1
|
Pandey JP, Nietert PJ, Namboodiri AM, Bennett DA, Barnes LL. Epistatic effects of IGHG and FCGRIIB genes on the development of Alzheimer's disease in African Americans. Immunogenetics 2024; 77:1. [PMID: 39489839 PMCID: PMC11532319 DOI: 10.1007/s00251-024-01358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified a large number of susceptibility genes, but most of AD heritability remains unexplained, implying the existence of additional genes. Furthermore, the majority of the GWAS have been conducted in people of European descent, and the genes important for AD susceptibility in people of African descent have been underexplored. In this hypothesis-generating prospective cohort study, we genotyped 191 African Americans (AAs) from three longitudinal cohorts on aging for the IgG3 allotype GM6, which is expressed exclusively in people of African descent, and assessed its interaction with IGHG, FCGRIIB, and HLA-DRB1 genes. Cox proportional hazards modeling showed that GM6 by itself was not significantly associated with AD development. However, there was evidence of epistatic interaction: The risk of developing AD associated with GM6 positivity was significantly different (p = 0.0098) in non-GM17/GM17 participants compared with GM 17/GM17 participants. Specifically, in non-GM17/GM17 participants, the risk of AD was over fourfold higher in GM6-positive participants compared with GM 6-negative participants (HR = 4.63). Similarly, risk of developing AD associated with GM6 positivity was marginally different in non-FCGRIIB TT participants compared with FCGRIIB TT participants. In non-FCGRIIB TT participants, the risk of developing AD was over twofold higher in GM6-positive participants compared with GM6-negative participants (HR = 2.44). This is the first report suggesting that immunoglobulin GM allotypes might play a role in AD etiology among AAs; however, since this was largely a hypothesis-generating study, replication in larger cohorts would be required to confirm this finding.
Collapse
Affiliation(s)
- Janardan P Pandey
- Department of Pharmacology & Immunology, Medical University of South Carolina, Charleston, SC, 29425-2230, USA.
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aryan M Namboodiri
- Department of Pharmacology & Immunology, Medical University of South Carolina, Charleston, SC, 29425-2230, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Lizama BN, North HA, Pandey K, Williams C, Duong D, Cho E, Di Caro V, Ping L, Blennow K, Zetterberg H, Lah J, Levey AI, Grundman M, Caggiano AO, Seyfried NT, Hamby ME. An interim exploratory proteomics biomarker analysis of a phase 2 clinical trial to assess the impact of CT1812 in Alzheimer's disease. Neurobiol Dis 2024; 199:106575. [PMID: 38914170 DOI: 10.1016/j.nbd.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
CT1812 is a novel, brain penetrant small molecule modulator of the sigma-2 receptor (S2R) that is currently in clinical development for the treatment of Alzheimer's disease (AD). Preclinical and early clinical data show that, through S2R, CT1812 selectively prevents and displaces binding of amyloid beta (Aβ) oligomers from neuronal synapses and improves cognitive function in animal models of AD. SHINE is an ongoing phase 2 randomized, double-blind, placebo-controlled clinical trial (COG0201) in participants with mild to moderate AD, designed to assess the safety and efficacy of 6 months of CT1812 treatment. To elucidate the mechanism of action in AD patients and pharmacodynamic biomarkers of CT1812, the present study reports exploratory cerebrospinal fluid (CSF) biomarker data from 18 participants in an interim analysis of the first set of patients in SHINE (part A). Untargeted mass spectrometry-based discovery proteomics detects >2000 proteins in patient CSF and has documented utility in accelerating the identification of novel AD biomarkers reflective of diverse pathophysiologies beyond amyloid and tau, and enabling identification of pharmacodynamic biomarkers in longitudinal interventional trials. We leveraged this technique to analyze CSF samples taken at baseline and after 6 months of CT1812 treatment. Proteome-wide protein levels were detected using tandem mass tag-mass spectrometry (TMT-MS), change from baseline was calculated for each participant, and differential abundance analysis by treatment group was performed. This analysis revealed a set of proteins significantly impacted by CT1812, including pathway engagement biomarkers (i.e., biomarkers tied to S2R biology) and disease modification biomarkers (i.e., biomarkers with altered levels in AD vs. healthy control CSF but normalized by CT1812, and biomarkers correlated with favorable trends in ADAS-Cog11 scores). Brain network mapping, Gene Ontology, and pathway analyses revealed an impact of CT1812 on synapses, lipoprotein and amyloid beta biology, and neuroinflammation. Collectively, the findings highlight the utility of this method in pharmacodynamic biomarker identification and providing mechanistic insights for CT1812, which may facilitate the clinical development of CT1812 and enable appropriate pre-specification of biomarkers in upcoming clinical trials of CT1812.
