1
|
Jamali F, Lan K, Daniel P, Petrecca K, Sabri S, Abdulkarim B. Synergistic Dual Targeting of Thioredoxin and Glutathione Systems Irrespective of p53 in Glioblastoma Stem Cells. Antioxidants (Basel) 2024; 13:1201. [PMID: 39456455 PMCID: PMC11504866 DOI: 10.3390/antiox13101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma (GBM) is an incurable primary brain cancer characterized by increased reactive oxygen species (ROS) production. The redox-sensitive tumor suppressor gene TP53, wild-type (wt) for 70% of patients, regulates redox homeostasis. Glioblastoma stem cells (GSCs) increase thioredoxin (Trx) and glutathione (GSH) antioxidant systems as survival redox-adaptive mechanisms to maintain ROS below the cytotoxic threshold. Auranofin, an FDA-approved anti-rheumatoid drug, inhibits thioredoxin reductase 1 (TrxR1). L-buthionine sulfoximine (L-BSO) and the natural product piperlongumine (PPL) inhibit the GSH system. We evaluated the cytotoxic effects of Auranofin alone and in combination with L-BSO or PPL in GBM cell lines and GSCs with a known TP53 status. The Cancer Genome Atlas/GBM analysis revealed a significant positive correlation between wtp53 and TrxR1 expression in GBM. Auranofin induced ROS-dependent cytotoxicity within a micromolar range in GSCs. Auranofin decreased TrxR1 expression, AKT (Ser-473) phosphorylation, and increased p53, p21, and PARP-1 apoptotic cleavage in wtp53-GSCs, while mutant-p53 was decreased in a mutant-p53 GSC line. Additionally, p53-knockdown in a wtp53-GSC line decreased TrxR1 expression and significantly increased sensitivity to Auranofin, suggesting the role of wtp53 as a negative redox-sensitive mechanism in response to Auranofin in GSCs. The combination of Auranofin and L-BSO synergistically increased ROS, decreased IC50s, and induced long-term cytotoxicity irrespective of p53 in GBM cell lines and GSCs. Intriguingly, Auranofin increased the expression of glutathione S-transferase pi-1 (GSTP-1), a target of PPL. Combining Auranofin with PPL synergistically decreased IC50s to a nanomolar range in GSCs, supporting the potential to repurpose Auranofin and PPL in GBM.
Collapse
Affiliation(s)
- Fatemeh Jamali
- Pathology Graduate and Postdoctoral Studies Program, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
| | - Katherine Lan
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paul Daniel
- Centre for Cancer Research, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Faculty of Medicine, Monash University, Clayton, VIC 3168, Australia;
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 1A1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
| | - Bassam Abdulkarim
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| |
Collapse
|
2
|
Chantzi E, Hammerling U, Gustafsson MG. Exhaustive in vitro evaluation of the 9-drug cocktail CUSP9 for treatment of glioblastoma. Comput Biol Med 2024; 178:108748. [PMID: 38925084 DOI: 10.1016/j.compbiomed.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The CUSP9 protocol is a polypharmaceutical strategy aiming at addressing the complexity of glioblastoma by targeting multiple pathways. Although the rationale for this 9-drug cocktail is well-supported by theoretical and in vitro data, its effectiveness compared to its 511 possible subsets has not been comprehensively evaluated. Such an analysis could reveal if fewer drugs could achieve similar or better outcomes. We conducted an exhaustive in vitro evaluation of the CUSP9 protocol using COMBImageDL, our specialized framework for testing higher-order drug combinations. This study assessed all 511 subsets of the CUSP9v3 protocol, in combination with temozolomide, on two clonal cultures of glioma-initiating cells derived from patient samples. The drugs were used at fixed, clinically relevant concentrations, and the experiment was performed in quadruplicate with endpoint cell viability and live-cell imaging readouts. Our results showed that several lower-order drug combinations produced effects equivalent to the full CUSP9 cocktail, indicating potential for simplified regimens in personalized therapy. Further validation through in vivo and precision medicine testing is required. Notably, a subset of four drugs (auranofin, disulfiram, itraconazole, sertraline) was particularly effective, reducing cell growth, altering cell morphology, increasing apoptotic-like cells within 4-28 h, and significantly decreasing cell viability after 68 h compared to untreated cells. This study underscores the importance and feasibility of comprehensive in vitro evaluations of complex drug combinations on patient-derived tumor cells, serving as a critical step toward (pre-)clinical development.
