1
|
Huang YS, Lu KC, Chang YT, Ka SM, Guo CY, Hsieh HY, Shih HM, Sytwu HK, Wu CC. Melatonin Alleviates Albumin-Induced Tubular Cell Injury by Activating Clock-Controlled Nuclear Enriched Abundant Transcript 1-Mediated Proliferation. ACS Pharmacol Transl Sci 2024; 7:3607-3617. [PMID: 39539256 PMCID: PMC11555500 DOI: 10.1021/acsptsci.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The pleiotropic and protective effects of melatonin have been demonstrated in a variety of animal models of renal injury. While coding RNAs regulated by melatonin in renal tissues are well identified, the functional involvement of long noncoding RNAs (lncRNAs) in melatonin signaling remains undefined. This study identified nuclear enriched abundant transcript 1 (NEAT1), a clock-controlled lncRNA that was upregulated by melatonin through the BMAL1/CLOCK heterodimer in renal tubular epithelial cells (TECs). Mechanistic studies showed that melatonin enhanced NEAT1 expression via increasing BMAL1 stability and thereby the enrichment of BMAL1 on NEAT1's promoter. Further studies have revealed that NEAT1 promotes the proliferation of TECs by increasing levels of H3K27ac and H3K4me1 at the promoter regions of the proliferation gene MKI67. Treatment of albumin-injured TECs with melatonin promoted proliferation by transactivating NEAT1 and restoring the expression levels of core clock genes and MKI67. Moreover, melatonin treatment ameliorated proteinuria, hypoalbuminemia, and fibrotic lesions, which was correlated with increased levels of core clock genes, H3K27ac, Mki67, and Neat1 in experimental MN kidneys. Melatonin mediates a novel regulatory axis, BMAL1-NEAT1-MKI67, in TEC proliferation, establishing potential therapeutic targets for MN and other renal diseases.
Collapse
Affiliation(s)
- Yen-Sung Huang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115021, Taiwan
- Graduate
Institute of Aerospace and Undersea Medicine, National Defense Medical Centerz, Taipei 114201, Taiwan
| | - Kuo-Cheng Lu
- Division
of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231016, Taiwan
| | - Yu-Tien Chang
- School
of Public Health, National Defense Medical
Center, Taipei 114201, Taiwan
| | - Shuk-Man Ka
- Graduate
Institute of Aerospace and Undersea Medicine, National Defense Medical Centerz, Taipei 114201, Taiwan
| | - Cheng-Yi Guo
- Division
of Nephrology, Department of Internal Medicine, Tri-Service General
Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsin-Yi Hsieh
- Division
of Nephrology, Department of Internal Medicine, Tri-Service General
Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsiu-Ming Shih
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115021, Taiwan
| | - Huey-Kang Sytwu
- National
Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350401, Taiwan
- Department
and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
| | - Chia-Chao Wu
- Division
of Nephrology, Department of Internal Medicine, Tri-Service General
Hospital, National Defense Medical Center, Taipei 114202, Taiwan
- Department
and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
| |
Collapse
|
2
|
Venkatachalapathy Y, Suresh PKK, Balraj TH, Venkatesan V, Geminiganesan S, C D MP. Clinico-demographic and biochemical correlation of inflammatory gene expression in pediatric nephrotic syndrome. Mol Biol Rep 2024; 51:854. [PMID: 39060482 DOI: 10.1007/s11033-024-09784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Nephrotic syndrome (NS) is a common kidney disease in children. While Steroid-Sensitive Nephrotic Syndrome (SSNS) is frequently observed, Steroid-Resistant Nephrotic Syndrome (SRNS) has a poor prognosis and often leads to chronic kidney disease. The pathogenesis of SRNS is complex, with immunological modulation of T helper subtypes 1 and 2 cytokines increasing susceptibility to the disease. Currently, no established biomarkers can accurately predict SRNS. However, a group of cytokines might serve as potential indicators of responsiveness, aiding in the identification of patients with SRNS. The discovery of these cytokines as novel biomarkers for early diagnosis could greatly benefit patients. This includes preventing the adverse effects of glucocorticoid treatment and enabling a timely transition to more effective therapeutic alternatives. METHODS This study aims to investigate the association between the gene expression patterns of cytokines, including IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, NF-κB, and TNFα, in healthy participants (n = 100), SSNS patients (n = 100), and SRNS patients (n = 100). Using qRT-PCR, followed by Receiver-operating characteristic analysis, the study assesses their potential as biomarkers. Additionally, clinicodemographic data were analyzed, and bioinformatic analyses such as coexpression analysis, gene enrichment, pathway analysis, and Cytoscape were performed to enhance our understanding of the inflammatory cascade initiating podocyte injury in NS. RESULTS The results of our study suggest that specific candidate genes, including IL-2, IL-5, IL-6, IL-9, IL-17A, IL-10, IL-13, and TNFα, exhibit upregulation and hold significant importance, with an Area Under the Curve value of 0.9. CONCLUSION These genes have the potential to serve as valuable prognostic and management tools for NS, forming a promising panel of inflammatory gene biomarkers. Furthermore, conducting an extensive analysis that integrates cytokine genes with their respective targeted microRNAs could offer deeper insights into the pathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Thendral Hepsibha Balraj