Collapse
Affiliation(s)
- B N Lizama
- Cognition Therapeutics, Pittsburgh, PA, USA
| | - H A North
- Cognition Therapeutics, Pittsburgh, PA, USA
| | - K Pandey
- Emtherapro Inc, Systems Biology, Atlanta, GA, USA
| | - C Williams
- Cognition Therapeutics, Pittsburgh, PA, USA
| | - D Duong
- Emory University School of Medicine, Biochemistry, Atlanta, GA, USA
| | - E Cho
- Cognition Therapeutics, Pittsburgh, PA, USA
| | - V Di Caro
- Cognition Therapeutics, Pittsburgh, PA, USA
| | - L Ping
- Emory University School of Medicine, Neurology, Atlanta, GA, USA
| | - K Blennow
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - J Lah
- Emory University School of Medicine, Neurology, Atlanta, GA, USA
| | - A I Levey
- Emory University School of Medicine, Neurology, Atlanta, GA, USA
| | - M Grundman
- Global R&D Partners, LLC, San Diego, California, USA; Dept. of Neurosciences, University of California, San Diego, USA
| | | | - N T Seyfried
- Emory University School of Medicine, Biochemistry, Atlanta, GA, USA
| | - M E Hamby
- Cognition Therapeutics, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Cătană CS, Marta MM, Văleanu M, Dican L, Crișan CA. Human Leukocyte Antigen and microRNAs as Key Orchestrators of Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review. Int J Mol Sci 2024; 25:8544. [PMID: 39126112 PMCID: PMC11312697 DOI: 10.3390/ijms25158544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The expression of inflamma-miRs and human leukocyte antigen (HLA) haplotypes could indicate mild cognitive impairment (MCI) and Alzheimer's disease (AD). We used international databases to conduct a systematic review of studies on HLA variants and a meta-analysis of research on microRNAs (miRNAs). We aimed to analyze the discriminative value of HLA variants and miRNAs in MCI, AD and controls to evaluate the protective or causative effect of HLA in cognitive decline, establish the role of miRNAs as biomarkers for the early detection of AD, and find a possible link between miRNAs and HLA. Statistical analysis was conducted using Comprehensive Meta-analysis software, version 2.2.050 (Biostat Inc., Englewood, NJ, USA). The effect sizes were estimated by the logarithm base 2 of the fold change. The systematic review revealed that some HLA variants, such as HLA-B*4402, HLA-A*33:01, HLA-A*33:01, HLA-DPB1, HLA-DR15, HLA-DQB1*03:03, HLA-DQB1*06:01, HLA-DQB1*03:01, SNPs on HLA-DRB1/DQB1, and HLA-DQA1, predisposed to cognitive decline before the occurrence of AD, while HLA-A1*01, HLA-DRB1∗13:02, HLA-DRB1*04:04, and HLA-DRB1*04:01 demonstrated a protective role. The meta-analysis identified let-7 and miR-15/16 as biomarkers for the early detection of AD. The association between these two miRNA families and the HLA variants that predispose to AD could be used for the early screening and prevention of MCI.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mădălina Văleanu
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Lucia Dican
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania
| | - Cătălina Angela Crișan
- Department of Neurosciences, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Crit Rev Clin Lab Sci 2023; 60:398-426. [PMID: 36941789 DOI: 10.1080/10408363.2023.2187342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The amyloid hypothesis has so far been at the forefront of explaining the pathogenesis of Alzheimer's Disease (AD), a progressive neurodegenerative disorder that leads to cognitive decline and eventual death. Recent evidence, however, points to additional factors that contribute to the pathogenesis of this disease. These include the neurovascular hypothesis, the mitochondrial cascade hypothesis, the inflammatory hypothesis, the prion hypothesis, the mutational accumulation hypothesis, and the autoimmunity hypothesis. The purpose of this review was to briefly discuss the factors that are associated with autoimmunity in humans, including sex, the gut and lung microbiomes, age, genetics, and environmental factors. Subsequently, it was to examine the rise of autoimmune phenomena in AD, which can be instigated by a blood-brain barrier breakdown, pathogen infections, and dysfunction of the glymphatic system. Lastly, it was to discuss the various ways by which immune system dysregulation leads to AD, immunomodulating therapies, and future directions in the field of autoimmunity and neurodegeneration. A comprehensive account of the recent research done in the field was extracted from PubMed on 31 January 2022, with the keywords "Alzheimer's disease" and "autoantibodies" for the first search input, and "Alzheimer's disease" with "IgG" for the second. From the first search, 19 papers were selected, because they contained recent research on the autoantibodies found in the biofluids of patients with AD. From the second search, four papers were selected. The analysis of the literature has led to support the autoimmune hypothesis in AD. Autoantibodies were found in biofluids (serum/plasma, cerebrospinal fluid) of patients with AD with multiple methods, including ELISA, Mass Spectrometry, and microarray analysis. Through continuous research, the understanding of the synergistic effects of the various components that lead to AD will pave the way for better therapeutic methods and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Dorsa Sohaei
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
7
|
Wang YH, Luo PP, Geng AY, Li X, Liu TH, He YJ, Huang L, Tang YQ. Identification of highly reliable risk genes for Alzheimer's disease through joint-tissue integrative analysis. Front Aging Neurosci 2023; 15:1183119. [PMID: 37416324 PMCID: PMC10320295 DOI: 10.3389/fnagi.2023.1183119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Numerous genetic variants associated with Alzheimer's disease (AD) have been identified through genome-wide association studies (GWAS), but their interpretation is hindered by the strong linkage disequilibrium (LD) among the variants, making it difficult to identify the causal variants directly. To address this issue, the transcriptome-wide association study (TWAS) was employed to infer the association between gene expression and a trait at the genetic level using expression quantitative trait locus (eQTL) cohorts. In this study, we applied the TWAS theory and utilized the improved Joint-Tissue Imputation (JTI) approach and Mendelian Randomization (MR) framework (MR-JTI) to identify potential AD-associated genes. By integrating LD score, GTEx eQTL data, and GWAS summary statistic data from a large cohort using MR-JTI, a total of 415 AD-associated genes were identified. Then, 2873 differentially expressed genes from 11 AD-related datasets were used for the Fisher test of these AD-associated genes. We finally obtained 36 highly reliable AD-associated genes, including APOC1, CR1, ERBB2, and RIN3. Moreover, the GO and KEGG enrichment analysis revealed that these genes are primarily involved in antigen processing and presentation, amyloid-beta formation, tau protein binding, and response to oxidative stress. The identification of these potential AD-associated genes not only provides insights into the pathogenesis of AD but also offers biomarkers for early diagnosis of the disease.