Collapse
Affiliation(s)
- Efthymia Chantzi
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Sweden.
| | - Ulf Hammerling
- Department of Civil & Industrial Engineering, Industrial Analytics, Uppsala University, Sweden
| | - Mats G Gustafsson
- Department of Civil & Industrial Engineering, Industrial Analytics, Uppsala University, Sweden.
| |
Collapse
|
3
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
4
|
Hovis G, Chandra N, Kejriwal N, Hsieh KJY, Chu A, Yang I, Wadehra M. Understanding the Role of Endothelial Cells in Glioblastoma: Mechanisms and Novel Treatments. Int J Mol Sci 2024; 25:6118. [PMID: 38892305 PMCID: PMC11173095 DOI: 10.3390/ijms25116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is a highly aggressive neoplasm and the most common primary malignant brain tumor. Endothelial tissue plays a critical role in glioblastoma growth and progression, facilitating angiogenesis, cellular communication, and tumorigenesis. In this review, we present an up-to-date and comprehensive summary of the role of endothelial cells in glioblastomas, along with an overview of recent developments in glioblastoma therapies and tumor endothelial marker identification.
Collapse
Affiliation(s)
- Gabrielle Hovis
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Chandra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Nidhi Kejriwal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Kaleb Jia-Yi Hsieh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Cao Q, Hajosch A, Kast RE, Loehmann C, Hlavac M, Fischer-Posovszky P, Strobel H, Westhoff MA, Siegelin MD, Wirtz CR, Halatsch ME, Karpel-Massler G. Tumor Treating Fields (TTFields) combined with the drug repurposing approach CUSP9v3 induce metabolic reprogramming and synergistic anti-glioblastoma activity in vitro. Br J Cancer 2024; 130:1365-1376. [PMID: 38396172 PMCID: PMC11015043 DOI: 10.1038/s41416-024-02608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Glioblastoma represents a brain tumor with a notoriously poor prognosis. First-line therapy may include adjunctive Tumor Treating Fields (TTFields) which are electric fields that are continuously delivered to the brain through non-invasive arrays. On a different note, CUSP9v3 represents a drug repurposing strategy that includes 9 repurposed drugs plus metronomic temozolomide. Here, we examined whether TTFields enhance the antineoplastic activity of CUSP9v3 against this disease. METHODS We performed preclinical testing of a multimodal approach of TTFields and CUSP9v3 in different glioblastoma models. RESULTS TTFields had predominantly synergistic inhibitory effects on the cell viability of glioblastoma cells and non-directed movement was significantly impaired when combined with CUSP9v3. TTFields plus CUSP9v3 significantly enhanced apoptosis, which was associated with a decreased mitochondrial outer membrane potential (MOMP), enhanced cleavage of effector caspase 3 and reduced expression of Bcl-2 and Mcl-1. Moreover, oxidative phosphorylation and expression of respiratory chain complexes I, III and IV was markedly reduced. CONCLUSION TTFields strongly enhance the CUSP9v3-mediated anti-glioblastoma activity. TTFields are currently widely used for the treatment of glioblastoma patients and CUSP9v3 was shown to have a favorable safety profile in a phase Ib/IIa trial (NCT02770378) which facilitates transition of this multimodal approach to the clinical setting.
