporters. This work provides important insights into the metal transport mechanism of the ZIP family.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Majid Jafari
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Tuo Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dexin Sui
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Luca Sagresti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and CSGI
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Kenneth M. Merz
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| |
Collapse
|
6
|
Jiang Y, MacRenaris K, O'Halloran TV, Hu J. Determination of metal ion transport rate of human ZIP4 using stable zinc isotopes. J Biol Chem 2024; 300:107661. [PMID: 39128710 PMCID: PMC11630640 DOI: 10.1016/j.jbc.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
The essential microelement zinc is absorbed in the small intestine mainly by the zinc transporter ZIP4, a representative member of the Zrt/Irt-like protein (ZIP) family. ZIP4 is reportedly upregulated in many cancers, making it a promising oncology drug target. To date, there have been no reports on the turnover number of ZIP4, which is a crucial missing piece of information needed to better understand the transport mechanism. In this work, we used a nonradioactive zinc isotope, 70Zn, and inductively coupled plasma mass spectrometry to study human ZIP4 (hZIP4) expressed in Human embryonic kidney 293 cells. Our data showed that 70Zn can replace the radioactive 65Zn as a tracer in kinetic evaluation of hZIP4 activity. This approach, combined with the quantification of the cell surface expression of hZIP4 using biotinylation or surface-bound antibody, allowed us to estimate the apparent turnover number of hZIP4 to be in the range of 0.08 to 0.2 s-1. The turnover numbers of the truncated hZIP4 variants are significantly smaller than that of the full-length hZIP4, confirming a crucial role for the extracellular domain in zinc transport. Using 64Zn and 70Zn, we measured zinc efflux during the cell-based transport assay and found that it has little effect on the zinc import analysis under these conditions. Finally, we demonstrated that use of laser ablation inductively coupled plasma-TOF-mass spectrometry on samples applied to a solid substrate significantly increased the throughput of the transport assay. We envision that the approach reported here can be applied to the studies of metal transporters beyond the ZIP family.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Keith MacRenaris
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA; Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, Michigan, USA
| | - Thomas V O'Halloran
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA; Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, Michigan, USA.
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
7
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
8
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
9
|
Liu Y, Bafaro EM, Dempski RE. Single-molecule quantification of the oligomeric state of ZIP transporters in mammalian cells with fluorescence correlation spectroscopy. Methods Enzymol 2023; 687:103-137. [PMID: 37666629 DOI: 10.1016/bs.mie.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The SLC39 family of transporters, otherwise known as ZIPs for Zrt and Irt-like Proteins, function to increase cytosolic levels of transition metals. ZIP transporters have been identified at all phylogenetic levels and are members of the SoLute Carrier (SLC) superfamily. There are fourteen ZIP transporters encoded in the human genome. ZIP transmembrane proteins are expressed in the plasma membrane or membranes of intracellular organelles and have unique expression profiles across cell types. While direct structural efforts including x-ray crystallography, NMR and ab initio approaches have been effective tools in elucidating the structure of ZIPs, direct elucidation of the oligomeric state of these proteins is essential in understanding how wild type ZIP proteins function and whether mutations alter the oligomeric state of ZIPs. Unfortunately, several tools to quantify oligomeric states of proteins require overexpression of proteins which can lead to artifacts in experimental results. In contrast, fluorescence correlation spectroscopy (FCS) is a single-molecule technique which can be used to quantify the oligomeric state of transmembrane proteins. FCS takes advantage of the observation that the molecular brightness of a cluster of fluorescent molecules is directly proportional to the number of fluorescent molecules within the protein complex. This chapter describes how to implement FCS, focused on ZIP transporters, to quantify the oligomeric state of transmembrane in vivo. Included within this chapter are procedures to design constructs for experiments, transfection of mammalian cells as well as data acquisition and analysis. Taken together, FCS is a powerful mechanism to investigate the oligomeric state of proteins embedded within membranes of cells.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elizabeth M Bafaro
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States.