Collapse
Affiliation(s)
- Yong Heng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Pan Pan Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ao Yi Geng
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinwei Li
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Yi Jie He
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lin Huang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ya Qin Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Besin V, Martriano Humardani F, Thalia Mulyanata L. Neurogenomics of Alzheimer's Disease (AD): An Asian Population Review. Clin Chim Acta 2023; 546:117389. [PMID: 37211175 DOI: 10.1016/j.cca.2023.117389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is on the rise worldwide. Generally, AD is considered neurodegenerative when the production and clearance of amyloid-β (Aβ) are imbalanced. Recent research on genome-wide association studies (GWAS) has been explosive; GWAS indicates a relationship between single nucleotide polymorphism (SNP) and AD. GWAS also reveals ethnic differences between Caucasians and Asians. This indicates that pathogenesis between ethnic groups is distinct. According to current scientific knowledge, AD is a disease with a complex pathogenesis that includes impaired neuronal cholesterol regulation, immunity regulation, neurotransmitters regulation, Aβ clearance, Aβ production, and vascular regulation. Here, we demonstrate the pathogenesis of AD in an Asian population and the SNP risk of AD for future AD screening before onset. According to our knowledge, this is the first review of Alzheimer's disease to demonstrate the pathogenesis of AD based on SNP in an Asian population.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia.
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia
| | | |
Collapse
|
9
|
Huang J, Stein TD, Wang Y, Ang TFA, Tao Q, Lunetta KL, Massaro J, Akhter-Khan SC, Mez J, Au R, Farrer LA, Zhang X, Qiu WQ. Blood levels of MCP-1 modulate the genetic risks of Alzheimer's disease mediated by HLA-DRB1 and APOE for Alzheimer's disease. Alzheimers Dement 2023; 19:1925-1937. [PMID: 36396603 PMCID: PMC10182187 DOI: 10.1002/alz.12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION C-Reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) are both implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption. Since the blood CRP level increases Alzheimer's disease (AD) risk depending on the apolipoprotein E (APOE) genotype, we hypothesized that the blood MCP-1 level exerts different effects on the AD risk depending on the genotypes. METHODS Using multiple regression analyses, data from the Framingham Heart Study (n = 2884) and Alzheimer's Disease Neuroimaging Initiative study (n = 231) were analyzed. RESULTS An elevated blood MCP-1 level was associated with AD risk in major histocompatibility complex, Class II, DR beta 1 (HLA-DRB1) rs9271192-AC/CC (hazard ratio [HR] = 3.07, 95% confidence interval [CI] = 1.50-6.28, p = 0.002) and in APOE ε4 carriers (HR = 3.22, 95% CI = 1.59-6.53, p = 0.001). In contrast, among HLA-DRB1 rs9271192-AA and APOE ε4 noncarriers, blood MCP-1 levels were not associated with these phenotypes. DISCUSSION Since HLA-DRB1 and APOE are expressed in the BBB, blood MCP-1 released in the peripheral inflammatory cascade may function as a mediator of the effects of HLA-DRB1 rs9271192-AC/CC and APOE ε4 genotypes on AD pathogenesis in the brain via the BBB pathways.
Collapse
Affiliation(s)
- Jinghan Huang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Yixuan Wang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Qiushan Tao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
| | - Samia C. Akhter-Khan
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Department of Health Service & Population Research, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Singhal P, Veturi Y, Dudek SM, Lucas A, Frase A, van Steen K, Schrodi SJ, Fasel D, Weng C, Pendergrass R, Schaid DJ, Kullo IJ, Dikilitas O, Sleiman PMA, Hakonarson H, Moore JH, Williams SM, Ritchie MD, Verma SS. Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eMERGE datasets. Am J Hum Genet 2023; 110:575-591. [PMID: 37028392 PMCID: PMC10119154 DOI: 10.1016/j.ajhg.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogasudha Veturi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M Dudek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Frase
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristel van Steen
- Department of Human Genetics, Katholieke Universiteit Leuven, ON4 Herestraat 49, 3000 Leuven, Belgium
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - David Fasel
- Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | - Hakon Hakonarson
- Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
12
|
Vishal K, Bhuiyan P, Qi J, Chen Y, Zhang J, Yang F, Li J. Unraveling the Mechanism of Immunity and Inflammation Related to Molecular Signatures Crosstalk Among Obesity, T2D, and AD: Insights From Bioinformatics Approaches. Bioinform Biol Insights 2023; 17:11779322231167977. [PMID: 37124128 PMCID: PMC10134115 DOI: 10.1177/11779322231167977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Individuals with type 2 diabetes (T2D) and obesity have a higher risk of developing Alzheimer disease (AD), and increasing evidence indicates a link between impaired immune signaling pathways and the development of AD. However, the shared cellular mechanisms and molecular signatures among these 3 diseases remain unknown. The purpose of this study was to uncover similar molecular markers and pathways involved in obesity, T2D, and AD using bioinformatics and a network biology approach. First, we investigated the 3 RNA sequencing (RNA-seq) gene expression data sets and determined 224 commonly shared differentially expressed genes (DEGs) from obesity, T2D, and AD diseases. Gene ontology and pathway enrichment analyses revealed that mutual DEGs were mainly enriched with immune and inflammatory signaling pathways. In addition, we constructed a protein-protein interactions network for finding hub genes, which have not previously been identified as playing a critical role in these 3 diseases. Furthermore, the transcriptional factors and protein kinases regulating commonly shared DEGs among obesity, T2D, and AD were also identified. Finally, we suggested potential drug candidates as possible therapeutic interventions for 3 diseases. The results of this bioinformatics analysis provided a new understanding of the potential links between obesity, T2D, and AD pathologies.
