1
|
Liu X, He Q, Sun S, Lu X, Chen Y, Lu S, Wang Z. Research progress of SHP-1 agonists as a strategy for tumor therapy. Mol Divers 2024:10.1007/s11030-024-11059-5. [PMID: 39739293 DOI: 10.1007/s11030-024-11059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a member of protein tyrosine phosphatase (PTP) family, and serves as a crucial negative regulator of various oncogenic signaling pathways. The development of SHP-1 agonists has garnered extensive research attention and is considered as a promising strategy for treating tumors. In this review, we comprehensively analyze the advancements of SHP-1 agonists, focusing on their structures and biological activities. Based on the structure skeletons, we classify these SHP-1 agonists as kinase inhibitors, sorafenib derivatives, obatoclax derivatives, lithocholic acid derivatives and thieno[2,3-b]quinoline derivatives. Additionally, we discuss the potential opportunities and challenges for developing SHP-1 agonists. It is hoped that this review will provide inspiring insights into the discovery of drugs targeting SHP-1.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuding Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Xun Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
3
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Liu W, Bian Z, Ma Y, Kang Z, Jin J, Li X, Ge S, Hao Y, Zhang H, Xie Y. Lactobacillus plantarum Zhang-LL Inhibits Colitis-Related Tumorigenesis by Regulating Arachidonic Acid Metabolism and CD22-Mediated B-Cell Receptor Regulation. Nutrients 2023; 15:4512. [PMID: 37960165 PMCID: PMC10648432 DOI: 10.3390/nu15214512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1β, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.
Collapse
Affiliation(s)
- Jingxin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yumeng Ma
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zixin Kang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Shaoyang Ge
- Beijing HEYIYUAN BIOTECHNOLOGY Co., Ltd., Beijing 100088, China;
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China;
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| |
Collapse
|
5
|
Yu Y, Wu T, Zhang X, Li P, Ye L, Kuang J, Tao L, Ni L, Zhao Q, Zhang J, Pan H, Xie C, Zheng C, Li S, Cui R. Regorafenib activates oxidative stress by inhibiting SELENOS and potentiates oxaliplatin-induced cell death in colon cancer cells. Eur J Pharmacol 2023; 957:175986. [PMID: 37598924 DOI: 10.1016/j.ejphar.2023.175986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer, and is one of the leading causes of cancer-related death worldwide. At the time of diagnosis, about 20% of patients with CRC present metastatic disease. Regorafenib, an oral multi-kinase inhibitor, has been demonstrated the efficacy and tolerability in patients with metastatic CRC. Oxaliplatin is a frontline treatment regimen for CRC, and combination treatments with oxaliplatin and other chemotherapeutic agents exert superior therapeutic effects. However, side effects and drug resistance limited their further clinical application. Here, we found that combined treatment with regorafenib and oxaliplatin synergistically enhanced anti-tumor activities in CRC by activating reactive oxygen species (ROS) mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 signaling pathways. Regorafenib promoted ROS production by suppressing the expression of selenoprotein S (SELENOS). Knocking down SELENOS sensitized ROS-mediated anti-tumor effects of regorafenib in CRC cells. Furthermore, mouse xenograft models demonstrated that synergistic anti-tumor effects of combined treatment with regorafenib and oxaliplatin. This study provided solid experimental evidences for the combined treatment with regorafenib and oxaliplatin in CRC.
Collapse
Affiliation(s)
- Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Wu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaodong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Pengfei Li
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lihua Ye
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiayang Kuang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Tao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lianli Ni
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qi Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ji Zhang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanle Pan
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, Zhejiang, 325000, China
| | - Congying Xie
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, Zhejiang, 325000, China
| | - Chenguo Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Shaotang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
6
|
Beller NC, Wang Y, Hummon AB. Evaluating the Pharmacokinetics and Pharmacodynamics of Chemotherapeutics within a Spatial SILAC-Labeled Spheroid Model System. Anal Chem 2023; 95:11263-11272. [PMID: 37462741 PMCID: PMC10676637 DOI: 10.1021/acs.analchem.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Tumors have considerable cellular heterogeneity that is impossible to explore with simple cell cultures. Spheroid cultures contain pathophysiological and chemical gradients similar to in vivo tumors and show complex responses to therapeutics, similar to a tumor. Using pulsed isotopic labels, we demonstrate the pronounced differential response of the proteome to the drug Regorafenib, a multikinase inhibitor, in HCT 116 spheroids. Regorafenib treatment of outer spheroids inhibits proteins involved in critical pathways such as mTOR signaling, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling, and colorectal cancer metastasis signaling, resulting in decreased proliferation and cellular apoptosis. By contrast, analysis of the treated core cells shows upregulation of MAPK1 and KRAS, possibly implicating drug resistance within these late apoptotic cells. Thus, pulsed isotopic labeling enables evaluation of the distinct proteomic responses for cells residing in the different chemical microenvironments of the spheroid. This platform promises great utility in assisting researchers' predictions of pharmacodynamic therapeutic responses within complex tumors.
Collapse
Affiliation(s)
- Nicole C. Beller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| |
Collapse
|
7
|
Tseng LM, Lau KY, Chen JL, Chu PY, Huang TT, Lee CH, Wang WL, Chang YY, Huang CT, Huang CC, Chao TC, Tsai YF, Lai JI, Dai MS, Liu CY. Regorafenib induces damage-associated molecular patterns, cancer cell death and immune modulatory effects in a murine triple negative breast cancer model. Exp Cell Res 2023; 429:113652. [PMID: 37209991 DOI: 10.1016/j.yexcr.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Damage associated molecular patterns (DAMPs), including calreticulin (CRT) exposure, high-mobility group box 1 protein (HMGB1) elevation, and ATP release, characterize immunogenic cell death (ICD) and may play a role in cancer immunotherapy. Triple negative breast cancer (TNBC) is an immunogenic subtype of breast cancer with higher lymphocyte infiltration. Here, we found that regorafenib, a multi-target angiokinase inhibitor previously known to suppress STAT3 signaling, induced DAMPs and cell death in TNBC cells. Regorafenib induced the expression of HMGB1 and CRT, and the release of ATP. Regorafenib-induced HMGB1 and CRT were attenuated following STAT3 overexpression. In a 4T1 syngeneic murine model, regorafenib treatment increased HMGB1 and CRT expression in xenografts, and effectively suppressed 4T1 tumor growth. Immunohistochemical staining revealed increased CD4+ and CD8+ tumor-infiltrating T cells in 4T1 xenografts following regorafenib treatment. Regorafenib treatment or programmed death-1 (PD-1) blockade using anti-PD-1 monoclonal antibody reduced lung metastasis of 4T1 cells in immunocompetent mice. While regorafenib increases the proportion of MHC II high expression on dendritic cells in mice with smaller tumors, the combination of regorafenib and PD-1 blockade did not show a synergistic effect on anti-tumor activity. These results suggest that regorafenib induces ICD and suppresses tumor progression in TNBC. It should be carefully evaluated when developing a combination therapy with an anti-PD-1 antibody and a STAT3 inhibitor.