| |
Collapse
|
10
|
Zhang T, Zhang Y, Sui D, Hu J. High-resolution structure of a mercury cross-linked ZIP metal transporter reveals delicate motions and metal relay for regulated zinc transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537755. [PMID: 37131590 PMCID: PMC10153219 DOI: 10.1101/2023.04.20.537755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zrt-/Irt-like protein (ZIP) divalent metal transporters play a central role in maintaining trace element homeostasis. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator-type transporter, but the dynamic motions and detailed transport mechanism remain to be elucidated. Here, we report a high-resolution crystal structure of a mercury-crosslinked BbZIP variant at 1.95 Å, revealing an upward rotation of the transport domain in the new inward-facing conformation and a water-filled metal release channel that is divided into two parallel pathways by the previously disordered cytoplasmic loop. Mutagenesis and transport assays indicated that the newly identified high-affinity metal binding site in the primary pathway acts as a "metal sink" to reduce the transport rate. The discovery of a hinge motion around an extracellular axis allowed us to propose a sequential hinge-elevator-hinge movement of the transport domain to achieve alternating access. These findings provide key insights into the transport mechanisms and activity regulation.
Collapse
Affiliation(s)
- Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Yao Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Dexin Sui
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| |
Collapse
|
11
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
12
|
Feng Y, Xiao M, Cao G, Liu H, Li Y, Wang S, Zijtveld S, Delvoux B, Xanthoulea S, Romano A, Liu C, Zhang Z. Human monocytes differentiate into tumor-associated macrophages upon SKOV3 cells coculture and/or lysophosphatidic acid stimulation. J Inflamm (Lond) 2022; 19:11. [PMID: 35842650 PMCID: PMC9288080 DOI: 10.1186/s12950-022-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Serous ovarian carcinoma is the most common type of ovarian carcinoma. Tumor-associated macrophages (TAMs) promote ovarian cancer progression. Most macrophages are generated by monocyte differentiation. Lysophosphatidic acid (LPA) levels are high in blood, tissues and ascites of patients with ovarian cancer. This study investigated whether human monocytes can directly differentiate into TAMs in the serous ovarian carcinoma microenvironment. METHODS Human monocytes were isolated and purified from umbilical cord blood. A serous ovarian carcinoma-like microenvironment was generated by coculturing monocytes and SKOV3 cells in 0.4-μm-pore-size Transwell chambers. Additionally, the effect of LPA was assessed. The two cultured cell types and supernatants were evaluated. RESULTS The morphology and function of monocytes cocultured with SKOV3 cells and/or stimulated with LPA were significantly changed compared with those of non-stimulated monocytes. The CD14 + CD163 + and CD206 + phenotype indicated that stimulated cells were TAMs. The induced cells promoted SKOV3 cell proliferation and invasion, further proving that they were TAMs. The level of the cytokine interleukin-6R in the supernatant was significantly elevated in the treatment groups compared to the control monocyte group. Pathway enrichment analysis of ELISA results showed a strong influence of interleukin-6 family signaling, especially the JAK-STAT signaling pathway, further confirming the importance of IL-6R. CONCLUSION Monocytes can differentiate into TAMs under coculture with SKOV3 cells and/or LPA stimulation. The induced TAMs promote SKOV3 cell proliferation and invasion. The cytokine receptor IL-6sR and the JAK-STAT signaling pathway play an important role in the differentiation of monocytes into TAMs.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Yanfang Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Stan Zijtveld
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bert Delvoux
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
13
|