Collapse
Affiliation(s)
- Kumar Vishal
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Qi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jubiao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fen Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Fen Yang, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
13
|
Chen J, Wang L, De Jager PL, Bennett DA, Buchman AS, Yang J. A scalable Bayesian functional GWAS method accounting for multivariate quantitative functional annotations with applications for studying Alzheimer disease. HGG ADVANCES 2022; 3:100143. [PMID: 36204489 PMCID: PMC9530673 DOI: 10.1016/j.xhgg.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Existing methods for integrating functional annotations in genome-wide association studies (GWASs) to fine-map and prioritize potential causal variants are limited to using non-overlapped categorical annotations or limited by the computation burden of modeling genome-wide variants. To overcome these limitations, we propose a scalable Bayesian functional GWAS method to account for multivariate quantitative functional annotations (BFGWAS_QUANT), accompanied by a scalable computation algorithm enabling joint modeling of genome-wide variants. Simulation studies validated the performance of BFGWAS_QUANT for accurately quantifying annotation enrichment and improving GWAS power. Applying BFGWAS_QUANT to study five Alzheimer disease (AD)-related phenotypes using individual-level GWAS data (n = ∼1,000), we found that histone modification annotations have higher enrichment than expression quantitative trait locus (eQTL) annotations for all considered phenotypes, with the highest enrichment in H3K27me3 (polycomb regression). We also found that cis-eQTLs in microglia had higher enrichment than eQTLs of bulk brain frontal cortex tissue for all considered phenotypes. A similar enrichment pattern was also identified using the International Genomics of Alzheimer's Project (IGAP) summary-level GWAS data of AD (n = ∼54,000). The strongest known APOE E4 risk allele was identified for all five phenotypes, and the APOE locus was validated using the IGAP data. BFGWAS_QUANT fine-mapped 32 significant variants from 1,073 genome-wide significant variants in the IGAP data. We also demonstrated that the polygenic risk scores (PRSs) using effect size estimates by BFGWAS_QUANT had a similar prediction accuracy as other methods assuming a sparse causal model. Overall, BFGWAS_QUANT is a useful GWAS tool for quantifying annotation enrichment and prioritizing potential causal variants.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Emory University School of Public Health, Atlanta, GA 30322, USA
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lei Wang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Claes C, England WE, Danhash EP, Kiani Shabestari S, Jairaman A, Chadarevian JP, Hasselmann J, Tsai AP, Coburn MA, Sanchez J, Lim TE, Hidalgo JLS, Tu C, Cahalan MD, Lamb BT, Landreth GE, Spitale RC, Blurton‐Jones M, Davtyan H. The P522R protective variant of PLCG2 promotes the expression of antigen presentation genes by human microglia in an Alzheimer's disease mouse model. Alzheimers Dement 2022; 18:1765-1778. [PMID: 35142046 PMCID: PMC9360195 DOI: 10.1002/alz.12577] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/28/2023]
Abstract
The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia. At 7 months of age, single-cell and bulk RNA sequencing, and histological analyses were performed. The PLCG2-P522R variant induced a significant increase in microglial human leukocyte antigen (HLA) expression and the induction of antigen presentation, chemokine signaling, and T cell proliferation pathways. Examination of immune-intact AD mice further demonstrated that the PLCG2-P522R variant promotes the recruitment of CD8+ T cells to the brain. These data provide the first evidence that the PLCG2-P522R variant increases the capacity of microglia to recruit T cells and present antigens, promoting a microglial transcriptional state that has recently been shown to be reduced in AD patient brains.