Collapse
Affiliation(s)
- Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ka-Yi Lau
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
| | - Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Lun Wang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Chemotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fang Tsai
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
9
|
Xu L, Mu X, Liu M, Wang Z, Shen C, Mu Q, Feng B, Xu Y, Hou T, Gao L, Jiang H, Li J, Zhou Y, Wang W. Novel thieno[2,3-b]quinoline-procaine hybrid molecules: A new class of allosteric SHP-1 activators evolved from PTP1B inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Regorafenib Induces Senescence and Epithelial-Mesenchymal Transition in Colorectal Cancer to Promote Drug Resistance. Cells 2022; 11:cells11223663. [PMID: 36429091 PMCID: PMC9688587 DOI: 10.3390/cells11223663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance. SW480 cells demonstrated senescent-like properties, including a cell arrest in the late G2/prophase cell cycle stage and a statistically significant decrease in the expression of G1 Cyclin-Dependent Kinase inhibitors and key cell cycle regulators. A specific senescence-associated secretome was also observed. In contrast, HCT-116 treated cells presented early senescent features and developed acquired resistance triggering EMT and a more aggressive phenotype over time. The gained migration and invasion ability by long-exposed cells was associated with the increased expression level of key cellular and extracellular EMT-related factors. The PI3K/AKT pathway was a significant player in the acquired resistance of HCT-116 cells, possibly related to a PI3KCA mutation in this cell line. Our findings provide new insights into the phenotypic plasticity of CRC cells able, under treatment pressure, to acquire a stable TIS or to use an early senescence state to undergo EMT.
Collapse
|
11
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
12
|
Fang H, Ma W, Guo X, Wang J. PTPN6 promotes chemosensitivity of colorectal cancer cells via inhibiting the SP1/MAPK signalling pathway. Cell Biochem Funct 2021; 39:392-400. [PMID: 33615510 DOI: 10.1002/cbf.3604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/17/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
The abnormal expression of protein tyrosine phosphatase nonreceptor type 6 (PTPN6) has been proved to be associated with the progression of colorectal cancer. However, its role in chemosensitivity and related molecular mechanism have not been clarified. It has been reported that PTPN6 was down-regulated in colorectal cancer cells compared with the normal colorectal cells. To evaluate the effects of PTPN6 on the proliferation and survival of colorectal cancer cells, PTPN6 was overexpressed in colorectal cancer cells in the present study. We found that cell proliferation and viability were both decreased after overexpression of PTPN6. The IC50 of 5-Fu against colorectal cells was also declined in PTPN6 transfected cells. And further, we verified that PTPN6 could down-regulate the expression of P-gp and MRP-1. Moreover, SP1 was the target protein of PTPN6 predicated by ChIPBase software and confirmed through Co-immunoprecipitation assay and it was negatively regulated by PTPN6. To further verify the effect of SP1 on chemoresistance, SP1 was overexpressed. SP1 overexpression enhanced the drug-resistance to 5-Fu and abrogated the effects of PTPN6 upregulation on 5-Fu resistance. All the above changes were associated with the down-regulation of proteins related to MAPK signalling pathway, such as phosphorylation of extracellular regulated protein kinases (ERK) and p38. In summary, PTPN6 promoted chemosensitivity of colorectal cancer cells by targeting SP1 and inhibiting the activation of MAPK signalling pathway. SIGNIFICANCE OF THE STUDY: It has been demonstrated that the abnormal expression of PTPN6 was related to the progression of colorectal cancer. However, the chemosensitivity of PTPN6 and its molecular mechanisms were still unclear. Here, we identified that PTPN6 was down-regulated in colorectal cancer cells. Moreover, PTPN6 overexpression not only reduced cell proliferation and viability, but decreased the resistance of colorectal cells to 5-Fu. In our research, we found that the SP1 was the target protein of PTPN6 and it was negatively regulated by PTPN6. In addition, SP1 could increase the resistance of colorectal cells to 5-Fu. Molecular mechanism studies have shown that PTPN6 promoted the chemosensitivity of colorectal cancer cells by inhibiting the activation of MAPK signalling pathway.
Collapse
Affiliation(s)
- Huilong Fang
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou, China
| | - Wei Ma
- Department of Translational Medicine Collaorative Innovation Center, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xuli Guo
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou, China
| | - Junjie Wang
- Department of Pharmacology, Xiangnan University, Chenzhou, China
| |
Collapse
|
13
|
Markovics A, Toth DM, Glant TT, Mikecz K. Regulation of autoimmune arthritis by the SHP-1 tyrosine phosphatase. Arthritis Res Ther 2020; 22:160. [PMID: 32586377 PMCID: PMC7318740 DOI: 10.1186/s13075-020-02250-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background The Src homology region 2 domain-containing phosphatase-1 (SHP-1) is known to exert negative regulatory effects on immune cell signaling. Mice with mutations in the Shp1 gene develop inflammatory skin disease and autoimmunity, but no arthritis. We sought to explore the role of SHP-1 in arthritis using an autoimmune mouse model of rheumatoid arthritis. We generated Shp1 transgenic (Shp1-Tg) mice to study the impact of SHP-1 overexpression on arthritis susceptibility and adaptive immune responses. Methods SHP-1 gene and protein expression as well as tyrosine phosphatase activity were evaluated in spleen cells of transgenic and wild type (WT) mice. WT and Shp1-Tg (homozygous or heterozygous for the transgene) mice were immunized with human cartilage proteoglycan (PG) in adjuvant, and arthritis symptoms were monitored. Protein tyrosine phosphorylation level, net cytokine secretion, and serum anti-human PG antibody titers were measured in immune cells from WT and Shp1-Tg mice. WT mice were treated with regorafenib orally to activate SHP-1 either before PG-induced arthritis (PGIA) symptoms developed (preventive treatment) or starting at an early stage of disease (therapeutic treatment). Data were statistically analyzed and graphs created using GraphPad Prism 8.0.2 software. Results SHP-1 expression and tyrosine phosphatase activity were elevated in both transgenic lines compared to WT mice. While all WT mice developed arthritis after immunization, none of the homozygous Shp1-Tg mice developed the disease. Heterozygous transgenic mice, which showed intermediate PGIA incidence, were selected for further investigation. We observed differences in interleukin-4 and interleukin-10 production in vitro, but serum anti-PG antibody levels were not different between the genotypes. We also found decreased tyrosine phosphorylation of several proteins of the JAK/STAT pathway in T cells from PG-immunized Shp1-Tg mice. Regorafenib administration to WT mice prevented the development of severe PGIA or reduced disease severity when started after disease onset. Conclusions Resistance to arthritis in the presence of SHP-1 overexpression likely results from the impairment of tyrosine phosphorylation (deactivation) of key immune cell signaling proteins in the JAK/STAT pathway, due to the overwhelming tyrosine phosphatase activity of the enzyme in Shp1-Tg mice. Our study is the first to investigate the role of SHP-1 in autoimmune arthritis using animals overexpressing this phosphatase. Pharmacological activation of SHP-1 might be considered as a new approach to the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA.