Qu YY, Guo RY, Luo ML, Zhou Q. Pan-Cancer Analysis of the Solute Carrier Family 39 Genes in Relation to Oncogenic, Immune Infiltrating, and Therapeutic Targets. Front Genet 2021; 12:757582. [PMID: 34925450 PMCID: PMC8675640 DOI: 10.3389/fgene.2021.757582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Emerging pieces of evidence demonstrated that the solute carrier family 39 (SLC39A) members are critical for the oncogenic and immune infiltrating targets in multiple types of tumors. However, the precise relationship between the SLC39A family genes and clinical prognosis as well as the pan-cancer tumor cell infiltration has not been fully elucidated. Methods: In this study, the pan-cancer expression profile, genetic mutation, prognostic effect, functional enrichment, immune infiltrating, and potential therapeutic targets of the SLC39A family members were investigated by analyzing multiple public databases such as the Oncomine, TIMER, GEPIA, cBioPortal, KM-plotter, PrognoScan, GeneMANIA, STRING, DAVID, TIMER 2.0, and CellMiner databases. Results: The expression levels of most SLC39 family genes in the tumor tissues were found to be significantly upregulated compared to the normal group. In mutation analysis, the mutation frequencies of SLC39A4 and SLC39A1 were found to be higher among all the members (6 and 4%, respectively). Moreover, the overall mutation frequency of the SLC39A family genes ranged from 0.8 to 6% pan-cancer. Also, the function of the SLC39A highly related genes was found to be enriched in functions such as zinc II ion transport across the membrane, steroid hormone biosynthesis, and chemical carcinogenesis. In immune infiltration analysis, the expression level of the SLC39A family genes was found to be notably related to the immune infiltration levels of six types of immune cells in specific types of tumors. In addition, the SLC39A family genes were significantly related to the sensitivity or resistance of 63 antitumor drugs in a variety of tumor cell lines. Conclusion: These results indicate that the SLC39 family genes are significant for determining cancer progression, immune infiltration, and drug sensitivity in multiple cancers. This study, therefore, provides novel insights into the pan-cancer potential targets of the SLC39 family genes.
Collapse
Affiliation(s)
- Yi-Yuan Qu
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Rong-Yan Guo
- Emergency Services Department, HanYang Hospital Affiliated of Wuhan University of Science and Technology, Wuhan, China
| | - Meng-Ling Luo
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Quan Zhou
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| |
Collapse
|
14
|
Jiang Y, Zhan H, Zhang Y, Yang J, Liu M, Xu C, Fan X, Zhang J, Zhou Z, Shi X, Ramesh R, Li M. ZIP4 promotes non-small cell lung cancer metastasis by activating snail-N-cadherin signaling axis. Cancer Lett 2021; 521:71-81. [PMID: 34450198 DOI: 10.1016/j.canlet.2021.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most critical health problems worldwide, with high incidence and poor survival rate. A zinc importer ZIP4 has been implicated in the process of tumor growth and metastasis of many cancers. However, its exact role and the underlying mechanism in NSCLC remains to be elucidated. In the present study, we found that human ZIP4 was substantially overexpressed in NSCLC tissues and was correlated with poor overall survival (OS) and progression-free survival (PFS). Overexpression of ZIP4 promoted cell migration, invasion and metastasis both in vitro and in a mouse lung metastasis model. Silencing of ZIP4 attenuated migration, invasion and metastasis. Mechanistically, overexpression of ZIP4 increased the expression of Snail, Slug and N-cadherin while genetic inactivation of ZIP4 downregulated the expression of above-mentioned genes. Further analysis showed that transcriptional factor Snail which modulates N-cadherin was involved in the process of ZIP4-mediated NSCLC migration and invasion. We also demonstrated that ZIP4 positively correlates with the levels of Snail, Slug and N-cadherin in mice lung metastasis tumors. Together, these results suggest that ZIP4 acts as an important regulator of Snail-N-cadherin signaling axis in promoting NSCLC progression and may serve as a novel predictive marker and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hanxiang Zhan
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuqing Zhang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jingxuan Yang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mingyang Liu
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiao Fan
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhijun Zhou
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuhui Shi
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
16
|