- Department of Biochemistry, Ethiraj College for Women, Affiliated to University of Madras, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sangeetha Geminiganesan
- Department of Paediatric Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Mohana Priya C D
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
3
|
Nagaram S, Charles P, Nandeesha H, Stephen N, Parameswaran S, Chinnakali P, Nachiappa Ganesh R. Soluble Tumor Necrosis Factor Receptor 2: A Promising Predictive Biomarker for Renal Dysfunction in Membranous Glomerulonephritis. Cureus 2024; 16:e58506. [PMID: 38765394 PMCID: PMC11101981 DOI: 10.7759/cureus.58506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background and objective Membranous glomerulonephritis (MGN) is a common cause of adult nephrotic syndrome. Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine that signals by attaching to TNF receptors. TNF-α plays a pivotal role in the development and progression of different forms of glomerulonephritis. Several research findings suggest that TNF-α receptors (TNFR1 and TNFR2) are predictors of estimated glomerular filtration rate (eGFR) decline. In light of this, this study aimed to explore the relationship between TNFR2 and eGFR, as well as the predictive role of TNFR2 in eGFR decline in MGN. Methods A total of 50 consecutive patients with a diagnosis of primary MGN based on renal biopsies and clinical workups were included in the study. TNFR2 levels in serum, urine, and gene expression were evaluated at baseline and after three months of follow-up by using enzyme-linked immunosorbent assay (ELISA) kits for TNFR2 (KTE60215, Abbkine, Wuhan, China). Cox regression was employed to determine the predictive significance of TNFR2 in persistent eGFR decline. Additionally, an ROC curve analysis was conducted to assess the prognostic value of TNFR2 in predicting persistent eGFR decline among MGN patients. Results We assessed the levels of inflammatory markers TNF-α and TNFR2, examined their correlation with eGFR and renal injury, and investigated their potential in predicting persistent eGFR. Patients with MGN exhibited elevated levels of TNFR2 in their serum, urine, and gene expression compared to healthy individuals. Additionally, there was a positive correlation between serum TNFR2 and TNF-α, urine protein-creatinine ratio (UPCR), uric acid, and total cholesterol. Conversely, there was a negative correlation with eGFR, serum albumin, and calcium. Serum TNFR2 showed statistical significance in a univariate Cox regression analysis (HR: 1.010, 95% CI: 1.00-1.01, p = 0.045) for predicting a persistent decline in eGFR. However, it did not show significance concerning relapse and remission. An ROC curve was created to assess TNFR2's prognostic potential as a biomarker, demonstrating an AUC of 0.683, with a sensitivity of 68% and specificity of 64%. Conclusions Based on our findings, TNFR2 is a predictive biomarker for eGFR decline in MGN, correlating with renal inflammation and predicting deterioration in renal function. TNFR2 emerges as a promising biomarker for early identification in patients at risk of renal function decline.
Collapse
Affiliation(s)
- Srinivas Nagaram
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Priscilla Charles
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Hanumanthappa Nandeesha
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Norton Stephen
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Palanivel Chinnakali
- Department of Preventive Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| |
Collapse
|
4
|
Pukajło-Marczyk A, Zwolińska D. The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course. J Clin Med 2024; 13:1888. [PMID: 38610653 PMCID: PMC11012282 DOI: 10.3390/jcm13071888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The pathogenesis of idiopathic nephrotic syndrome (INS) has not been fully explained. Among the likely factors, tumor necrosis factor - alpha (TNF-α) is considered. We aimed to evaluate the TNF-α (sTNF-α, uTNF-α) levels in the serum and urine of INS children, with the aim of determining its association with proteinuria, and of determining its usefulness as a marker of the disease severity. Methods: Fifty-one examined patients were divided into subgroups depending on the number of relapses as follows: group IA-first episode; group IB-more than two relapses, and according to treatment modality; group IIA-glucocorticosteroids (GS) alone; and group IIB-GS with immunosuppressants. Healthy age-matched children served as the control group. Results: sTNF-α and uTNF-α levels were significantly increased in active phases in the whole INS group compared to the control group. They decreased in remission, but remained significantly higher when compared to the control group. During remission in the IB group, sTNF-α levels were significantly higher than in IA, whereas, in the relapse phase, these values were similar. In the IA group, a positive correlation between proteinuria and sTNF-α was demonstrated. Conclusions: Our findings suggest that TNF-α plays a role in the development of INS, and may be used as a prognostic marker, as well as an indicator for the continuation of therapy. Additional research is required to verify this statement.