| | - Daniel M Toth
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA
| | - Tibor T Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Room 741, Chicago, IL, 60612, USA
| |
Collapse
|
14
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
15
|
Xu YY, Wang WW, Huang J, Zhu WG. Ellagic acid induces esophageal squamous cell carcinoma cell apoptosis by modulating SHP-1/STAT3 signaling. Kaohsiung J Med Sci 2020; 36:699-704. [PMID: 32374927 DOI: 10.1002/kjm2.12224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
Ellagic acid (EA) has been reported to have antiproliferative and antioxidant properties, but its function in esophageal squamous cell carcinoma (ESCC) has not been investigated yet. In the current study, EA was found have a significant anti-tumor activity in ESCC. In specific, EA inhibited ESCC cell survival in both of a concentration- and time-dependent manner. And our results showed that EA promoted ESCC cell apoptosis, including inducing the cleavages of PARP, and inhibiting the expression of anti-apoptotic proteins. In mechanistic, EA markedly suppressed STAT3-driven luciferase activity, and inhibited both of the endogenous and cytokines-induced STAT3 activation in ESCC cells. Further investigations indicated that EA could significantly upregulate SHP-1 expression, a negative modulator of STAT3 signaling. In contrast, knockdown of SHP-1 could attenuate the effects of EA on inhibiting ESCC cell survival. Moreover, we found that EA could inhibit RNF6 expression, an E3 of SHP-1, and overexpressing RNF6 could also significantly attenuate the effects of EA on inhibiting ESCC cell survival, which further revealed that EA could inhibit STAT3 signaling by modulating RNF6/SHP-1 axis. Our present study indicated that EA could be as a novel STAT3 inhibitor for the treatment of ESCC.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wan-Wei Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jing Huang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wei-Guo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
16
|
Parri E, Kuusanmäki H, van Adrichem AJ, Kaustio M, Wennerberg K. Identification of novel regulators of STAT3 activity. PLoS One 2020; 15:e0230819. [PMID: 32231398 PMCID: PMC7108870 DOI: 10.1371/journal.pone.0230819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 01/05/2023] Open
Abstract
STAT3 mediates signalling downstream of cytokine and growth factor receptors where it acts as a transcription factor for its target genes, including oncogenes and cell survival regulating genes. STAT3 has been found to be persistently activated in many types of cancers, primarily through its tyrosine phosphorylation (Y705). Here, we show that constitutive STAT3 activation protects cells from cytotoxic drug responses of several drug classes. To find novel and potentially targetable STAT3 regulators we performed a kinase and phosphatase siRNA screen with cells expressing either a hyperactive STAT3 mutant or IL6-induced wild type STAT3. The screen identified cell division cycle 7-related protein kinase (CDC7), casein kinase 2, alpha 1 (CSNK2), discoidin domain-containing receptor 2 (DDR2), cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 4-kinase 2-alpha (PI4KII), C-terminal Src kinase (CSK) and receptor-type tyrosine-protein phosphatase H (PTPRH) as potential STAT3 regulators. Using small molecule inhibitors targeting these proteins, we confirmed dose and time dependent inhibition of STAT3-mediated transcription, suggesting that inhibition of these kinases may provide strategies for dampening STAT3 activity in cancers.
Collapse
Affiliation(s)
- Elina Parri
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | - Meri Kaustio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
17
|
Fondevila F, Méndez-Blanco C, Fernández-Palanca P, González-Gallego J, Mauriz JL. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Exp Mol Med 2019; 51:1-15. [PMID: 31551425 PMCID: PMC6802659 DOI: 10.1038/s12276-019-0308-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Regorafenib is a sorafenib-derived chemotherapy drug belonging to the multikinase inhibitor family. This agent effectively targets a wide range of tyrosine kinases involved in cancer biology, such as those implicated in oncogenesis, angiogenesis, and tumor microenvironment control. The beneficial effects of regorafenib in clinical trials of patients who suffer from advanced hepatocellular carcinoma (HCC), colorectal cancer (CRC) or gastrointestinal stromal tumors (GISTs) refractory to standard treatments led to regorafenib monotherapy approval as a second-line treatment for advanced HCC and as a third-line treatment for advanced CRC and GISTs. Multiple in vitro and in vivo studies have been performed over the last decade to reveal the molecular mechanisms of the favorable actions exerted by regorafenib in patients. Given the hypothetical loss of sensitivity to regorafenib in tumor cells, preclinical research is also searching for novel therapeutic approaches consisting of co-administration of this drug plus other agents as a strategy to improve regorafenib effectiveness. This review summarizes the anti-tumor effects of regorafenib in single or combined treatment in preclinical models of HCC, CRC and GISTs and discusses both the global and molecular effects that account for its anti-cancer properties in the clinical setting. The cancer drug regorafenib exhibits a broad range of anti-tumor activities that could be enhanced by combination with other treatments. A team led by José L. Mauriz from the University of León, Spain, review the ways in which regorafenib, blocking several enzymes involved in cancer biology, has been shown to shrink tumors in different models of liver, colon and gastrointestinal cancer. Its mechanisms of action include blockade of new blood vessel formation, induction of cell death and modulation of the immune microenvironment. Research studies show that co-administration of regorafenib with other drugs directed at various molecular targets or immune pathways produces synergistic effects against cancer cells. The preclinical data highlights the potential of combination drug regimens to improve outcomes among patients eligible for regorafenib treatment.
Collapse
Affiliation(s)
- Flavia Fondevila
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula Fernández-Palanca
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - José L Mauriz
- Institute of Biomedicine, University of León, León, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
18
|
Rocha SFLS, Sant'Anna CMR. A procedure combining molecular docking and semiempirical method PM7 for identification of selective Shp2 inhibitors. Biopolymers 2019; 110:e23320. [DOI: 10.1002/bip.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sheisi F. L. S. Rocha
- Programa de Pós‐Graduação em Química, Instituto de QuímicaUniversidade Federal Rural do Rio de Janeiro Seropédica Brazil
| | - Carlos M. R. Sant'Anna
- Programa de Pós‐Graduação em Química, Instituto de QuímicaUniversidade Federal Rural do Rio de Janeiro Seropédica Brazil
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade Federal Rural do Rio de Janeiro Seropédica Brazil
| |
Collapse
|
19
|
Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur J Med Chem 2019; 179:916-935. [PMID: 31306818 DOI: 10.1016/j.ejmech.2019.06.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Traditional chemotherapy drugs are hard to reach a satisfactory therapeutic effect since advanced HCC is highly chemo-resistant. Sorafenib is an oral multikinase inhibitor that can suppress tumor cell proliferation, angiogenesis and induce cancer cell apoptosis. However, the poor solubility, rapid metabolism and low bioavailability of sorafenib greatly restricted its further clinical application. During the past decade, numerous sorafenib derivatives have been designed and synthesized to overcome its disadvantages and improve its clinical performance. This article focuses on the therapeutic effects and mechanisms of various sorafenib derivatives with modifications on the N-methylpicolinamide group, urea group, central aromatic ring or others. More importantly, this review summarizes the current status of the structure-activity relationship (SAR) of reported sorafenib derivatives, which can provide some detailed information of future directions for further structural modifications of sorafenib to discovery new anti-tumor drugs with improved clinical performance.
Collapse
Affiliation(s)
- Fangmin Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yifan Fang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingqing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rui Huang
- Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
20
|
Ferner MC, Hodin J, Ng G, Gaylord B. Brief exposure to intense turbulence induces a sustained life-history shift in echinoids. ACTA ACUST UNITED AC 2019; 222:jeb.187351. [PMID: 30573667 DOI: 10.1242/jeb.187351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
In coastal ecosystems, attributes of fluid motion can prompt animal larvae to rise or sink in the water column and to select microhabitats within which they attach and commit to a benthic existence. In echinoid (sea urchin and sand dollar) larvae living along wave-exposed shorelines, intense turbulence characteristic of surf zones can cause individuals to undergo an abrupt life-history shift characterized by precocious entry into competence - the stage at which larvae will settle and complete metamorphosis in response to local cues. However, the mechanistic details of this turbulence-triggered onset of competence remain poorly defined. Here, we evaluate in a series of laboratory experiments the time course of this turbulence effect, both the rapidity with which it initiates and whether it perdures. We found that larvae become competent with turbulence exposures as brief as 30 s, with longer exposures inducing a greater proportion of larvae to become competent. Intriguingly, larvae can remember such exposures for a protracted period (at least 24 h), a pattern reminiscent of long-term potentiation. Turbulence also induces short-term behavioral responses that last less than 30 min, including cessation of swimming, that facilitate sinking and thus contact of echinoid larvae with the substratum. Together, these results yield a novel perspective on how larvae find their way to suitable adult habitat at the critical settlement transition, and also open new experimental opportunities to elucidate the mechanisms by which planktonic animals respond to fluid motion.