Collapse
Affiliation(s)
- Qiyu Cao
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | - Annika Hajosch
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | | | | | - Michal Hlavac
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | | | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Markus D Siegelin
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | | |
Collapse
|
6
|
Ramos S, Vicente-Blázquez A, López-Rubio M, Gallego-Yerga L, Álvarez R, Peláez R. Frentizole, a Nontoxic Immunosuppressive Drug, and Its Analogs Display Antitumor Activity via Tubulin Inhibition. Int J Mol Sci 2023; 24:17474. [PMID: 38139302 PMCID: PMC10744269 DOI: 10.3390/ijms242417474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Antimitotic agents are one of the more successful types of anticancer drugs, but they suffer from toxicity and resistance. The application of approved drugs to new indications (i.e., drug repurposing) is a promising strategy for the development of new drugs. It relies on finding pattern similarities: drug effects to other drugs or conditions, similar toxicities, or structural similarity. Here, we recursively searched a database of approved drugs for structural similarity to several antimitotic agents binding to a specific site of tubulin, with the expectation of finding structures that could fit in it. These searches repeatedly retrieved frentizole, an approved nontoxic anti-inflammatory drug, thus indicating that it might behave as an antimitotic drug devoid of the undesired toxic effects. We also show that the usual repurposing approach to searching for targets of frentizole failed in most cases to find such a relationship. We synthesized frentizole and a series of analogs to assay them as antimitotic agents and found antiproliferative activity against HeLa tumor cells, inhibition of microtubule formation within cells, and arrest at the G2/M phases of the cell cycle, phenotypes that agree with binding to tubulin as the mechanism of action. The docking studies suggest binding at the colchicine site in different modes. These results support the repurposing of frentizole for cancer treatment, especially for glioblastoma.
Collapse
Affiliation(s)
- Sergio Ramos
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Marta López-Rubio
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
7
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
8
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
10
|
High Neutrophil-to-Lymphocyte Ratio Facilitates Cancer Growth-Currently Marketed Drugs Tadalafil, Isotretinoin, Colchicine, and Omega-3 to Reduce It: The TICO Regimen. Cancers (Basel) 2022; 14:cancers14194965. [PMID: 36230888 PMCID: PMC9564173 DOI: 10.3390/cancers14194965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Several elements that are composed of, or related to, neutrophils, have been shown to inhibit strong immune responses to cancer and promote cancers’ growth. This paper presents the collected data showing these elements and how their coordinated actions as an ensemble facilitate growth in the common cancers. The paper goes on to present a drug regimen, TICO, designed to reduce the cancer growth enhancing effects of the neutrophil related elements. TICO uses four already marketed, readily available generic drugs, repurposed to inhibit neutrophil centered growth facilitation of cancer. Abstract This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.
Collapse
|
11
|
Abstract
Glioblastoma is the most aggressive primary brain tumor with a poor prognosis. The 2021 WHO CNS5 classification has further stressed the importance of molecular signatures in diagnosis although therapeutic breakthroughs are still lacking. In this review article, updates on the current and novel therapies in IDH-wildtype GBM will be discussed.
Collapse
Affiliation(s)
- Jawad M Melhem
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James R Perry
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Majc B, Novak M, Lah TT, Križaj I. Bioactive peptides from venoms against glioma progression. Front Oncol 2022; 12:965882. [PMID: 36119523 PMCID: PMC9476555 DOI: 10.3389/fonc.2022.965882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Venoms are complex mixtures of different molecules and ions. Among them, bioactive peptides have been found to affect cancer hallmarks, such as cell proliferation, cell invasion, cell migration, and can also modulate the immune response of normal and cancer-bearing organisms. In this article, we review the mechanisms of action on these cancer cell features, focusing on bioactive peptides being developed as potential therapeutics for one of the most aggressive and deadly brain tumors, glioblastoma (GB). Novel therapeutic approaches applying bioactive peptides may contribute to multiple targeting of GB and particularly of GB stem cells. Bioactive peptides selectively target cancer cells without harming normal cells. Various molecular targets related to the effects of bioactive peptides on GB have been proposed, including ion channels, integrins, membrane phospholipids and even immunomodulatory treatment of GB. In addition to therapy, some bioactive peptides, such as disintegrins, can also be used for diagnostics or are used as labels for cytotoxic drugs to specifically target cancer cells. Given the limitations described in the last section, successful application in cancer therapy is rather low, as only 3.4% of such peptides have been included in clinical trials and have passed successfully phases I to III. Combined approaches of added bioactive peptides to standard cancer therapies need to be explored using advanced GB in vitro models such as organoids. On the other hand, new methods are also being developed to improve translation from research to practice and provide new hope for GB patients and their families.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- *Correspondence: Bernarda Majc, ; Igor Križaj,
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor Križaj
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- *Correspondence: Bernarda Majc, ; Igor Križaj,
| |
Collapse
|
13
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
14
|
Inhibition of the angiotensin II type 2 receptor AT 2R is a novel therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 2022; 119:e2116289119. [PMID: 35917342 PMCID: PMC9371711 DOI: 10.1073/pnas.2116289119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G-protein or β-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2-tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation, and increased levels of apoptosis in an orthotopic xenograft model of GBM.