Collapse
Affiliation(s)
- Christel Claes
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Whitney E. England
- Department of Pharmaceutical Sciences University of CaliforniaIrvineCaliforniaUSA
| | - Emma P. Danhash
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Sepideh Kiani Shabestari
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Amit Jairaman
- Department of Physiology and BiophysicsUniversity of California IrvineIrvineCaliforniaUSA
| | - Jean Paul Chadarevian
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andy P. Tsai
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
| | - Morgan A. Coburn
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jessica Sanchez
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Jorge L. S. Hidalgo
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Christina Tu
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Michael D. Cahalan
- Department of Physiology and BiophysicsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIUSMIndianapolisIndianaUSA
| | - Gary E. Landreth
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
- Department of Anatomy and Cell BiologyIUSMIndianapolisIndianaUSA
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences University of CaliforniaIrvineCaliforniaUSA
| | - Mathew Blurton‐Jones
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
15
|
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14:955461. [PMID: 36092798 PMCID: PMC9451601 DOI: 10.3389/fnagi.2022.955461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent research has investigated the connection between Diabetes Mellitus (DM) and Alzheimer’s Disease (AD). Insulin resistance plays a crucial role in this interaction. Studies have focused on dysregulated proteins to disrupt this connection. Non-coding RNAs (ncRNAs), on the other hand, play an important role in the development of many diseases. They encode the majority of the human genome and regulate gene expression through a variety of mechanisms. Consequently, identifying significant ncRNAs and utilizing them as biomarkers could facilitate the early detection of this cross-talk. On the other hand, computational-based methods may help to understand the possible relationships between different molecules and conduct future wet laboratory experiments. Materials and methods In this study, we retrieved Genome-Wide Association Study (GWAS, 2008) results from the United Kingdom Biobank database using the keywords “Alzheimer’s” and “Diabetes Mellitus.” After excluding low confidence variants, statistical analysis was performed, and adjusted p-values were determined. Using the Linkage Disequilibrium method, 127 significant shared Single Nucleotide Polymorphism (SNP) were chosen and the SNP-SNP interaction network was built. From this network, dense subgraphs were extracted as signatures. By mapping each signature to the reference genome, genes associated with the selected SNPs were retrieved. Then, protein-microRNA (miRNA) and miRNA-long non-coding RNA (lncRNA) bipartite networks were built and significant ncRNAs were extracted. After the validation process, by applying the scoring function, the final protein-miRNA-lncRNA tripartite network was constructed, and significant miRNAs and lncRNAs were identified. Results Hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-423-5p, and hsa-miR-3184-5p, the four most significant miRNAs, as well as NEAT1, XIST, and KCNQ1OT1, the three most important lncRNAs, and their interacting proteins in the final tripartite network, have been proposed as new candidate biomarkers in the cross-talk between DM and AD. The literature review also validates the obtained ncRNAs. In addition, miRNA/lncRNA pairs; hsa-miR-124-3p/KCNQ1OT1, hsa-miR-124-3p/NEAT1, and hsa-miR-124-3p/XIST, all expressed in the brain, and their interacting proteins in our final network are suggested for future research investigation. Conclusion This study identified 127 shared SNPs, 7 proteins, 15 miRNAs, and 11 lncRNAs involved in the cross-talk between DM and AD. Different network analysis and scoring function suggested the most significant miRNAs and lncRNAs as potential candidate biomarkers for wet laboratory experiments. Considering these candidate biomarkers may help in the early detection of DM and AD co-occurrence.
Collapse
Affiliation(s)
- Shokoofeh Ghiam
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Changiz Eslahchi,
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Mehran Habibi-Rezaei
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Sajjad Gharaghani,
| |
Collapse
|
16
|
Scavuzzi BM, van Drongelen V, Holoshitz J. HLA-G and the MHC Cusp Theory. Front Immunol 2022; 13:814967. [PMID: 35281038 PMCID: PMC8913506 DOI: 10.3389/fimmu.2022.814967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigens (HLA) are significant genetic risk factors in a long list of diseases. However, the mechanisms underlying these associations remain elusive in many cases. The best-characterized function of classical major histocompatibility complex (MHC) antigens is to allow safe presentation of antigenic peptides via a self/non-self-discrimination process. Therefore, most hypotheses to date have posited that the observed associations between certain HLA molecules and human diseases involve antigen presentation (AP). However, these hypotheses often represent inconsistencies with current knowledge. To offer answers to the inconsistencies, a decade ago we have invoked the MHC Cusp theory, postulating that in addition to its main role in AP, the MHC codes for allele-specific molecules that act as ligands in a conformationally-conserved cusp-like fold, which upon interaction with cognate receptors can trigger MHC-associated diseases. In the ensuing years, we have provided empirical evidence that substantiates the theory in several HLA-Class II-associated autoimmune diseases. Notably, in a recent study we have demonstrated that HLA-DRB1 alleles known to protect against several autoimmune diseases encode a protective epitope at the cusp region, which activates anti-inflammatory signaling leading to transcriptional and functional modulatory effects. Relevant to the topic of this session, cusp ligands demonstrate several similarities to the functional effects of HLA-G. The overall goal of this opinion article is to delineate the parallels and distinctive features of the MHC Cusp theory with structural and functional aspects of HLA-G molecules.