Collapse
Affiliation(s)
- Matthew C Ferner
- San Francisco Bay National Estuarine Research Reserve and Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA 94920, USA
| | - Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Gabriel Ng
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| | - Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
21
|
Chen W, Yang J, Zhang Y, Cai H, Chen X, Sun D. Regorafenib reverses HGF-induced sorafenib resistance by inhibiting epithelial-mesenchymal transition in hepatocellular carcinoma. FEBS Open Bio 2019; 9:335-347. [PMID: 30761258 PMCID: PMC6356182 DOI: 10.1002/2211-5463.12578] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Sorafenib resistance is one of the major obstacles towards achieving a better outcome in patients with advanced hepatocellular carcinoma (HCC), in which aberrant activation of the hepatocyte growth factor (HGF)/mesenchymal‐epithelial transition pathway is frequently observed. Here, we report that HCC cells develop sorafenib resistance following HGF stimulation. Furthermore, HGF activates the downstream extracellular signal‐related kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) pathway and induces epithelial–mesenchymal transition (EMT) by up‐regulating Snail in HCC cells. Inhibition of ERK and STAT3 abolished the rescue effect of HGF by down‐regulating Snail and EMT. Moreover, phosphoinositide 3‐kinase/Akt was also activated in HGF‐treated HCC cells, although it had no effect on Snail expression. Notably, we also found that regorafenib reversed HGF‐induced sorafenib resistance by inhibiting ERK and STAT3, and subsequently down‐regulating Snail and EMT. Taken together, our results indicate that HGF induces sorafenib resistance by activating phosporylated (P)‐ERK/Snail/EMT and P‐STAT3/Snail/EMT pathways. Inhibition of P‐ERK and P‐STAT3 by regorafenib can block HGF‐induced EMT, thereby reversing HGF‐induced sorafenib resistance.
Collapse
Affiliation(s)
- Weibo Chen
- Department of Hepatopancreatobiliary Surgery the Third Affiliated Hospital of Soochow University Changzhou China
| | - Junsheng Yang
- Department of Hepatopancreatobiliary Surgery the Third Affiliated Hospital of Soochow University Changzhou China
| | - Yue Zhang
- Department of Hepatopancreatobiliary Surgery the Third Affiliated Hospital of Soochow University Changzhou China
| | - Huihua Cai
- Department of Hepatopancreatobiliary Surgery the Third Affiliated Hospital of Soochow University Changzhou China
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery the Third Affiliated Hospital of Soochow University Changzhou China
| | - Donglin Sun
- Department of Hepatopancreatobiliary Surgery the Third Affiliated Hospital of Soochow University Changzhou China
| |
Collapse
|
22
|
Two novel SHP-1 agonists, SC-43 and SC-78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. Cell Death Discov 2018; 4:25. [PMID: 30109144 PMCID: PMC6089896 DOI: 10.1038/s41420-018-0084-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/28/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been shown to play a critical role in the maintenance of cancer stem cells (CSCs). Hence, the inhibition of STAT3 signaling has been suggested to be a viable therapeutic approach for cancers. Moreover, the efficacy of combinations of chemotherapeutic drugs and napabucasin, a small-molecule STAT3 inhibitor, have been assessed in various clinical trials, including those involving patients with metastatic colorectal cancer (CRC). Two recently developed small-molecule STAT3 inhibitors, SC-43 and SC-78, which can stimulate SHP-1 to inactivate STAT3, were found to have anti-tumor activity. In this study, the inhibitory effects of SC-43, SC-78, and regorafenib (a reference drug) on cell viability, STAT3 phosphorylation, and various stemness properties [e.g., sphere-forming and soft agar colony-forming abilities, CD133+/CD44+ (stem cell-like) subpopulations, and the expression of several CSC markers] were examined for both HCT-116 and HT-29 human CRC cells. We found that SC-43 and SC-78 but not regorafenib inhibited constitutive and IL-6-induced STAT3 phosphorylation in HCT-116 and HT-29 cells, respectively. Moreover, SC-43 and SC-78 were more potent than regorafenib in suppressing the stemness properties (except stem cell-like subpopulations) of these cells. As expected, SHP-1 knockdown almost completely abolished the suppressive effects of SC-43 and SC-78 on the sphere formation in both cell lines. Furthermore, SC-43 and SC-78 showed synergistic inhibitory effects with oxaliplatin and/or irinotecan on sphere formation. Overall, our results suggest that SC-43 and SC-78 are potent STAT3 inhibitors that may potentially be used in combination therapy for CRC.
Collapse
|
23
|
Khan K, Rata M, Cunningham D, Koh DM, Tunariu N, Hahne JC, Vlachogiannis G, Hedayat S, Marchetti S, Lampis A, Damavandi MD, Lote H, Rana I, Williams A, Eccles SA, Fontana E, Collins D, Eltahir Z, Rao S, Watkins D, Starling N, Thomas J, Kalaitzaki E, Fotiadis N, Begum R, Bali M, Rugge M, Temple E, Fassan M, Chau I, Braconi C, Valeri N. Functional imaging and circulating biomarkers of response to regorafenib in treatment-refractory metastatic colorectal cancer patients in a prospective phase II study. Gut 2018; 67:1484-1492. [PMID: 28790159 PMCID: PMC6204951 DOI: 10.1136/gutjnl-2017-314178] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Regorafenib demonstrated efficacy in patients with metastatic colorectal cancer (mCRC). Lack of predictive biomarkers, potential toxicities and cost-effectiveness concerns highlight the unmet need for better patient selection. DESIGN Patients with RAS mutant mCRC with biopsiable metastases were enrolled in this phase II trial. Dynamic contrast-enhanced (DCE) MRI was acquired pretreatment and at day 15 post-treatment. Median values of volume transfer constant (Ktrans), enhancing fraction (EF) and their product KEF (summarised median values of Ktrans× EF) were generated. Circulating tumour (ct) DNA was collected monthly until progressive disease and tested for clonal RAS mutations by digital-droplet PCR. Tumour vasculature (CD-31) was scored by immunohistochemistry on 70 sequential tissue biopsies. RESULTS Twenty-seven patients with paired DCE-MRI scans were analysed. Median KEF decrease was 58.2%. Of the 23 patients with outcome data, >70% drop in KEF (6/23) was associated with higher disease control rate (p=0.048) measured by RECIST V. 1.1 at 2 months, improved progression-free survival (PFS) (HR 0.16 (95% CI 0.04 to 0.72), p=0.02), 4-month PFS (66.7% vs 23.5%) and overall survival (OS) (HR 0.08 (95% CI 0.01 to 0.63), p=0.02). KEF drop correlated with CD-31 reduction in sequential tissue biopsies (p=0.04). RAS mutant clones decay in ctDNA after 8 weeks of treatment was associated with better PFS (HR 0.21 (95% CI 0.06 to 0.71), p=0.01) and OS (HR 0.28 (95% CI 0.07-1.04), p=0.06). CONCLUSIONS Combining DCE-MRI and ctDNA predicts duration of anti-angiogenic response to regorafenib and may improve patient management with potential health/economic implications.