Collapse
|
15
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
16
|
Mouse pharmacokinetics and metabolism of the phenylurea thiocarbamate NSC 161128. Cancer Chemother Pharmacol 2022; 90:161-174. [PMID: 35896839 DOI: 10.1007/s00280-022-04440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE NSC 161128, a phenylurea thiocarbamate, displays activity against the NCI60 anti-cancer cell line panel and xenograft models. The metabolite N-methyl-N'-phenylurea (M10) has been detected in animal plasma; however, detection and quantification of other putative NSC 161128 metabolites have not been undertaken. The purpose of this study was to characterize the pharmacokinetics and metabolism of NSC 161128 in mice and under in vitro conditions. METHODS An LC-MS/MS assay was developed to evaluate stability and in vitro metabolism of NSC 161128 in liver microsomes and S9 fractions. Single-dose pharmacokinetic profiles for NSC 161128 and its metabolite M10 were obtained following intraperitoneal (I.P.) administration. RESULTS A sensitive and specific positive ionization LC-MS/MS method for measuring NSC 161128 and its metabolites was developed. HPLC separation was achieved under gradient elution using an aqueous methanol mobile phase containing 0.05% formic acid and 0.05% ammonium hydroxide. The assay was linear over the range 1.0-1000 ng/mL. NSC 161128 was stable in aqueous solution and tissue culture media, but not in plasma, where rapid degradation of NSC 161128 to the metabolite M10 was observed. Following I.P. administration of a 200 mg/kg dose to male CD1 mice, the peak plasma concentration of NSC 161128 was 255 ng/mL after 5 min with a plasma half-life of 138 min. Potential bioactivation of NSC 161128 was explored using mouse S9. CONCLUSIONS An analytical LC-MS/MS method was successfully developed for the detection and quantification of NSC 161128 and its metabolites. These results increase the understanding of NSC 161128 pharmacokinetic and metabolic properties.
Collapse
|
17
|
Lastakchi S, Olaloko MK, McConville C. A Potential New Treatment for High-Grade Glioma: A Study Assessing Repurposed Drug Combinations against Patient-Derived High-Grade Glioma Cells. Cancers (Basel) 2022; 14:2602. [PMID: 35681582 PMCID: PMC9179370 DOI: 10.3390/cancers14112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposed drugs have demonstrated in vitro success against high-grade gliomas; however, their clinical success has been limited due to the in vitro model not truly representing the clinical scenario. In this study, we used two distinct patient-derived tumour fragments (tumour core (TC) and tumour margin (TM)) to generate a heterogeneous, clinically relevant in vitro model to assess if a combination of repurposed drugs (irinotecan, pitavastatin, disulfiram, copper gluconate, captopril, celecoxib, itraconazole and ticlopidine), each targeting a different growth promoting pathway, could successfully treat high-grade gliomas. To ensure the clinical relevance of our data, TC and TM samples from 11 different patients were utilized. Our data demonstrate that, at a concentration of 100µm or lower, all drug combinations achieved lower LogIC50 values than temozolomide, with one of the combinations almost eradicating the cancer by achieving cell viabilities below 4% in five of the TM samples 6 days after treatment. Temozolomide was unable to stop tumour growth over the 14-day assay, while combination 1 stopped tumour growth, with combinations 2, 3 and 4 slowing down tumour growth at higher doses. To validate the cytotoxicity data, we used two distinct assays, end point MTT and real-time IncuCyte life analysis, to evaluate the cytotoxicity of the combinations on the TC fragment from patient 3, with the cell viabilities comparable across both assays. The local administration of combinations of repurposed drugs that target different growth promoting pathways of high-grade gliomas have the potential to be translated into the clinic as a novel treatment strategy for high-grade gliomas.