Collapse
Affiliation(s)
| | - Vincent van Drongelen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Mahbub NI, Hasan MI, Rahman MH, Naznin F, Islam MZ, Moni MA. Identifying molecular signatures and pathways shared between Alzheimer's and Huntington's disorders: A bioinformatics and systems biology approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
19
|
Duggan MR, Torkzaban B, Ahooyi TM, Khalili K. Potential Role for Herpesviruses in Alzheimer's Disease. J Alzheimers Dis 2021; 78:855-869. [PMID: 33074235 DOI: 10.3233/jad-200814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Across the fields of virology and neuroscience, the role of neurotropic viruses in Alzheimer's disease (AD) has received renewed enthusiasm, with a particular focus on human herpesviruses (HHVs). Recent genomic analyses of brain tissue collections and investigations of the antimicrobial responses of amyloid-β do not exclude a role of HHVs in contributing to or accelerating AD pathogenesis. Due to continued expansion in our aging cohort and the lack of effective treatments for AD, this composition examines a potential neuroviral theory of AD in light of these recent data. Consideration reveals a possible viral "Hit-and-Run" scenario of AD, as well as neurobiological mechanisms (i.e., neuroinflammation, protein quality control, oxidative stress) that may increase risk for AD following neurotropic infection. Although limitations exist, this theoretical framework reveals several novel therapeutic targets that may prove efficacious in AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bahareh Torkzaban
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2021; 42:2527-2551. [PMID: 34515874 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
21
|
Pandey JP, Nietert PJ, Kothera RT, Barnes LL, Bennett DA. Interactive Effects of HLA and GM Alleles on the Development of Alzheimer Disease. Neurol Genet 2021; 7:e565. [PMID: 33898740 PMCID: PMC8063623 DOI: 10.1212/nxg.0000000000000565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We investigated whether particular immunoglobulin GM (γ marker) alleles-individually or epistatically with a known human leukocyte antigen (HLA) risk allele-were associated with the development of Alzheimer disease (AD). METHODS Using a prospective cohort study design, we genotyped DNA samples from 209 African American (AA) and 638 European American (EA) participants for IgG1 (GM 3 and GM 17), IgG2 (GM 23+ and GM 23-), and HLA-DRB1 rs9271192 (A/C) alleles by TaqMan and rhAMP genotyping assays. RESULTS In EA subjects, none of the GM or HLA alleles-individually or epistatically-were associated with time to development of AD. In AA subjects, GM and HLA alleles individually were not associated with time to development of AD. However, there was a significant interaction: In the presence of GM 3 (i.e., GM 3/3 and GM 3/17 subjects), the presence of the HLA-C allele was associated with a 4-fold increase in the likelihood of developing AD compared with its absence (hazard ratio [HR] 4.17, 95% CI, 1.28-13.58). In the absence of GM 3 (GM 17/17 subjects), however, the presence of the HLA-C allele was not associated with time to development of AD (HR 1.10, 95% CI, 0.50-2.41). CONCLUSIONS These results show that particular GM and HLA alleles epistatically contribute to the development of AD.
Collapse
Affiliation(s)
- Janardan P. Pandey
- From the Department of Microbiology and Immunology (J.P.P., R.T.K.) and Department of Public Health, Sciences (P.J.N.), Medical University of South Carolina, Charleston; and Rush Alzheimer's Disease Center (L.L.B., D.A.B.), Rush University Medical Center, Chicago, IL
| | - Paul J. Nietert
- From the Department of Microbiology and Immunology (J.P.P., R.T.K.) and Department of Public Health, Sciences (P.J.N.), Medical University of South Carolina, Charleston; and Rush Alzheimer's Disease Center (L.L.B., D.A.B.), Rush University Medical Center, Chicago, IL
| | - Ronald T. Kothera
- From the Department of Microbiology and Immunology (J.P.P., R.T.K.) and Department of Public Health, Sciences (P.J.N.), Medical University of South Carolina, Charleston; and Rush Alzheimer's Disease Center (L.L.B., D.A.B.), Rush University Medical Center, Chicago, IL
| | - Lisa L. Barnes
- From the Department of Microbiology and Immunology (J.P.P., R.T.K.) and Department of Public Health, Sciences (P.J.N.), Medical University of South Carolina, Charleston; and Rush Alzheimer's Disease Center (L.L.B., D.A.B.), Rush University Medical Center, Chicago, IL
| | - David A. Bennett
- From the Department of Microbiology and Immunology (J.P.P., R.T.K.) and Department of Public Health, Sciences (P.J.N.), Medical University of South Carolina, Charleston; and Rush Alzheimer's Disease Center (L.L.B., D.A.B.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
22
|
Wang ZX, Wan Q, Xing A. HLA in Alzheimer's Disease: Genetic Association and Possible Pathogenic Roles. Neuromolecular Med 2020; 22:464-473. [PMID: 32894413 DOI: 10.1007/s12017-020-08612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is commonly considered as the most prominent dementing disorder globally and is characterized by the deposition of misfolded amyloid-β (Aβ) peptide and the aggregation of neurofibrillary tangles. Immunological disturbances and neuroinflammation, which result from abnormal immunological reactivations, are believed to be the primary stimulating factors triggering AD-like neuropathy. It has been suggested by multiple previous studies that a bunch of AD key influencing factors might be attributed to genes encoding human leukocyte antigen (HLA), whose variety is an essential part of human adaptive immunity. A wide range of activities involved in immune responses may be determined by HLA genes, including inflammation mediated by the immune response, T-cell transendothelial migration, infection, brain development and plasticity in AD pathogenesis, and so on. The goal of this article is to review the recent epidemiological findings of HLA (mainly HLA class I and II) associated with AD and investigate to what extent the genetic variations of HLA were clinically significant as pathogenic factors for AD. Depending on the degree of contribution of HLA in AD pathogenesis, targeted research towards HLA may propel AD therapeutic strategies into a new era of development.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Neurosurgery, Qingdao University, Qingdao, 266071, China.