Fan Q, Li L, Wang TL, Emerson RE, Xu Y. A Novel ZIP4-HDAC4-VEGFA Axis in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13153821. [PMID: 34359722 PMCID: PMC8345154 DOI: 10.3390/cancers13153821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Despite tremendous research efforts, epithelial ovarian cancer (EOC) remains one of the most difficult cancers to detect early and treat successfully for >5-year survival. We have recently shown that ZIP4, a zinc transporter, is a novel cancer stem cell (CSC) marker and a therapeutic target for EOC. The current work focuses on developing new strategies to target ZIP4 and inhibit its CSC activities in EOC. We found that cells expressing high levels of ZIP4 were supersensitive to a group of inhibitors called HDACis. One of the major targets of these inhibitors is a protein called HDAC4. We revealed the new molecular bases for the ZIP4-HDAC4 axis and tested the efficacies of targeting this axis in the lab and in mouse models. Our study provides a new mechanistic-based targeting strategy for EOC. Abstract We have recently identified ZIP4 as a novel cancer stem cell (CSC) marker in high-grade serous ovarian cancer (HGSOC). While it converts drug-resistance to cisplatin (CDDP), we unexpectedly found that ZIP4 induced sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). Mechanistically, ZIP4 selectively upregulated HDAC IIa HDACs, with little or no effect on HDACs in other classes. HDAC4 knockdown (KD) and LMK-235 inhibited spheroid formation in vitro and tumorigenesis in vivo, with hypoxia inducible factor-1 alpha (HIF1α) and endothelial growth factor A (VEGFA) as functional downstream mediators of HDAC4. Moreover, we found that ZIP4, HDAC4, and HIF1α were involved in regulating secreted VEGFA in HGSOC cells. Furthermore, we tested our hypothesis that co-targeting CSC via the ZIP4-HDAC4 axis and non-CSC using CDDP is necessary and highly effective by comparing the effects of ZIP4-knockout/KD, HDAC4-KD, and HDACis, in the presence or absence of CDDP on tumorigenesis in mouse models. Our results showed that the co-targeting strategy was highly effective. Finally, data from human HGSOC tissues showed that ZIP4 and HDAC4 were upregulated in a subset of recurrent tumors, justifying the clinical relevance of the study. In summary, our study provides a new mechanistic-based targeting strategy for HGSOC.
Collapse
Affiliation(s)
- Qipeng Fan
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut St. R2-E380, Indianapolis, IN 46202, USA;
| | - Lihong Li
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 600 North Wolfe St., Baltimore, MD 21287, USA;
| | - Tian-Li Wang
- Department of Gynecology, Oncology, and Pathology, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, MD 21231, USA;
| | - Robert E. Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana University Health Pathology Laboratory, 350 W. 11th Street, Room 4010, Indianapolis, IN 46202, USA;
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut St. R2-E380, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-(317)-274-3972
| |
Collapse
|
17
|
Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, Zhao H, Xu Z. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:199. [PMID: 34154618 PMCID: PMC8215834 DOI: 10.1186/s13046-021-01999-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. METHODS The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter ( http://kmplot.com/analysis/ ). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. RESULTS The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. CONCLUSIONS ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Chunling Liu
- Department of Pathology, North China University of Science and Technology Affiliated Tangshan People's Hospital, 063000, Tangshan, China
| | - Tianduo Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Ningzhi Yang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
18
|
Tigyi G, Lin KH, Jang IH, Lee SC. Revisiting the role of lysophosphatidic acid in stem cell biology. Exp Biol Med (Maywood) 2021; 246:1802-1809. [PMID: 34038224 DOI: 10.1177/15353702211019283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stem cells possess unique biological characteristics such as the ability to self-renew and to undergo multilineage differentiation into specialized cells. Whereas embryonic stem cells (ESC) can differentiate into all cell types of the body, somatic stem cells (SSC) are a population of stem cells located in distinct niches throughout the body that differentiate into the specific cell types of the tissue in which they reside in. SSC function mainly to restore cells as part of normal tissue homeostasis or to replenish cells that are damaged due to injury. Cancer stem-like cells (CSC) are said to be analogous to SSC in this manner where tumor growth and progression as well as metastasis are fueled by a small population of CSC that reside within the corresponding tumor. Moreover, emerging evidence indicates that CSC are inherently resistant to chemo- and radiotherapy that are often the cause of cancer relapse. Hence, major research efforts have been directed at identifying CSC populations in different cancer types and understanding their biology. Many factors are thought to regulate and maintain cell stemness, including bioactive lysophospholipids such as lysophosphatidic acid (LPA). In this review, we discuss some of the newly discovered functions of LPA not only in the regulation of CSC but also normal SSC, the similarities in these regulatory functions, and how these discoveries can pave way to the development of novel therapies in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163, USA