Collapse
Affiliation(s)
- Agnieszka Pukajło-Marczyk
- Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | | |
Collapse
|
5
|
Mishra B, Tiwari A, Mishra S. Metabolic Changes and Immunity Suppression Parameters as Biomarkers of Environmental Pollutants. BIOMONITORING OF POLLUTANTS IN THE GLOBAL SOUTH 2024:693-719. [DOI: 10.1007/978-981-97-1658-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Jao TM, Wu CZ, Cheng CW, Guo CH, Bai CY, Chang LC, Fang TC, Chen JS. uPA deficiency aggravates cBSA-induced membranous nephropathy through Th2-prone immune response in mice. J Transl Med 2023; 103:100146. [PMID: 37004912 DOI: 10.1016/j.labinv.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
Urokinase plasminogen activator (uPA) is a crucial activator of the fibrinolytic system that modulates tissue remodeling, cancer progression, and inflammation. However, its role in membranous nephropathy (MN) remains unclear. To clarify this issue, an established mouse model mimicking human MN induced by cationic bovine serum albumin (cBSA) in BALB/c mice was used, which have a Th2-prone genetic background. To induce MN, cBSA was injected into Plau knockout (Plau-/-) and wild-type (WT) mice. The blood and urine samples were collected to measure biochemical parameters, including serum concentrations of IgG1 and IgG2a, using enzyme-linked immunoassay. The kidneys were histologically examined for the presence of glomerular polyanions, reactive oxygen species (ROS), and apoptosis, and transmission electron microscopy was used to examine subepithelial deposits. Lymphocyte subsets were determined by flow cytometry. Four weeks post-cBSA administration, Plau-/- mice exhibited a significantly high urine protein/creatine ratio, hypoalbuminemia, and hypercholesterolemia compared with WT mice. Histologically, compared with WT mice, Plau-/- mice showed more severe glomerular basement thickening, mesangial expansion, IgG granular deposition, intensified podocyte effacement, irregular thickening of glomerular basement membrane and subepithelial deposits, and abolishment of the glycocalyx. Moreover, increased renal ROS and apoptosis were observed in Plau-/- mice with MN. B lymphocyte subsets and the IgG1/IgG2a ratio were significantly higher in Plau-/- mice after MN induction. Thus, uPA deficiency induces a Th2-dominant immune response, leading to increased subepithelial deposits, ROS, and apoptosis in the kidneys, subsequently exacerbating MN progression in mice. This study provides a novel insight into the role of uPA in MN progression.
Collapse
|
7
|
Deng Y, Ou YY, Mo CJ, Huang L, Qin X, Li S. Peripheral blood lymphocyte subsets in children with nephrotic syndrome: a retrospective analysis. BMC Nephrol 2023; 24:7. [PMID: 36627573 PMCID: PMC9830737 DOI: 10.1186/s12882-022-03015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) in children is widely believed to be associated with severe changes in the immune system. Based on lymphocyte subset analysis, we examined the pathogenesis of immune deficiencies in children with NS with varying steroid sensitivity. METHODS Our study utilized flow cytometry to retrospectively analyze the ratios of lymphocyte subsets in 204 children with nephrotic syndrome and 19 healthy children. RESULTS Compared with healthy children, the ratio of CD4 + /CD8 + in onset and remission was decreased in SRNS group (p < 0.05), and CD19 + B lymphocytes were increased in onset (p < 0.05). Compared with onset, the proportion of CD19 + B lymphocytes decreased in SRNS, while the proportion of CD19 + B lymphocytes increased in SDNS, p < (0.01). The ratio of CD8 + T/CD19 + B in onset in SDNS group was significantly higher than that in SSNS and SRNS groups (p < 0.01) and healthy control group (p < 0.05). Compared with onset, the ratio of CD8 + T/CD19 + B in SDNS group decreased significantly (p < 0.01), while the ratio of CD8 + T/CD19 + B in SRNS group increased significantly (p < 0.01). The proportion of CD56 + CD16 + NK cells was significantly reduced in children with INS (p < 0.01). CONCLUSION CD8 + T lymphocytes may be involved in the mechanism of lymphocyte subsets disorder during onset of SDNS, while CD19 + B lymphocytes may be involved in the mechanism of lymphocyte subsets disorder during relapse of SDNS. The CD8 + T/CD19 + B ratio may predict the degree of frequent recurrence. There is a certain degree of lymphoid subsets disorder in children with NS.