- Department of Pathophysiology, Qingdao University, Qingdao, 266071, China.
| | - Ang Xing
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
23
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Huang P, Yang YH, Chang YH, Chang SL, Chou MC, Lai CL, Liu CK, Chen HY. Association of early-onset Alzheimer's disease with germline-generated high affinity self-antigen load. Transl Psychiatry 2020; 10:146. [PMID: 32398703 PMCID: PMC7217838 DOI: 10.1038/s41398-020-0826-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
Self-antigen presentation outside the central nervous system has crucial role regarding self-proteins tolerance and autoimmunity, leading to neuroinflammation. Self-antigen with strong-binding affinity is considered to be pathogenic. We aim to investigate whether strong-binding affinity self-antigen load is associated with early/late-onset Alzheimer's disease (AD). A total of 54 AD samples (22 early-onset, 32 late-onset) underwent next-generation sequencing (NGS) for whole-exome sequencing. Genotypes of HLA class I genes and germline mutations were obtained for estimation of the binding affinity and number of self-antigens. For each patient, self-antigen load was estimated by adding up the number of self-antigens with strong-binding affinity. Self-antigen load of early-onset AD was significantly higher than late-onset AD (mean ± SD: 6115 ± 2430 vs 4373 ± 2492; p = 0.011). An appropriate cutoff value 2503 for dichotomizing self-antigen load was obtained by receiver operating characteristic (ROC) curve analysis. Patients were then dichotomized into high or low self-antigen load groups in the binary multivariate logistic regression analysis. Adjusted odds ratio of the high self-antigen load (>2503) was 14.22 (95% CI, 1.22-165.70; p = 0.034) after controlling other covariates including gender, education, ApoE status, and baseline CDR score. This is the first study using NGS to investigate germline mutations generated self-antigen load in AD. As strong-binding affinity self-antigen is considered to be pathogenic in neuroinflammation, our finding indicated that self-antigen load did have a role in the pathogenesis of AD owing to its association with neuroinflammation. This finding may also contribute to further research regarding disease mechanism and development of novel biomarkers or treatment.
Collapse
Affiliation(s)
- Poyin Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- grid.412019.f0000 0000 9476 5696Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.415007.70000 0004 0477 6869Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ya-Hsuan Chang
- grid.28665.3f0000 0001 2287 1366Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shu-Ling Chang
- grid.412019.f0000 0000 9476 5696School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Chou
- grid.415007.70000 0004 0477 6869Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chiou-Lian Lai
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Kuan Liu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan. .,Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
25
|
Yan Y, Zhao A, Qui Y, Li Y, Yan R, Wang Y, Xu W, Deng Y. Genetic Association of FERMT2, HLA-DRB1, CD2AP, and PTK2B Polymorphisms With Alzheimer's Disease Risk in the Southern Chinese Population. Front Aging Neurosci 2020; 12:16. [PMID: 32116649 PMCID: PMC7010721 DOI: 10.3389/fnagi.2020.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aimed to explore the relationship between 18 single nucleotide polymorphisms (SNPs) and Alzheimer’s disease (AD) within the southern Chinese population. Methods A total of 420 participants, consisting of 215 AD patients and 205 sex- and age-matched controls, were recruited. The SNaPshot technique and polymer chain reaction (PCR) were used to detect the 18 SNPs. Combined with the apolipoprotein E (APOE) ε4 allele and age at onset, we performed an association analysis between these SNPs and AD susceptibility. Furthermore, we analyzed SNP-associated gene expression using the expression quantitative trait loci analysis. Results Our study found that rs17125924 of FERMT2 was associated with the risk of developing AD in the dominant (P = 0.022, odds ratio [OR] = 1.57, 95% confidence interval [CI]: 1.07–2.32) and overdominant (P = 0.005, OR = 1.76, 95% CI: 1.18–2.61) models. Moreover, compared with APOE ε4 non-carriers, the frequency of the G-allele at rs17125924 was significantly higher among AD patients in APOE ε4 allele carriers (P = 0.029). The rs9271058 of HLA-DRB1 (dominant, overdominant, and additive models), rs9473117 of CD2AP (dominant and additive models), and rs73223431 of PTK2B (dominant, overdominant, and additive models) were associated with early onset AD (EOAD). Using the genotype-tissue expression (GTEx) and Braineac database, we found a significant association between rs9271058 genotypes and HLA-DRB1 expression levels, while the CC genotype at rs9473117 and the TT genotype of rs73223431 increased CD2AP and PTK2B gene expression, respectively. Conclusion Our study identifies the G-allele at rs17125924 as a risk factor for developing AD, especially in APOE ε4 carriers. In addition, we found that rs9271058 of HLA-DRB1, rs9473117 of CD2AP, and rs73223431 of PTK2B were associated with EOAD. Further studies with larger sample sizes are needed to confirm our results.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qui
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Yan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Ruijin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Hasselmann J, Blurton-Jones M. Human iPSC-derived microglia: A growing toolset to study the brain's innate immune cells. Glia 2020; 68:721-739. [PMID: 31926038 DOI: 10.1002/glia.23781] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in the generation of microglia from human induced pluripotent stem cells (iPSCs) have provided exciting new approaches to examine and decipher the biology of microglia. As these techniques continue to evolve to encompass more complex in situ and in vivo paradigms, so too have they begun to yield novel scientific insight into the genetics and function of human microglia. As such, researchers now have access to a toolset comprised of three unique "flavors" of iPSC-derived microglia: in vitro microglia (iMGs), organoid microglia (oMGs), and xenotransplanted microglia (xMGs). The goal of this review is to discuss the variety of research applications that each of these techniques enables and to highlight recent discoveries that these methods have begun to uncover. By presenting the research paradigms in which each model has been successful, as well as the key benefits and limitations of each approach, it is our hope that this review will help interested researchers to incorporate these techniques into their studies, collectively advancing our understanding of human microglia biology.