Collapse
Affiliation(s)
- Khurum Khan
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Mihaela Rata
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Nina Tunariu
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - George Vlachogiannis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Silvia Marchetti
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | | | - Hazel Lote
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| | - Isma Rana
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Anja Williams
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Suzanne A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, UK
| | - Elisa Fontana
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - David Collins
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Zakaria Eltahir
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Sheela Rao
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - David Watkins
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Naureen Starling
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Jan Thomas
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Eleftheria Kalaitzaki
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Department of Statistics, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Nicos Fotiadis
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Ruwaida Begum
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Maria Bali
- Division of Radiotherapy and Imaging, Cancer Research UK Imaging Centre, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Massimo Rugge
- Department of Medicine (DIMED) and Surgical Pathology, University of Padua, Padua, Italy
| | - Eleanor Temple
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Matteo Fassan
- Department of Medicine (DIMED) and Surgical Pathology, University of Padua, Padua, Italy
| | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
| | - Chiara Braconi
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, UK
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, UK
| |
Collapse
|
24
|
Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2018. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphorylation is a crucial signaling mechanism that plays a role in epithelial carcinogenesis. Protein tyrosine kinases (PTKs) control various cellular processes including growth, differentiation, metabolism, and motility by activating major signaling pathways including STAT3, AKT, and MAPK. Genetic mutation of PTKs and/or prolonged activation of PTKs and their downstream pathways can lead to the development of epithelial cancer. Therefore, PTKs became an attractive target for cancer prevention. PTK inhibitors are continuously being developed, and they are currently used for the treatment of cancers that show a high expression of PTKs. Protein tyrosine phosphatases (PTPs), the homeostatic counterpart of PTKs, negatively regulate the rate and duration of phosphotyrosine signaling. PTPs initially were considered to be only housekeeping enzymes with low specificity. However, recent studies have demonstrated that PTPs can function as either tumor suppressors or tumor promoters, depending on their target substrates. Together, both PTK and PTP signal transduction pathways are potential therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
25
|
Fan LC, Teng HW, Shiau CW, Tai WT, Hung MH, Yang SH, Jiang JK, Chen KF. Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer. Oncotarget 2018; 7:64136-64147. [PMID: 27580057 PMCID: PMC5325431 DOI: 10.18632/oncotarget.11636] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/13/2016] [Indexed: 01/28/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is well-known to evoke cancer invasion/metastasis, leading to a high frequency of mortality in patients with metastatic colorectal cancer (mCRC). Protein tyrosine phosphatase (PTPase)-targeted therapy has been identified as a novel cancer therapeutic. Previously, we proved that sorafenib with anti-EMT potency prevents TGF-β1-induced EMT/invasion by directly activating SH2-domain-containing phosphatase 1 (SHP-1)-dependent p-STAT3Tyr705 suppression in hepatocellular carcinoma. Regorafenib has a closely related chemical structure as sorafenib and is approved for the pharmacotherapy of mCRC. Herein, we evaluate whether regorafenib activates PTPase SHP-1 in the same way as sorafenib to abolish EMT-related invasion/metastasis in CRC. Notably, regorafenib exerted potent anti-EMT activity to curb TGF-β1-induced EMT/invasion in vitro as well inhibited lung metastatic outgrowth of SW480 mesenchymal cells in vivo. Mechanistically, regorafenib-enhanced SHP-1 activity significantly impeded TGF-β1-induced EMT/invasion via low p-STAT3Tyr705 level as proved by a SHP-1 inhibitor or siRNA-mediated SHP-1 depletion. Conversely, overexpression of SHP-1 further enhanced the inhibitory effects of regorafenib on TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Regorafenib directly activates SHP-1 by potently relieving the autoinhibited N-SH2 domain of SHP-1 to inhibit TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Importantly, the clinical evidence indicated that SHP-1 was positively correlated with E-cadherin and that significantly determined the overall survival of CRC patients. This result further confirms our in vitro data that SHP-1 is a negative regulatory PTPase in EMT regulation and serves as a pharmacological target for mCRC therapy. Collectively, activating PTPase SHP-1 by regorafenib focusing on its anti-EMT activity might be a useful pharmacotherapy for mCRC.
Collapse
Affiliation(s)
- Li-Ching Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Wei Teng
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
27
|
Hsieh FS, Hung MH, Wang CY, Chen YL, Hsiao YJ, Tsai MH, Li JR, Chen LJ, Shih CT, Chao TI, Chen KF. Inhibition of protein phosphatase 5 suppresses non-small cell lung cancer through AMP-activated kinase activation. Lung Cancer 2017; 112:81-89. [DOI: 10.1016/j.lungcan.2017.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022]
|
28
|
Small molecule targeting of PTPs in cancer. Int J Biochem Cell Biol 2017; 96:171-181. [PMID: 28943273 DOI: 10.1016/j.biocel.2017.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023]
Abstract
Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.
Collapse
|
29
|
Gan L, Zhong L, Shan Z, Xiao C, Xu T, Song H, Li L, Yang R, Liu B. Epigallocatechin-3-gallate induces apoptosis in acute promyelocytic leukemia cells via a SHP-1-p38α MAPK-Bax cascade. Oncol Lett 2017; 14:6314-6320. [PMID: 29113283 DOI: 10.3892/ol.2017.6980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/08/2017] [Indexed: 01/13/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosomal translation, resulting in a fusion gene that affects the differentiation, proliferation and apoptosis of APL cells. Epigallocatechin-3-gallate (EGCG), a catechin, exhibits numerous biological functions, including antitumor activities. Previous studies have reported that EGCG induces apoptosis in NB4 cells. However, the molecular mechanism underlying EGCG-induced apoptosis remains unclear. The present study aimed to determine the molecular basis of EGCG-induced apoptosis in NB4 cells. EGCG treatment significantly inhibited the viability of NB4 cells in a dose-dependent manner. In addition, EGCG treatment induced apoptosis and increased the levels of (Bcl-2-like protein 4) Bax protein expression. Moreover, EGCG treatment was able to increase phosphorylated (p)-p38α mitogen-activated protein kinase (MAPK) and Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) expression. Pretreatment with PD169316 (a p38 MAPK inhibitor) partially blocked EGCG-induced apoptosis and inhibited EGCG-mediated Bax expression. Similarly, pretreatment with NSC87877, an inhibitor of SHP-1, partially blocked EGCG-induced apoptosis and inhibited EGCG-mediated increases in p-p38α MAPK and Bax expression. Therefore, the results of the present study indicate that EGCG is able to induce apoptosis in NB4 cells via the SHP-1-p38αMAPK-Bax cascade.
Collapse
Affiliation(s)
- Liugen Gan
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhiling Shan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunlan Xiao
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Ting Xu
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Hao Song
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liu Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beizhong Liu
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
30
|
The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells. Exp Mol Med 2017; 49:e366. [PMID: 28798401 PMCID: PMC5579508 DOI: 10.1038/emm.2017.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/21/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains difficult to treat and urgently needs new therapeutic options. Nintedanib, a multikinase inhibitor, has exhibited efficacy in early clinical trials for HER2-negative breast cancer. In this study, we examined a new molecular mechanism of nintedanib in TNBC. The results demonstrated that nintedanib enhanced TNBC cell apoptosis, which was accompanied by a reduction of p-STAT3 and its downstream proteins. STAT3 overexpression suppressed nintedanib-mediated apoptosis and further increased the activity of purified SHP-1 protein. Moreover, treatment with either a specific inhibitor of SHP-1 or SHP-1-targeted siRNA reduced the apoptotic effects of nintedanib, which validates the role of SHP-1 in nintedanib-mediated apoptosis. Furthermore, nintedanib-induced apoptosis was attenuated in TNBC cells expressing SHP-1 mutants with constantly open conformations, suggesting that the autoinhibitory mechanism of SHP-1 attenuated the effects of nintedanib. Importantly, nintedanib significantly inhibited tumor growth via the SHP-1/p-STAT3 pathway. Clinically, SHP-1 levels were downregulated, whereas p-STAT3 was upregulated in tumor tissues, and SHP-1 transcripts were associated with improved disease-free survival in TNBC patients. Our findings revealed that nintedanib induces TNBC apoptosis by acting as a SHP-1 agonist, suggesting that targeting STAT3 by enhancing SHP-1 expression could be a viable therapeutic strategy against TNBC.