| | - Il Ho Jang
- Department of Oral Biochemistry, Pusan National University School of Dentistry, Yangsan 50612, Republic of Korea.,Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan 50612, Republic of Korea
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
20
|
ZIP4 Is a Novel Cancer Stem Cell Marker in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123692. [PMID: 33316986 PMCID: PMC7764492 DOI: 10.3390/cancers12123692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is functionally involved in cancer stem cell (CSC)-related cellular activities in HGSOC. Here, we identified ZIP4 as a novel CSC marker in HGSOC. Fluorescence-activated cell sorter (FACS)-sorted ZIP4+, but not ZIP4- cells, formed spheroids and displayed self-renewing and differentiation abilities. Over-expression of ZIP4 conferred drug resistance properties in vitro. ZIP4+, but not ZIP4- cells, formed tumors/ascites in vivo. We conducted limiting dilution experiments and showed that 100-200 ZIP4+ cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Genetic compensation studies showed that NOTCH3, but not NOTCH1, was a critical downstream mediator of ZIP4. Furthermore, NOTCH3, but not NOTCH1, physically bound to ZIP4. Collectively, our data suggest that ZIP4 is a novel CSC marker and the new ZIP4-NOTCH3 axis represents important therapeutic targets in HGSOC.
Collapse
|
21
|
Hu J. Toward unzipping the ZIP metal transporters: structure, evolution, and implications on drug discovery against cancer. FEBS J 2020; 288:5805-5825. [PMID: 33296542 DOI: 10.1111/febs.15658] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The Zrt-/Irt-like protein (ZIP) family consists of divalent metal transporters, ubiquitous in all kingdoms of life. Since the discovery of the first ZIPs in the 1990s, the ZIP family has been expanding to contain tens of thousands of members playing key roles in uptake and homeostasis of life-essential trace elements, primarily zinc, iron and manganese. Some family members are also responsible for toxic metal (particularly cadmium) absorption and distribution. Their central roles in trace element biology, and implications in many human diseases, including cancers, have elicited interest across multiple disciplines for potential applications in biomedicine, agriculture and environmental protection. In this review and perspective, selected areas under rapid progress in the last several years, including structural biology, evolution, and drug discovery against cancers, are summarised and commented. Future research to address the most prominent issues associated with transport and regulation mechanisms are also discussed.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Michalczyk K, Cymbaluk-Płoska A. The Role of Zinc and Copper in Gynecological Malignancies. Nutrients 2020; 12:E3732. [PMID: 33287452 PMCID: PMC7761859 DOI: 10.3390/nu12123732] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc (Zn) and copper (Cu) are essential microelements, which take part in cellular metabolism, feature in enzymatic systems, and regulate enzyme activity. Homeostasis of these micronutrients is tightly regulated by multiple compensatory mechanisms that balance their concentrations including transporters, importers, and metallothioneins. An altered intake of only one of these trace elements may cause an imbalance in their levels and result in their competition for absorption. Relatively low levels of zinc and increased levels of copper may result in an increased level of oxidative stress and impair the antioxidant properties of multiple enzymes. Altered levels of trace elements were discovered in various pathologies including immunological, degenerative, and inflammatory diseases. Moreover, due to the role of Zn and Cu in oxidative stress and chronic inflammation, they were found to influence cancerogenesis. We review the roles of zinc and copper and their mechanisms in tumor growth, metastasis potential, microenvironment remodeling, and drug resistance. We highlight their role as potential biomarkers for cancer diagnosis, treatment, and prognosis, concentrating on their impact on gynecological malignancies.