Collapse
Affiliation(s)
- Jonathan Hasselmann
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| |
Collapse
|
27
|
Zhang C, Hu R, Zhang G, Zhe Y, Hu B, He J, Wang Z, Qi X. A Weighted Genetic Risk Score Based on Four APOE-Independent Alzheimer’s Disease Risk Loci May Supplement APOE E4 for Better Disease Prediction. J Mol Neurosci 2019; 69:433-443. [DOI: 10.1007/s12031-019-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
|
28
|
Zhang M, Ferrari R, Tartaglia MC, Keith J, Surace EI, Wolf U, Sato C, Grinberg M, Liang Y, Xi Z, Dupont K, McGoldrick P, Weichert A, McKeever PM, Schneider R, McCorkindale MD, Manzoni C, Rademakers R, Graff-Radford NR, Dickson DW, Parisi JE, Boeve BF, Petersen RC, Miller BL, Seeley WW, van Swieten JC, van Rooij J, Pijnenburg Y, van der Zee J, Van Broeckhoven C, Le Ber I, Van Deerlin V, Suh E, Rohrer JD, Mead S, Graff C, Öijerstedt L, Pickering-Brown S, Rollinson S, Rossi G, Tagliavini F, Brooks WS, Dobson-Stone C, Halliday GM, Hodges JR, Piguet O, Binetti G, Benussi L, Ghidoni R, Nacmias B, Sorbi S, Bruni AC, Galimberti D, Scarpini E, Rainero I, Rubino E, Clarimon J, Lleó A, Ruiz A, Hernández I, Pastor P, Diez-Fairen M, Borroni B, Pasquier F, Deramecourt V, Lebouvier T, Perneczky R, Diehl-Schmid J, Grafman J, Huey ED, Mayeux R, Nalls MA, Hernandez D, Singleton A, Momeni P, Zeng Z, Hardy J, Robertson J, Zinman L, Rogaeva E. A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain 2018; 141:2895-2907. [PMID: 30252044 PMCID: PMC6158742 DOI: 10.1093/brain/awy238] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ming Zhang
- Shanghai First Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Krembil Neuroscience Center, University Health Network Memory clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ezequiel I Surace
- Laboratorio de Biología Molecular, Departamento de Neuropatología, Instituto de Investigaciones Neurológicas Dr. Raúl Carrea (FLENI), Buenos Aires, Argentina
| | - Uri Wolf
- Baycrest Health Science, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Yan Liang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Zhengrui Xi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Kyle Dupont
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Anna Weichert
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Raphael Schneider
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Bruce L Miller
- Department of Neurology, University of California San Francisco Memory and Aging Center, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology and Department of Pathology, University of California San Francisco Memory and Aging Center, San Francisco, CA, USA
| | | | | | - Yolande Pijnenburg
- Alzheimer Center, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center of Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center of Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Isabelle Le Ber
- Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et la Moelle épinière (ICM), Paris, France
- Reference Center for Rare and Young Dementias, Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Hopital Pitié-Salpêtrière, Paris, France
| | - Vivianna Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Caroline Graff
- Division of Neurogeriatrics, Alzheimer Research Center, Karolinska Institutet, Solna, Sweden
- Genetics Unit, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Öijerstedt
- Division of Neurogeriatrics, Alzheimer Research Center, Karolinska Institutet, Solna, Sweden
- Genetics Unit, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, University of Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, University of Manchester, UK
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - William S Brooks
- Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - John R Hodges
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Olivier Piguet
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
- School of Psychology and Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Giuliano Binetti
- MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Don Gnocchi, Florence, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, Lamezia Terme, Azienda Sanitaria Provinciale Catanzaro, Italy
| | - Daniela Galimberti
- Neurodegenerative Disease Unit, University of Milan, Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Disease Unit, University of Milan, Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Innocenzo Rainero
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Jordi Clarimon
- IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustin Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Fundació per la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Fundació per la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Florence Pasquier
- National Reference Center for Young Onset Dementia, Neurology Department, Centre Hospitalier Régional Universitaire de Lille, University Hospital, Inserm U1171, DistAlz, Lille, France
| | - Vincent Deramecourt
- National Reference Center for Young Onset Dementia, Neurology Department, Centre Hospitalier Régional Universitaire de Lille, University Hospital, Inserm U1171, DistAlz, Lille, France
| | - Thibaud Lebouvier
- National Reference Center for Young Onset Dementia, Neurology Department, Centre Hospitalier Régional Universitaire de Lille, University Hospital, Inserm U1171, DistAlz, Lille, France
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, Division of Mental Health in Older Adults and Alzheimer Therapy and Research Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Imperial College London, School of Public Health, Neuroepidemiology and Ageing Research Unit, London, UK
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Jordan Grafman
- Cognitive Neurology and Alzheimer’s Center, Department of Psychiatry, Feinberg School of Medicine Chicago, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences Northwestern University Chicago, IL, USA
| | - Edward D Huey
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, The Departments of Neurology, Psychiatry, Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - Zhen Zeng
- Merck & Co., Inc, Kenilworth, NJ, USA
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Aliseychik MP, Andreeva TV, Rogaev EI. Immunogenetic Factors of Neurodegenerative Diseases: The Role of HLA Class II. BIOCHEMISTRY (MOSCOW) 2018; 83:1104-1116. [DOI: 10.1134/s0006297918090122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|