Collapse
Affiliation(s)
- Yan Deng
- grid.412594.f0000 0004 1757 2961Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Ying-ying Ou
- grid.412594.f0000 0004 1757 2961Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Cui-Ju Mo
- grid.412594.f0000 0004 1757 2961Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Li Huang
- grid.412594.f0000 0004 1757 2961Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Xue Qin
- grid.412594.f0000 0004 1757 2961Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Shan Li
- grid.412594.f0000 0004 1757 2961Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| |
Collapse
|
8
|
Zhao Q, Dai H, Hu Y, Jiang H, Feng Z, Liu W, Dong Z, Tang X, Hou F, Rui H, Liu B. Cytokines network in primary membranous nephropathy. Int Immunopharmacol 2022; 113:109412. [DOI: 10.1016/j.intimp.2022.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
9
|
Chung EYM, Wang YM, Keung K, Hu M, McCarthy H, Wong G, Kairaitis L, Bose B, Harris DCH, Alexander SI. Membranous nephropathy: Clearer pathology and mechanisms identify potential strategies for treatment. Front Immunol 2022; 13:1036249. [PMID: 36405681 PMCID: PMC9667740 DOI: 10.3389/fimmu.2022.1036249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Primary membranous nephropathy (PMN) is one of the common causes of adult-onset nephrotic syndrome and is characterized by autoantibodies against podocyte antigens causing in situ immune complex deposition. Much of our understanding of the disease mechanisms underpinning this kidney-limited autoimmune disease originally came from studies of Heymann nephritis, a rat model of PMN, where autoantibodies against megalin produced a similar disease phenotype though megalin is not implicated in human disease. In PMN, the major target antigen was identified to be M-type phospholipase A2 receptor 1 (PLA2R) in 2009. Further utilization of mass spectrometry on immunoprecipitated glomerular extracts and laser micro dissected glomeruli has allowed the rapid discovery of other antigens (thrombospondin type-1 domain-containing protein 7A, neural epidermal growth factor-like 1 protein, semaphorin 3B, protocadherin 7, high temperature requirement A serine peptidase 1, netrin G1) targeted by autoantibodies in PMN. Despite these major advances in our understanding of the pathophysiology of PMN, treatments remain non-specific, often ineffective, or toxic. In this review, we summarize our current understanding of the immune mechanisms driving PMN from animal models and clinical studies, and the implications on the development of future targeted therapeutic strategies.
Collapse
Affiliation(s)
- Edmund Y. M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Yuan M. Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Karen Keung
- Department of Nephrology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Min Hu
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Hugh McCarthy
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Germaine Wong
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Lukas Kairaitis
- Department of Nephrology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Bhadran Bose
- Department of Nephrology, Nepean Hospital, Kingswood, NSW, Australia
| | - David C. H. Harris
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
10
|
Xiao M, Bohnert BN, Grahammer F, Artunc F. Rodent models to study sodium retention in experimental nephrotic syndrome. Acta Physiol (Oxf) 2022; 235:e13844. [PMID: 35569011 DOI: 10.1111/apha.13844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Sodium retention and edema are hallmarks of nephrotic syndrome (NS). Different experimental rodent models have been established for simulating NS, however, not all of them feature sodium retention which requires proteinuria to exceed a certain threshold. In rats, puromycin aminonucleoside nephrosis (PAN) is a classic NS model introduced in 1955 that was adopted as doxorubicin-induced nephropathy (DIN) in 129S1/SvImJ mice. In recent years, mice with inducible podocin deletion (Nphs2Δipod ) or podocyte apoptosis (POD-ATTAC) have been developed. In these models, sodium retention is thought to be caused by activation of the epithelial sodium channel (ENaC) in the distal nephron through aberrantly filtered serine proteases or proteasuria. Strikingly, rodent NS models follow an identical chronological time course after the development of proteinuria featuring sodium retention within days and spontaneous reversal thereafter. In DIN and Nphs2Δipod mice, inhibition of ENaC by amiloride or urinary serine protease activity by aprotinin prevents sodium retention, opening up new and promising therapeutic approaches that could be translated into the treatment of nephrotic patients. However, the essential serine protease(s) responsible for ENaC activation is (are) still unknown. With the use of nephrotic rodent models, there is the possibility that this (these) will be identified in the future. This review summarizes the various rodent models used to study experimental nephrotic syndrome and the insights gained from these models with regard to the pathophysiology of sodium retention.