Collapse
Affiliation(s)
| | | | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.); (M.K.O.)
| |
Collapse
|
18
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
19
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
20
|
Up-Regulation of Cyclooxygenase-2 (COX-2) Expression by Temozolomide (TMZ) in Human Glioblastoma (GBM) Cell Lines. Int J Mol Sci 2022; 23:ijms23031545. [PMID: 35163465 PMCID: PMC8835858 DOI: 10.3390/ijms23031545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
TMZ-resistance remains a main limitation in glioblastoma (GBM) treatment. TMZ is an alkylating agent whose cytotoxicity is modulated by O6-methylguanine-DNA methyltransferase (MGMT), whose expression is determined by MGMT gene promoter methylation status. The inflammatory marker COX-2 has been implicated in GBM tumorigenesis, progression, and stemness. COX-2 inhibitors are considered a GBM add-on treatment due to their ability to increase TMZ-sensitivity. We investigated the effect of TMZ on COX-2 expression in GBM cell lines showing different COX-2 levels and TMZ sensitivity (T98G and U251MG). β-catenin, MGMT, and SOX-2 expression was analyzed. The effects of NS398, COX-2 inhibitor, alone or TMZ-combined, were studied evaluating cell proliferation by the IncuCyte® system, cell cycle/apoptosis, and clonogenic potential. COX-2, β-catenin, MGMT, and SOX-2 expression was evaluated by RT-PCR, Western blotting, and immunofluorescence and PGE2 by ELISA. Our findings, sustaining the role of COX-2/PGE2 system in TMZ-resistance of GBM, show, for the first time, a relevant, dose-dependent up-regulation of COX-2 expression and activity in TMZ-treated T98G that, in turn, correlated with chemoresistance. Similarly, all the COX-2-dependent signaling pathways involved in TMZ-resistance also resulted in being up-modulated after treatment with TMZ. NS398+TMZ was able to reduce cell proliferation and induce cell cycle arrest and apoptosis. Moreover, NS398+TMZ counteracted the resistance in T98G preventing the TMZ-induced COX-2, β-catenin, MGMT, and SOX-2 up-regulation.
Collapse
|
21
|
Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. J Clin Neurosci 2021; 95:48-54. [PMID: 34929651 DOI: 10.1016/j.jocn.2021.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most common and most aggressive primary brain cancer in adults. Standard treatment of glioblastoma consisting of maximal safe resection, adjuvant radiotherapy and chemotherapy with temozolomide, results in an overall median survival of 14.6 months. The aggressive nature of glioblastoma has been attributed to the presence of glioblastoma stem cells which express components of the renin-angiotensin system (RAS). This phase I clinical trial investigated the tolerability and efficacy of a treatment targeting the RAS and its converging pathways in patients with glioblastoma. Patients who had relapsed following standard treatment of glioblastoma who met the trial criteria were commenced on dose-escalated oral RAS modulators (propranolol, aliskiren, cilazapril, celecoxib, curcumin with piperine, aspirin, and metformin). Of the 17 patients who were enrolled, ten completed full dose-escalation of the treatment. The overall median survival was 19.9 (95% CI:14.1-25.7) months. Serial FET-PET/CTs showed a reduction in both tumor volume and uptake in one patient, an increase in tumor uptake in nine patients with decreased (n = 1), unchanged (n = 1) and increased (n = 7) tumor volume, in the ten patients who had completed full dose-escalation of the treatment. Two patients experienced mild side effects and all patients had preservation of quality of life and performance status during the treatment. There is a trend towards increased survival by 5.3 months although it was not statistically significant. These encouraging results warrant further clinical trials on this potential novel, well-tolerated and cost-effective therapeutic option for patients with glioblastoma.
Collapse
|
22
|
You F, Zhang C, Liu X, Ji D, Zhang T, Yu R, Gao S. Drug repositioning: Using psychotropic drugs for the treatment of glioma. Cancer Lett 2021; 527:140-149. [PMID: 34923043 DOI: 10.1016/j.canlet.2021.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Psychotropic drugs can penetrate the blood-brain barrier and regulate the levels of neurotransmitters and neuromodulators such as γ-aminobutyric acid, glutamate, serotonin, dopamine, and norepinephrine in the brain, and thus influence neuronal activity. Neuronal activity in the tumor microenvironment can promote the growth and expansion of glioma. There is increasing evidence that in addition to their use in the treatment of mental disorders, antipsychotic, antidepressant, and mood-stabilizing drugs have clinical potential for cancer therapy. These drugs have been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. In this review, we summarize findings from preclinical and clinical studies investigating the use of antipsychotics, antidepressants, and mood stabilizers in the treatment of various types of cancer, with a focus on glioma; and discuss their presumed antitumor mechanisms. The existing evidence indicates that psychotropic drugs with established pharmacologic and safety profiles can be repurposed as anticancer agents, thus providing new options for the treatment of glioma.