Collapse
|
31
|
LILRB4 deficiency aggravates the development of atherosclerosis and plaque instability by increasing the macrophage inflammatory response via NF-κB signaling. Clin Sci (Lond) 2017; 131:2275-2288. [PMID: 28743735 DOI: 10.1042/cs20170198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease. LILRB4 is associated with the pathological processes of various inflammatory diseases. However, the potential function and underlying mechanisms of LILRB4 in atherogenesis remain to be investigated. In this study, LILRB4 expression was examined in both human and mouse atherosclerotic plaques. The effects and possible mechanisms of LILRB4 in atherogenesis and plaque instability were evaluated in LILRB4-/-ApoE-/- and ApoE-/- mice fed a high-fat diet. We found that LILRB4 was located primarily in macrophages, and its expression was up-regulated in atherosclerotic lesions from human coronary arteries and mouse aortic roots. LILRB4 deficiency significantly accelerated the development of atherosclerotic lesions and increased the instability of plaques, as evidenced by the increased infiltration of lipids, decreased amount of collagen components and smooth muscle cells. Moreover, LILRB4 deficiency in bone marrow-derived cells promoted the development of atherosclerosis. In vivo and in vitro analyses revealed that the pro-inflammatory effects of LILRB4 deficiency were mediated by the increased activation of NF-κB signaling due to decreased Shp1 phosphorylation. In conclusion, the present study indicates that LILRB4 deficiency promotes atherogenesis, at least partly, through reduced Shp1 phosphorylation, which subsequently enhances the NF-κB-mediated inflammatory response. Thus, targeting the "LILRB4-Shp1" axis may be a novel therapeutic approach for atherosclerosis.
Collapse
|
32
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
33
|
Hu MH, Chen LJ, Chen YL, Tsai MS, Shiau CW, Chao TI, Liu CY, Kao JH, Chen KF. Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget 2017; 8:65077-65089. [PMID: 29029413 PMCID: PMC5630313 DOI: 10.18632/oncotarget.17779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Sorafenib is a multiple kinase inhibitor which targets Raf kinases, VEGFR, and PDGFR and is approved for the treatment of hepatocellular carcinoma (HCC). Previously, we found that p-STAT3 is a major target of SC-43, a sorafenib derivative. In this study, we report that SC-43-induced apoptosis in cholangiocarcinoma (CCA) via a novel mechanism. Three CCA cell lines (HuCCT-1, KKU-100 and CGCCA) were treated with SC-43 to determine their sensitivity to SC-43-induced cell death and apoptosis. We found that SC-43 activated SH2 domain-containing phosphatase 1 (SHP-1) activity, leading to p-STAT3 and downstream cyclin B1 and Cdc2 downregulation, which induced G2-M arrest and apoptotic cell death. Importantly, SC-43 augmented SHP-1 activity by direct binding to N-SH2 and relief of its autoinhibition. Deletion of the N-SH2 domain (dN1) or point mutation (D61A) of SHP-1 counteracted the effect of SC-43-induced SHP-1 phosphatase activation and antiproliferation ability in CCA cells. In vivo assay revealed that SC-43 exhibited xenograft tumor growth inhibition, p-STAT3 reduction and SHP-1 activity elevation. In conclusion, SC-43 induced apoptosis in CCA cells through the SHP-1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Shen Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-I Chao
- Transplant Medicine and Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Yu Liu
- Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
34
|
Liu C, Su J, Huang T, Chu P, Huang C, Wang W, Lee C, Lau K, Tsai W, Yang H, Shiau C, Tseng L, Chen K. Sorafenib analogue SC-60 induces apoptosis through the SHP-1/STAT3 pathway and enhances docetaxel cytotoxicity in triple-negative breast cancer cells. Mol Oncol 2017; 11:266-279. [PMID: 28084011 PMCID: PMC5527447 DOI: 10.1002/1878-0261.12033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
Recurrent triple-negative breast cancer (TNBC) needs new therapeutic targets. Src homology region 2 domain-containing phosphatase-1 (SHP-1) can act as a tumor suppressor by dephosphorylating oncogenic kinases. One major target of SHP-1 is STAT3, which is highly activated in TNBC. In this study, we tested a sorafenib analogue SC-60, which lacks angiokinase inhibition activity, but acts as a SHP-1 agonist, in TNBC cells. SC-60 inhibited proliferation and induced apoptosis by dephosphorylating STAT3 in both a dose- and time-dependent manner in TNBC cells (MDA-MB-231, MDA-MB-468, and HCC1937). By contrast, ectopic expression of STAT3 rescued the anticancer effect induced by SC-60. SC-60 also increased the SHP-1 activity, but this effect was inhibited when the N-SH2 domain (DN1) was deleted or with SHP-1 point mutation (D61A), implying that SHP-1 is the major target of SC-60 in TNBC. The use of SC-60 in combination with docetaxel synergized the anticancer effect induced by SC-60 through the SHP-1/STAT3 pathway in TNBC cells. Importantly, SC-60 also displayed a significant antitumor effect in an MDA-MB-468 xenograft model by modulating the SHP-1/STAT3 axis, indicating the anticancer potential of SC-60 in TNBC treatment. Targeting SHP-1/p-STAT3 and the potential combination of SHP-1 agonist with chemotherapeutic docetaxel is a feasible therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Chun‐Yu Liu
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jung‐Chen Su
- Institute of Biopharmaceutical SciencesNational Yang‐Ming UniversityTaipeiTaiwan
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Tzu‐Ting Huang
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan
- School of MedicineCollege of MedicineFu‐Jen Catholic UniversityXinzhuangNew Taipei CityTaiwan
| | - Chun‐Teng Huang
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Division of Hematology & OncologyDepartment of MedicineYang‐Ming Branch of Taipei City HospitalTaiwan
| | - Wan‐Lun Wang
- Department of SurgeryTaipei Veterans General HospitalTaiwan
| | - Chia‐Han Lee
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Ka‐Yi Lau
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Wen‐Chun Tsai
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Hsiu‐Ping Yang
- Division of Medical OncologyDepartment of OncologyTaipei Veterans General HospitalTaiwan
| | - Chung‐Wai Shiau
- Institute of Biopharmaceutical SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ling‐Ming Tseng
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Department of SurgeryTaipei Veterans General HospitalTaiwan
| | - Kuen‐Feng Chen
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
- National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
35
|
Yin Y, Wu C, Wang J, Song F, Yue W, Zhong W. A simply triggered peptide-based hydrogel as an injectable nanocarrier of tanshinone IIA and tanshinones. Chem Commun (Camb) 2017; 53:529-532. [DOI: 10.1039/c6cc08502d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An easily self-assembled and gelated octa-peptide FHFDFHFD was chosen as a novel drug delivery system (DDS) for both tanshinone IIA and total tanshinone extract.
Collapse
Affiliation(s)
- Yajun Yin
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Can Wu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Junling Wang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Fengjuan Song
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Wanqing Yue
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Biomedical Functional Materials
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
36
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Fan LC, Teng HW, Shiau CW, Tai WT, Hung MH, Yang SH, Jiang JK, Chen KF. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer. Neoplasia 2016; 17:687-696. [PMID: 26476076 PMCID: PMC4611073 DOI: 10.1016/j.neo.2015.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC). Our previous data demonstrated that regorafenib (Stivarga) is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1) that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3Tyr705 level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43–induced apoptosis and decreased p-STAT3Tyr705 level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3Tyr705 level. These data suggest that SC-43–induced apoptosis mediated through the loss of p-STAT3Tyr705 was dependent on SHP-1 function. Importantly, SC-43–enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3Tyr705 signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3Tyr705expression in CRC patients (P = .038). Patients with strong SHP-1 and weak p-STAT3Tyr705 expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3Tyr705 expression (P = .029). In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC.