Collapse
Affiliation(s)
- Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Florian Grahammer
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
11
|
Shi H, Hou Y, Su X, Qiao J, Wang Q, Guo X, Gao Z, Wang L. Mechanism of action of Tripterygium wilfordii for treatment of idiopathic membranous nephropathy based on network pharmacology. Ren Fail 2022; 44:116-125. [PMID: 35172688 PMCID: PMC8856020 DOI: 10.1080/0886022x.2021.2024850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Although thunder god vine (Tripterygium wilfordii) has been widely used for treatment of idiopathic membranous nephropathy (IMN), the pharmacological mechanisms underlying its effects are still unclear. This study investigated potential therapeutic targets and the pharmacological mechanism of T. wilfordii for the treatment of IMN based on network pharmacology. Methods Active components of T. wilfordii were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. IMN-associated target genes were collected from the GeneCards, DisGeNET, and OMIM databases. VENNY 2.1 was used to identify the overlapping genes between active compounds of T. wilfordii and IMN target genes. The STRING database and Cytoscape 3.7.2 software were used to analyze interactions among overlapping genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the targets were performed using Rx64 4.0.2 software, colorspace, stringi, DOSE, clusterProfiler, and enrichplot packages. Results A total of 153 compound-related genes and 1485 IMN-related genes were obtained, and 45 core genes that overlapped between both categories were identified. The protein–protein interaction network and MCODE results indicated that the targets TP53, MAPK8, MAPK14, STAT3, IFNG, ICAM1, IL4, TGFB1, PPARG, and MMP1 play important roles in the treatment of T. wilfordii on IMN. Enrichment analysis showed that the main pathways of targets were the AGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. Conclusion This study revealed potential multi-component and multi-target mechanisms of T. wilfordii for the treatment of IMN based on network pharmacological, and provided a scientific basis for further experimental studies.
Collapse
Affiliation(s)
- Honghong Shi
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaole Su
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Qiao
- Division of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojiao Guo
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhihong Gao
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Division of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Guarneri M, Scola L, Giarratana RM, Bova M, Carollo C, Vaccarino L, Calandra L, Lio D, Balistreri CR, Cottone S. MIF rs755622 and IL6 rs1800795 Are Implied in Genetic Susceptibility to End-Stage Renal Disease (ESRD). Genes (Basel) 2022; 13:226. [PMID: 35205271 PMCID: PMC8872268 DOI: 10.3390/genes13020226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by an increased risk of kidney failure and end-stage renal disease (ESRD). Aging and comorbidities as cardiovascular diseases, metabolic disorders, infectious diseases, or tumors, might increase the risk of dialysis. In addition, genetic susceptibility factors might modulate kidney damage evolution. We have analyzed, in a group of ESRD patients and matched controls, a set of SNPs of genes (Klotho rs577912, rs564481, rs9536314; FGF23 rs7955866; IGF1 rs35767; TNFA rs1800629; IL6 rs1800795; MIF rs755622, rs1007888) chosen in relation to their possible involvement with renal disease and concomitant pathologies. Analysis of the raw data did indicate that IL6 rs180795 and MIF rs755622 SNPs might be markers of genetic susceptibility to ESRD. In particular, the C positive genotypes of MIF rs755622, (dominant model) seem to be an independent risk factor for ESDR patients (data adjusted for age, gender, and associated pathologies). Stratifying results according to age MIF rs755622 C positive genotype frequencies are increased in both the two age classes considered (<59 and ≥59-year-old subjects). Analyses of data according to gender allowed us to observe that ESRD women shoved a significantly reduced frequency of genotypes bearing IL6 rs180795 C allele. In addition, MIF rs755622 might interact with diabetes or hypercholesterolemia in increasing susceptibility to ESRD. In conclusion, our data indicate that some polymorphisms involved in the regulation of both renal function and inflammatory response can influence the evolution of chronic kidney disease and suggest that the modulation of the activities of these and other genes should also be considered as therapeutic targets on to intervene with innovative therapies.
Collapse
Affiliation(s)
- Marco Guarneri
- Unit of Nephrology & Hypertension, European Society of Hypertension Excellence Center, Department of Health Promotion Sciences, Maternal & Infant Care, Internal Medicine & Medical Specialties (PROMISE), University of Palermo, “Paolo Giaccone” University Hospital, 90127 Palermo, Italy; (M.G.); (C.C.); (L.C.); (S.C.)
| | - Letizia Scola
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (L.S.); (R.M.G.); (M.B.); (L.V.); (C.R.B.)
| | - Rosa Maria Giarratana
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (L.S.); (R.M.G.); (M.B.); (L.V.); (C.R.B.)
| | - Manuela Bova
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (L.S.); (R.M.G.); (M.B.); (L.V.); (C.R.B.)
| | - Caterina Carollo
- Unit of Nephrology & Hypertension, European Society of Hypertension Excellence Center, Department of Health Promotion Sciences, Maternal & Infant Care, Internal Medicine & Medical Specialties (PROMISE), University of Palermo, “Paolo Giaccone” University Hospital, 90127 Palermo, Italy; (M.G.); (C.C.); (L.C.); (S.C.)