Collapse
Affiliation(s)
- Kaja Michalczyk
- Department of Gynecological Surgery and Oncology of Adults and Adolescents, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
23
|
Feng Y, Xiao M, Zhang Z, Cui R, Jiang X, Wang S, Bai H, Liu C, Zhang Z. Potential interaction between lysophosphatidic acid and tumor-associated macrophages in ovarian carcinoma. JOURNAL OF INFLAMMATION-LONDON 2020; 17:23. [PMID: 32774171 PMCID: PMC7405460 DOI: 10.1186/s12950-020-00254-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Ovarian carcinoma is the deadliest type of gynecological cancer. The unique tumor microenvironment enables specific and efficient metastasis, weakens immunological monitoring, and mediates drug resistance. Tumor associated macrophages (TAMs) are a crucial part of the TME and are involved in various aspects of tumor behavior. Lysophosphatidic acid (LPA) is elevated in the blood of ovarian carcinoma patients, as well as in the tumor tissues and ascites, which make it a useful biomarker and a potential therapeutic target. Recent studies have shown that LPA transforms monocytes into macrophages and regulates the formation of macrophages through the AKT/mTOR pathway, and PPAR γ is a major regulator of LPA-derived macrophages. In addition, TAMs synthesize and secrete LPA and express LPA receptor (LPAR) on the surface. With these data in mind, we hypothesize that LPA can convert monocytes directly into TAMs in the microenvironment of ovarian cancer. LPA may mediate TAM formation by activating the PI3K/AKT/mTOR signaling pathway through LPAR on the cell surface, which may also affect the function of PPAR γ, leading to increased LPA production by TAMs. Thus, LPA and TAMs form a vicious circle that affects the malignant behavior of ovarian cancer.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Zihan Zhang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Xuan Jiang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020 China
| |
Collapse
|
24
|
Xia C, Chen X, Li J, Chen P. SLC39A4 as a Novel Prognosis Marker Promotes Tumor Progression in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:3999-4008. [PMID: 32494154 PMCID: PMC7227820 DOI: 10.2147/ott.s245094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Solute carrier family 39 member 4 (SLC39A4) has been reported to play an oncogenic role in several cancers. However, the role of SLC39A4 in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we aimed to explore the clinical significance and function of SLC39A4 in ESCC. Methods The Cancer Genome Atlas and Gene Expression Omnibus databases were analyzed to assess the level of SLC39A4 in ESCC. The expression level of SLC39A4 was measured by RT-qPCR and immunohistochemistry in a cohort of 73 patients aged 45-65 years with ESCC. Kaplan-Meier analysis was used to identify the correlation between SLC39A4 and the prognosis of ESCC patients. In vitro experiments were conducted to explore the biological function of SLC39A4 in ESCC cell line TE-1 and TE-10. Results The mRNA level of SLC39A4 was significantly enhanced in ESCC specimens, which was in line with the outcome of online databases analysis. Moreover, the aberrant expression of SLC39A4 was positively correlated with clinical stage, T categories and lymph node metastasis. Kaplan-Meier analysis indicated that elevated SLC39A4 expression predicted poor prognosis of patients with ESCC. Furthermore, the in vitro experiments showed that SLC39A4 knockdown not only impaired the proliferation and motility capacities of ESCC cells but also enhanced the sensitivity to cisplatin treatment. Conclusion Our findings suggest that SLC39A4 could serve as a novel prognosis biomarker to promote ESCC progression; however, the mechanism of SLC39A4 in ESCC remains to be further explored.