Collapse
Affiliation(s)
- Li-Ching Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Wei Teng
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon and Rectal Surgery, Department Of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department Of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
38
|
Su JC, Mar AC, Wu SH, Tai WT, Chu PY, Wu CY, Tseng LM, Lee TC, Chen KF, Liu CY, Chiu HC, Shiau CW. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis. Sci Rep 2016; 6:28888. [PMID: 27364975 PMCID: PMC4929457 DOI: 10.1038/srep28888] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) had an increased likelihood of distant recurrence and death, as compared with those with non-TNBC subtype. Regorafenib is a multi-receptor tyrosine kinase (RTK) inhibitor targeting oncogenesis and has been approved for metastatic colorectal cancer and advanced gastrointestinal stromal tumor. Recent studies suggest regorafenib acts as a SHP-1 phosphatase agonist. Here, we investigated the potential of regorafenib to suppress metastasis of TNBC cells through targeting SHP-1/p-STAT3/VEGF-A axis. We found a significant correlation between cancer cell migration and SHP-1/p-STAT3/VEGF-A expression in human TNBC cells. Clinically, high VEGF-A expression is associated with worse disease-free and distant metastasis-free survival. Regorafenib induced significant anti-migratory effects, in association with downregulation of p-STAT3 and VEGF-A. To exclude the role of RTK inhibition in regorafenib-induced anti-metastasis, we synthesized a regorafenib derivative, SC-78, that had minimal effect on VEGFR2 and PDGFR kinase inhibition, while having more potent effects on SHP-1 activation. SC-78 demonstrated superior in vitro and in vivo anti-migration to regorafenib. Furthermore, VEGF-A dependent autocrine/paracrine loops were disrupted by regorafenib and SC-78. This study implies that SHP-1/p-STAT3/VEGF-A axis is a potential therapeutic target for metastatic TNBC, and the more potent SC-78 may be a promising lead for suppressing metastasis of TNBC.
Collapse
Affiliation(s)
- Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ai-Chung Mar
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Hsien Wu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chia-Yun Wu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Yoshii Y, Furukawa T, Aoyama H, Adachi N, Zhang MR, Wakizaka H, Fujibayashi Y, Saga T. Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells. Int J Oncol 2016; 48:1477-84. [PMID: 26820693 DOI: 10.3892/ijo.2016.3361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is one of the leading causes of cancer death worldwide. Adjuvant chemotherapy following primary surgical treatment is suggested to be beneficial in eradicating invisible disseminated small tumors in colon cancer; however, an effective drug remains to be developed. Recently, we reported a novel drug screening system using a nanoimprinting 3-dimensional (3D) culture that creates multicellular spheroids, which simulate in vivo conditions and, thereby, predict effective drugs in vivo. This study aimed to perform drug selection using our recently developed 3D culture system in a human colon cancer HCT116 cell line stably expressing red fluorescent protein (HCT116-RFP), to determine the most effective agent in a selection of clinically used antitumor agents for colon cancer. In addition, we confirmed the efficacy of the selected drug regorafenib, in vivo using a mouse model of disseminated small tumors. HCT116-RFP cells were cultured using a nanoimprinting 3D culture and in vitro drug selection was performed with 8 clinically used drugs [bevacizumab, capecitabine, cetuximab, 5-fluorouracil (5-FU), irinotecan, oxaliplatin, panitumumab and regorafenib]. An in vivo study was performed in mice bearing HCT116-RFP intraperitoneally disseminated small tumors using 3'-[18F]-fluoro-3'-deoxythymidine-positron emission tomography and fluorescence microscopy imaging to evaluate the therapeutic effects. Regorafenib was determined to be the most effective drug in the 3D culture, and significantly inhibited tumor growth in vivo, compared to the untreated control and 5-FU-treated group. The drug 5-FU is commonly used in colon cancer treatment and was used as a reference. Our results demonstrate that regorafenib is a potentially efficacious adjuvant chemotherapeutic agent for the treatment of disseminated small colon cancer and, therefore, warrants further preclinical and clinical studies.
Collapse
Affiliation(s)
- Yukie Yoshii
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Hironori Aoyama
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Naoya Adachi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yasuhisa Fujibayashi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
40
|
García-Alfonso P, Feliú J, García-Carbonero R, Grávalos C, Guillén-Ponce C, Sastre J, García-Foncillas J. Is regorafenib providing clinically meaningful benefits to pretreated patients with metastatic colorectal cancer? Clin Transl Oncol 2016; 18:1072-1081. [PMID: 27037815 DOI: 10.1007/s12094-016-1499-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 01/26/2023]
Abstract
Treatment with regorafenib has demonstrated statistically significant improvements in terms of overall survival, progression-free survival and disease control when compared with placebo in pretreated patients with metastatic colorectal cancer in two placebo-controlled, randomized, phase III trials (CORRECT and CONCUR). Similar results were observed in two open-label, single-arm studies (REBECCA and CONSIGN) performed in the real-world setting. But several authors have suggested that the benefit provided by regorafenib may not be clinically meaningful for these patients. Moreover, it has been suggested that not all subgroups of patients might benefit from regorafenib. The intention of this review is to provide an overview of the existing evidence for regorafenib in terms of efficacy, tolerability and quality of life in different subpopulations according to clinical and biological characteristics. Additionally, the magnitude of the clinical benefit provided by regorafenib to these patients has been explored and whether there are poorer outcomes in certain subpopulations.
Collapse
Affiliation(s)
- P García-Alfonso
- Medical Oncology Department, Gregorio Marañón University Hospital (Center Affiliated to the Red Tematica de Investigacion Cooperativa en Cancer [RTICC], Instituto Carlos III, Spanish Ministry of Science and Innovation), Madrid, Spain.
| | - J Feliú
- Medical Oncology Department, La Paz University Hospital, Madrid, Spain
| | - R García-Carbonero
- Medical Oncology Department, Doce de Octubre University Hospital (Center Affiliated to the Red Tematica de Investigacion Cooperativa en Cancer [RTICC], Instituto Carlos III, Spanish Ministry of Science and Innovation), Madrid, Spain
| | - C Grávalos
- Medical Oncology Department, Doce de Octubre University Hospital (Center Affiliated to the Red Tematica de Investigacion Cooperativa en Cancer [RTICC], Instituto Carlos III, Spanish Ministry of Science and Innovation), Madrid, Spain
| | - C Guillén-Ponce
- Medical Oncology Department, Ramón y Cajal University Hospital (Center Affiliated to the Red Tematica de Investigacion Cooperativa en Cancer [RTICC], Instituto Carlos III, Spanish Ministry of Science and Innovation), Madrid, Spain
| | - J Sastre
- Medical Oncology Department, Clinic San Carlos University Hospital (Center Affiliated to the Red Tematica de Investigacion Cooperativa en Cancer [RTICC], Instituto Carlos III, Spanish Ministry of Science and Innovation), Madrid, Spain
| | - J García-Foncillas
- Oncology Department, Cancer Institute University Hospital (Fundacion Jimenez Diaz), Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
41
|
Sharma Y, Ahmad A, Bashir S, Elahi A, Khan F. Implication of protein tyrosine phosphatase SHP-1 in cancer-related signaling pathways. Future Oncol 2016; 12:1287-98. [PMID: 26987952 DOI: 10.2217/fon-2015-0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The altered expression of SHP-1 (SH2 domain-containing protein tyrosine phosphatase) as a consequence of promoter hypermethylation or mutations has evidently been linked to cancer development. The notion of being a cancer drug target is conceivable as SHP-1 negatively regulates cell cycle and inflammatory pathways which are an inevitable part of oncogenic transformation. In the present review, we try to critically analyze the role of SHP-1 in cancer progression via regulating the above mentioned pathways with the major emphasis on cell cycle components and JAK/STAT pathway, commencing with the SHP-1 biology in immune cell signaling. Lastly, we have provided the future directions for researchers to encourage SHP-1 as a prognostic marker and curative target for this debilitating disease called as cancer.