| | - Loredana Vaccarino
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (L.S.); (R.M.G.); (M.B.); (L.V.); (C.R.B.)
| | - Leonardo Calandra
- Unit of Nephrology & Hypertension, European Society of Hypertension Excellence Center, Department of Health Promotion Sciences, Maternal & Infant Care, Internal Medicine & Medical Specialties (PROMISE), University of Palermo, “Paolo Giaccone” University Hospital, 90127 Palermo, Italy; (M.G.); (C.C.); (L.C.); (S.C.)
| | - Domenico Lio
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (L.S.); (R.M.G.); (M.B.); (L.V.); (C.R.B.)
| | - Carmela Rita Balistreri
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (L.S.); (R.M.G.); (M.B.); (L.V.); (C.R.B.)
| | - Santina Cottone
- Unit of Nephrology & Hypertension, European Society of Hypertension Excellence Center, Department of Health Promotion Sciences, Maternal & Infant Care, Internal Medicine & Medical Specialties (PROMISE), University of Palermo, “Paolo Giaccone” University Hospital, 90127 Palermo, Italy; (M.G.); (C.C.); (L.C.); (S.C.)
| |
Collapse
|
13
|
Wu J, Lei G, Wang T, Dong S, Zhan X. Esculentoside A exerts anti-oxidative stress and anti-apoptotic effects in rat experimental membranous nephropathy by regulating MAPK pathway. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Xu J, Shen C, Lin W, Meng T, Ooi JD, Eggenhuizen PJ, Tang R, Xiao G, Jin P, Ding X, Tang Y, Peng W, Nie W, Ao X, Xiao X, Zhong Y, Zhou Q. Single-Cell Profiling Reveals Transcriptional Signatures and Cell-Cell Crosstalk in Anti-PLA2R Positive Idiopathic Membranous Nephropathy Patients. Front Immunol 2021; 12:683330. [PMID: 34135910 PMCID: PMC8202011 DOI: 10.3389/fimmu.2021.683330] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Idiopathic membranous nephropathy (IMN) is an organ-specific autoimmune disease of the kidney glomerulus. It may gradually progress to end-stage renal disease (ESRD) characterized by increased proteinuria, which leads to serious consequences. Although substantial advances have been made in the understanding of the molecular bases of IMN in the last 10 years, certain questions remain largely unanswered. To define the transcriptomic landscape at single-cell resolution, we analyzed kidney samples from 6 patients with anti-PLA2R positive IMN and 2 healthy control subjects using single-cell RNA sequencing. We then identified distinct cell clusters through unsupervised clustering analysis of kidney specimens. Identification of the differentially expressed genes (DEGs) and enrichment analysis as well as the interaction between cells were also performed. Based on transcriptional expression patterns, we identified all previously described cell types in the kidney. The DEGs in most kidney parenchymal cells were primarily enriched in genes involved in the regulation of inflammation and immune response including IL-17 signaling, TNF signaling, NOD-like receptor signaling, and MAPK signaling. Moreover, cell-cell crosstalk highlighted the extensive communication of mesangial cells, which infers great importance in IMN. IMN with massive proteinuria displayed elevated expression of genes participating in inflammatory signaling pathways that may be involved in the pathogenesis of the progression of IMN. Overall, we applied single-cell RNA sequencing to IMN to uncover intercellular interactions, elucidate key pathways underlying the pathogenesis, and identify novel therapeutic targets of anti-PLA2R positive IMN.
Collapse
Affiliation(s)
- Jie Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Joshua D Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Gong Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Yangshuo Tang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, China
| | - Weisheng Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Chen S, Wang J, Liang S. Clinical significance of T lymphocyte subsets, immunoglobulin and complement expression in peripheral blood of children with steroid-dependent nephrotic syndrome/frequently relapsing nephrotic syndrome. Am J Transl Res 2021; 13:1890-1895. [PMID: 33841716 PMCID: PMC8014369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the clinical significance of T lymphocyte subsets, immunoglobulin and complement expression in the peripheral blood of children with steroid-dependent nephrotic syndrome/frequently relapsing nephrotic syndrome (SDNS/FRNS). METHODS A prospective study was conducted on 285 children with nephrotic syndrome (NS). Among the 285 patients, 187 children had steroid-sensitive nephrotic syndrome (SSNS) and 98 children had SDNS/FRNS according to their sensitivity to hormones. Meanwhile, 50 healthy children in the same period were selected as the control group. Serum albumin (ALB), blood urea nitrogen (BUN), serum creatinine (SCr), estimated glomerular filtration rate (eGFR), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), CD3+, CD4+, CD8+, immunoglobulin IgA, IgG, IgM and complement C3 and C4 were measured upon admission, and the content of urinary CD80 was also determined. RESULTS Compared with the control group, BUN, SCr, hs-CRP and IL-6 levels, urinary CD80, IgA, IgM and C3 in the SDNS/FRNS and SSNS groups were significantly higher, while ALB, eGFR, CD3+, CD4+, CD4+/CD8+, IgG and IgG/IgM were significantly lower (all P<0.05). Compared with the SSNS group, BUN, SCr, hs-CRP and IL-6 levels in the SDNS/FRNS group were significantly higher, while ALB and eGFR levels were significantly lower (all P<0.05). Compared with the SDNS/FRNS group, IgM in the SSNS group was significantly lower, while CD4+/CD8+, urinary CD80 and IgG/IgM were significantly higher (all P<0.001). CONCLUSION Renal function decline and inflammatory response existed in children with NS. CD3+, CD4+, CD4+/CD8+ and IgG/IgM in peripheral blood were decreased, while IgA, IgM, C3 and urinary CD80 were increased. Moreover, renal function decline, increase of inflammatory factors, decrease of IgG/IgM and CD4+/CD8+ were more obvious in the SDNS/FRNS group.