Collapse
Affiliation(s)
- Chenmei Xia
- Department of Gastroenterology, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| | - Xia Chen
- Department of Gastroenterology, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| | - Jun Li
- Department of Joint Surgery, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| |
Collapse
|
25
|
Fukushima H, Fujii T, Sugiura K. Zinc-responsive necrolytic acral erythema in ovarian cancer. J Dermatol 2020; 47:e266-e267. [PMID: 32350902 DOI: 10.1111/1346-8138.15363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hidehiko Fukushima
- Departments of, Department of, Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Fujii
- Department of, Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazumitsu Sugiura
- Departments of, Department of, Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
26
|
Wang J, Zhao H, Xu Z, Cheng X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol Med 2020; 17:612-625. [PMID: 32944394 PMCID: PMC7476080 DOI: 10.20892/j.issn.2095-3941.2020.0106] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is an essential element and serves as a structural or catalytic component in many proteins. Two families of transporters are involved in maintaining cellular zinc homeostasis: the ZIP (SLC39A) family that facilitates zinc influx into the cytoplasm, and the ZnT (SLC30A) family that facilitates zinc efflux from the cytoplasm. Zinc dyshomeostasis caused by the dysfunction of zinc transporters can contribute to the initiation or progression of various cancers, including prostate cancer, breast cancer, and pancreatic cancer. In addition, intracellular zinc fluctuations lead to the disturbance of certain signaling pathways involved in the malignant properties of cancer cells. This review briefly summarizes our current understanding of zinc dyshomeostasis in cancer, and discusses the potential roles of zinc or zinc transporters in cancer therapy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
27
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
28
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
29
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|
30
|
Cai Q, Fan Q, Buechlein A, Miller D, Nephew KP, Liu S, Wan J, Xu Y. Changes in mRNA/protein expression and signaling pathways in in vivo passaged mouse ovarian cancer cells. PLoS One 2018; 13:e0197404. [PMID: 29927933 PMCID: PMC6013233 DOI: 10.1371/journal.pone.0197404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
The cure rate for late stage epithelial ovarian cancer (EOC) has not significantly improved over several decades. New and more effective targets and treatment modalities are urgently needed. RNA-seq analyses of a syngeneic EOC cell pair, representing more and less aggressive tumor cells in vivo were conducted. Bioinformatics analyses of the RNA-seq data and biological signaling and function studies have identified new targets, such as ZIP4 in EOC. Many up-regulated tumor promoting signaling pathways have been identified which are mainly grouped into three cellular activities: 1) cell proliferation and apoptosis resistance; 2) cell skeleton and adhesion changes; and 3) carbohydrate metabolic reprograming. Unexpectedly, lipid metabolism has been the major down-regulated signaling pathway in the more aggressive EOC cells. In addition, we found that hypoxic responsive genes were at the center stage of regulation and detected functional changes were related to cancer stem cell-like activities. Moreover, our genetic, cellular, biochemical, and lipidomic analyses indicated that cells grown in 2D vs. 3D, or attached vs. suspended had dramatic changes. The important clinical implications of peritoneal cavity floating tumor cells are supported by the data proved in this work. Overall, the RNA-seq data provide a landscape of gene expression alterations during tumor progression.
Collapse
Affiliation(s)
- Qingchun Cai
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Qipeng Fan
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aaron Buechlein
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - David Miller
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Sheng Liu
- Collaborative Core for Cancer Bioinformatics (C3B), Indiana University Simon Cancer Center, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun Wan
- Collaborative Core for Cancer Bioinformatics (C3B), Indiana University Simon Cancer Center, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
31
|
Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci 2018; 19:ijms19020439. [PMID: 29389900 PMCID: PMC5855661 DOI: 10.3390/ijms19020439] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
A distinct G-protein coupled receptor that senses changes in extracellular Zn2+, ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role. Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes, and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation. ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release. Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the activity of ion transport mechanisms that are essential for the physiological function of epithelial and neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, POB 653, Ben-Gurion Ave. Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|