Collapse
Affiliation(s)
- Yadhu Sharma
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Samina Bashir
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| | - Asif Elahi
- Centre for Cellular & Molecular Biology (Council for Scientific & Industrial Research), Uppal Road, Hyderabad, Telangana-500007, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
42
|
Cai Y, Zhang W, Chen Z, Shi Z, He C, Chen M. Recent insights into the biological activities and drug delivery systems of tanshinones. Int J Nanomedicine 2016; 11:121-30. [PMID: 26792989 PMCID: PMC4708214 DOI: 10.2147/ijn.s84035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Wenji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Zirong Chen
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zhi Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| |
Collapse
|
43
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Wu Y, Li R, Zhang J, Wang G, Liu B, Huang X, Zhang T, Luo R. Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2. Onco Targets Ther 2015; 8:2577-87. [PMID: 26396531 PMCID: PMC4576899 DOI: 10.2147/ott.s82225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Trastuzumab resistance in HER-2 positive breast cancer cells is closely related to overexpression of both epidermal growth factor receptor (EGFR) and human epidermal receptor (HER-2). SHP-1 has been demonstrated to downregulate tyrosine kinase activity including EGFR via its phosphatase function, but its effect on HER-2 activity is still unknown. Here, we examined the hypothesis that SHP-1 enhances the anticancer efficacy of trastuzumab in EGFR/HER-2 positive breast cancer cells through combining dual inhibition of EGFR and HER-2. Methods Trastuzumab-resistant breast cancer SKBr-3 cells were generated by long-term in vitro culture of SKBr-3cells in the presence of trastuzumab. The SHP-1 was ectopically expressed by stable transfection. The activity and expression of EGFR, HER-2, and downstream signaling pathways were tested by Western blot. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was examined by flow cytometry. The binding between SHP-1 and EGFR/HER-2 was evaluated by immunoprecipitation assay and bimolecular fluorescence complementation. The effects of SHP-1 on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model. Results Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S) immunoprecipitates, indicating that EGFR and HER-2 are potential substrates of SHP-1. Conclusion Taken together, we have demonstrated that the SHP-1 is a negative regulatory factor of the tyrosine kinase activity of HER-2 and EGFR through inhibiting phosphorylation. Dual targeting of EGFR and HER-2, by combining trastuzumab with SHP-1 overexpression, may improve response in HER-2 overexpressing breast cancer cells that also express high levels of EGFR.
Collapse
Affiliation(s)
- Yifen Wu
- Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, People's Republic of China ; Department of Oncology, Dongguan People's Hospital, Dongguan, People's Republic of China
| | - Rong Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junyi Zhang
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Gang Wang
- Department of Radiology, Dongguan People's Hospital, Dongguan, People's Republic of China
| | - Bin Liu
- Second Affiliated Hospital of Guangzhou Medical College, Southern Medical University, Guangdong, People's Republic of China
| | - Xiaofang Huang
- College of Traditional Chinese medicine, Southern Medical University, Guangdong, People's Republic of China
| | - Tao Zhang
- College of Traditional Chinese medicine, Southern Medical University, Guangdong, People's Republic of China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
45
|
Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI. PLoS One 2015; 10:e0138452. [PMID: 26393949 PMCID: PMC4578959 DOI: 10.1371/journal.pone.0138452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min; plasma volume PV, %) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL), proliferation (Ki-67), and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Δ +7.78±2.95, control: -0.80±2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean ΔPF -8.17±2.32 mL/100 mL/min, control -0.11±3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL; 11392±1486 vs. 2921±334, p = 0.001), significantly less proliferation (Ki-67; 1754±184 vs. 2883±323, p = 0.012), and significantly lower microvascular density (CD31; 107±10 vs. 182±22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry.
Collapse
|
46
|
Sun Z, Pan X, Zou Z, Ding Q, Wu G, Peng G. Increased SHP-1 expression results in radioresistance, inhibition of cellular senescence, and cell cycle redistribution in nasopharyngeal carcinoma cells. Radiat Oncol 2015. [PMID: 26215037 PMCID: PMC4517406 DOI: 10.1186/s13014-015-0445-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Radioresistance is the main limit to the efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). SHP-1 is involved in cancer progression, but its role in radioresistance and senescence of NPC is not well understood. This study aimed to assess the role of SHP-1 in the radioresistance and senescence of NPC cells. Methods SHP-1 was knocked-down and overexpressed in CNE-1 and CNE-2 cells using lentiviruses. Cells were irradiated to observe their radiosensitivity by colony forming assay. BrdU incorporation assay and flow cytometry were used to monitor cell cycle. A β-galactosidase assay was used to assess senescence. Western blot was used to assess SHP-1, p21, p53, pRb, Rb, H3K9Me3, HP1γ, CDK4, cyclin D1, cyclin E, and p16 protein expressions. Results Compared with CNE-1-scramble shRNA cells, SHP-1 downregulation resulted in increased senescence (+107 %, P < 0.001), increased radiosensitivity, higher proportion of cells in G0/G1 (+33 %, P < 0.001), decreased expressions of CDK4 (−44 %, P < 0.001), cyclin D1 (−41 %, P = 0.001), cyclin E (−97 %, P < 0.001), Rb (−79 %, P < 0.001), and pRb (−76 %, P = 0.001), and increased expression of p16 (+120 %, P = 0.02). Furthermore, SHP-1 overexpression resulted in radioresistance, inhibition of cellular senescence, and cell cycle arrest in the S phase. Levels of p53 and p21 were unchanged in both cell lines (all P > 0.05). Conclusion SHP-1 has a critical role in radioresistance, cell cycle progression, and senescence of NPC cells. Down-regulating SHP-1 may be a promising therapeutic approach for treating patients with NPC.
Collapse
Affiliation(s)
- Ziyi Sun
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Xiaofen Pan
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China. .,Cancer center, Affliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong Province, China.
| | - Zhenwei Zou
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Qian Ding
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Gang Wu
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Gang Peng
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
47
|
Zhang H, Jia R, Wang C, Hu T, Wang F. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem Biophys Res Commun 2014; 452:775-81. [PMID: 25218158 DOI: 10.1016/j.bbrc.2014.08.150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 08/30/2014] [Indexed: 12/11/2022]
Abstract
Piceatannol, a naturally occurring analog of resveratrol, has been confirmed as an antitumor agent by inhibiting proliferation, migration, and metastasis in diverse cancer. However, the effect and mechanisms of piceatannol on colorectal cancer (CRC) have not been well understood. This study aimed to test whether piceatannol could inhibit growth of CRC cells and reveal its underlying molecular mechanism. MTT assay was used to detect the cell viability in HCT116 and HT29 cells. Flow cytometry analysis was employed to measure apoptosis of CRC cells. Bcl-2, Bax and caspase-3 levels were analyzed by Western blot and miR-129 levels were determined by real-time RT-PCR. Our study showed that piceatannol inhibited HCT116 and HT29 cells growth in a concentration- and time-dependent manner. Piceatannol induced apoptosis by promoting expression of miR-129, and then inhibiting expression of Bcl-2, an known target for miR-129. Moreover, knock down of miR-129 could reverse the reduction of cell viability induced by piceatannol in HCT116 and HT29 cells. Taken together, our study unraveled the ability of piceatannol to suppress colorectal cancer growth and elucidated the participation of miR-129 in the anti-cancer action of piceatannol. Our findings suggest that piceatannol can be considered to be a promising anticancer agent for CRC.
Collapse
Affiliation(s)
- Haogang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Chunjing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Tianming Hu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Fujing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|