Collapse
Affiliation(s)
- Shulian Chen
- Department of Pediatrics, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian Province, China
| | - Jianxin Wang
- Department of Pediatrics, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian Province, China
| | - Shishan Liang
- Department of Pediatrics, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian Province, China
| |
Collapse
|
16
|
Wang Y, Fan S, Yang M, Shi G, Hu S, Yin D, Zhang Y, Xu F. Evaluation of the mechanism of Danggui-Shaoyao-San in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113020. [PMID: 32592886 DOI: 10.1016/j.jep.2020.113020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui-Shaoyao-San (DSS), a well-known classic Traditional Chinese medicine (TCM) formula for enhancing Qi (vital energy and spirit), invigorating blood circulation and promoting diuresis, has been widely used in the treatment of nephrotic syndrome (NS). Previously, we have reported some protective effects of DSS against NS, but the in-depth mechanisms remain unclear. AIM OF THE STUDY In this study, an ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS)-based urinary metabonomics coupled with bioinformatics method was employed to evaluate the mechanisms of DSS in treating NS from the perspective of metabolism. MATERIALS AND METHODS The rat models of NS were established using adriamycin injection. The regulative effects of DSS on NS in rats were first assessed by non-targeted metabonomics, which was based on UPLC-Q/TOF-MS. A series of target prediction models were used to predict the target of components identified in DSS and potential metabolites in NS, combined with the experimental results of metabonomics, to construct the biological network. RESULTS A total of 16 potential metabolites were screened in NS, of which 13 were significantly regulated by DSS. Metabolic pathway analysis showed that the therapeutic effect of DSS on NS was mainly involved in regulating the amino acid metabolism and energy metabolism. The component-target-metabolites-pathway network revealed 29 targets associated with metabolites that were linked to 27 components of DSS. Bioinformatics analysis showed that the potential targets have various molecular functions (especially serine-type endopeptidase inhibitor activity) and biological process (such as positive regulation of peptidyl-tyrosine phosphorylation or autophosphorylation). CONCLUSIONS The regulation of disrupted metabolic pathways and the relative targets may be the mechanism for DSS in the treatment of NS. Notably, metabonomics coupled with bioinformatics would be useful to explore the mechanism of DSS against NS and provide better insights on DSS for clinical use.
Collapse
Affiliation(s)
- Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Shengnan Fan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Mo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Siyao Hu
- The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, PR China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei, 230051, PR China.
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China.
| |
Collapse
|
17
|
Abstract
The current unidimensional paradigm of kidney disease detection is incompatible with the complexity and heterogeneity of renal pathology. The diagnosis of kidney disease has largely focused on glomerular filtration, while assessment of kidney tubular health has notably been absent. Following insult, the kidney tubular cells undergo a cascade of cellular responses that result in the production and accumulation of low-molecular-weight proteins in the urine and systemic circulation. Modern advancements in molecular analysis and proteomics have allowed the identification and quantification of these proteins as biomarkers for assessing and characterizing kidney diseases. In this review, we highlight promising biomarkers of kidney tubular health that have strong underpinnings in the pathophysiology of kidney disease. These biomarkers have been applied to various specific clinical settings from the spectrum of acute to chronic kidney diseases, demonstrating the potential to improve patient care.
Collapse
Affiliation(s)
- William R Zhang
- Kidney Health Research Collaborative, University of California San Francisco School of Medicine, San Francisco, California 94121, USA
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA;
| |
Collapse
|
18
|
Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules 2020; 10:biom10020301. [PMID: 32075046 PMCID: PMC7094213 DOI: 10.3390/biom10020301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma is a common malignant tumor with high mortality. Its malignant proliferation, invasion, and metastasis are closely related to the cellular immune function of the patients. NKG2D is a key activated and type II membrane protein molecule expressed on the surface of almost all NK cells. The human NKG2D gene is 270 kb long, located at 12p12.3-p13.1, and contains 10 exons and 9 introns. The three-dimensional structure of the NKG2D monomeric protein contains two alpha-helices, two beta-lamellae, and four disulfide bonds, and its' signal of activation is transmitted mainly by the adaptor protein (DAP). NKG2D ligands, including MICA, MICB, and ULBPs, can be widely expressed in hepatoma cells. After a combination of NKG2D and DAP10 in the form of homologous two polymers, the YxxM motif in the cytoplasm is phosphorylated and then signaling pathways are also gradually activated, such as PI3K, PLCγ2, JNK-cJunN, and others. Activated NK cells can enhance the sensitivity to hepatoma cells and specifically dissolve by releasing a variety of cytokines (TNF-α and IFN-γ), perforin, and high expression of FasL, CD16, and TRAIL. NK cells may specifically bind to the over-expressed MICA, MICB, and ULBPs of hepatocellular carcinoma cells through the surface activating receptor NKG2D, which can help to accurately identify hepatoma, play a critical role in anti-hepatoma via the pathway of cytotoxic effects, and obviously delay the poor progress of hepatocellular carcinoma.
Collapse
|
19
|
Soluble tumor necrosis factor receptors are associated with severity of kidney dysfunction in pediatric chronic kidney disease. Pediatr Nephrol 2019; 34:349-352. [PMID: 30374604 DOI: 10.1007/s00467-018-4124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND In adult chronic kidney disease (CKD) patients, there is a positive association between inflammation and progressive renal dysfunction. Higher levels of soluble receptors of tumor necrosis factor (sTNFR) have been related to worst prognosis of adult CKD patients. Therefore, the present study aimed to evaluate soluble TNF receptors in children and adolescents with CKD and to search for an association with clinical and laboratory features. METHODS Demographic, clinical, anthropometric, and laboratory data were evaluated in 34 pediatric patients with CKD and in 34 healthy sex- and age-matched controls. Blood samples were collected in both groups to measure sTNFR by enzyme-linked immunosorbent assay. The modified Schwartz formula was used to estimate glomerular filtration rate (GFR). RESULTS Pediatric patients with CKD had significantly higher plasma concentrations of soluble TNF receptors types 1 and 2 (sTNFR1 and sTNFR2) in comparison to sex- and age-matched healthy controls. Plasma levels of sTNFR1 and sTNFR2 increased progressively as renal function worsened, being inversely and significantly correlated with GFR (r = - 0.853 for sTNFR1 and GFR, r = - 0.729 for sTNFR2 and GFR). CONCLUSIONS Children and adolescents with CKD exhibited higher plasma levels of sTNFR1 and sTNFR2 than healthy controls, which increased in relation to renal function deterioration. Plasma levels of sTNFR1 and sTNFR2 emerge as markers of progressive CKD in pediatric patients.
Collapse
|
20
|
Zhang C, Leng L, Zhang X, Zhao Y, Li Z. Comprehensive identification of immune-associated biomarkers based on network and mRNA expression patterns in membranous glomerulonephritis. J Transl Med 2018; 16:210. [PMID: 30041664 PMCID: PMC6056925 DOI: 10.1186/s12967-018-1586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Membranous glomerulonephritis (MGN) is the most common cause of nephrotic syndrome in adult patients. Despite extensive evidences suggested that many immune-related genes could serve as effective biomarkers in MGN, the potential has not been sufficiently understood because of most previous studies have concentrated on individual gene and not the entire interaction network. METHODS Here, we integrated multiple levels of data containing immune-related genes, MGN-related genes, protein-protein interaction (PPI) networks and gene expression profiling data to construct an immune or MGN-directed neighbor network (IOMDN network) and an MGN-related genes-directed network (MGND network). RESULTS Our analysis suggested that immune-related genes in the PPI network have special topological characteristics and expression pattern related to MGN. We also identified five network modules which showed tighter network structure and stronger correlation of expression. In addition, functional and drug target analyses of genes in modules indicated that the potential mechanism for MGN. CONCLUSIONS Collectively, these results indicated that the strong associations between immune and MGN and showed the potential of immune-related genes as novel diagnostic and therapeutic targets for MGN.
Collapse
Affiliation(s)
- Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, Heilongjiang, People's Republic of China.
| | - Lei Leng
- The Second Hospital of Harbin, Heilongjiang, 150006, People's Republic of China
| | - Xiaoming Zhang
- Xiangan Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, 710000, Shanxi, People's Republic of China
| | - Yao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Zhaozheng Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, Heilongjiang, People's Republic of China
| |
Collapse
|