Collapse
Affiliation(s)
- Fangting You
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 379 Tong-Shan Road, Xuzhou, 221004, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Mei-Jian Road, Xuzhou, 221006, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| |
Collapse
|
23
|
Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021; 11:biom11121870. [PMID: 34944514 PMCID: PMC8699739 DOI: 10.3390/biom11121870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with an extremely poor prognosis. There is a dire need to develop effective therapeutics to overcome the intrinsic and acquired resistance of GBM to current therapies. The process of developing novel anti-neoplastic drugs from bench to bedside can incur significant time and cost implications. Drug repurposing may help overcome that obstacle. A wide range of drugs that are already approved for clinical use for the treatment of other diseases have been found to target GBM-associated signaling pathways and are being repurposed for the treatment of GBM. While many of these drugs are undergoing pre-clinical testing, others are in the clinical trial phase. Since GBM stem cells (GSCs) have been found to be a main source of tumor recurrence after surgery, recent studies have also investigated whether repurposed drugs that target these pathways can be used to counteract tumor recurrence. While several repurposed drugs have shown significant efficacy against GBM cell lines, the blood–brain barrier (BBB) can limit the ability of many of these drugs to reach intratumoral therapeutic concentrations. Localized intracranial delivery may help to achieve therapeutic drug concentration at the site of tumor resection while simultaneously minimizing toxicity and side effects. These strategies can be considered while repurposing drugs for GBM.
Collapse
|
24
|
Baú-Carneiro JL, Akemi Guirao Sumida I, Gallon M, Zaleski T, Boia-Ferreira M, Bridi Cavassin F. Sertraline repositioning: an overview of its potential use as a chemotherapeutic agent after four decades of tumor reversal studies. Transl Oncol 2021; 16:101303. [PMID: 34911014 PMCID: PMC8681026 DOI: 10.1016/j.tranon.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Thirteen different neoplasms were shown to be susceptible to the antidepressant drug sertraline. The mechanisms of action through which sertraline can kill tumor cells are apoptosis, autophagy, and drug synergism. Sertraline inhibits TCTP, a tumor protein involved in cell survival pathways, responsible for reducing p53 levels. The testing of sertraline in vitro and in vivo resulted in reduced cell counting, shrinking of tumoral masses and increased survival rates. Dose extrapolation from animals to humans has shown a therapeutic index of sertraline that could support future clinical trials.
Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug synergism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical equation determined possible doses to be used in human beings, supporting that sertraline could be explored in clinical trials as a TCTP-inhibitor.
Collapse
Affiliation(s)
- João Luiz Baú-Carneiro
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | | | - Malu Gallon
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | - Tânia Zaleski
- Faculty of Medical Sciences, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil; Faculty of Biological Sciences, Universidade Estadual do Paraná (UNESPAR), Paranaguá, Brazil; Post Graduate Program of National Network's in Education, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Marianna Boia-Ferreira
- Postdoctoral Program of Cellular and Molecular Biology, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | | |
Collapse
|
25
|
Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci 2021; 43:136-150. [PMID: 34895945 DOI: 10.1016/j.tips.2021.11.004] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
For complex diseases, most drugs are highly ineffective, and the success rate of drug discovery is in constant decline. While low quality, reproducibility issues, and translational irrelevance of most basic and preclinical research have contributed to this, the current organ-centricity of medicine and the 'one disease-one target-one drug' dogma obstruct innovation in the most profound manner. Systems and network medicine and their therapeutic arm, network pharmacology, revolutionize how we define, diagnose, treat, and, ideally, cure diseases. Descriptive disease phenotypes are replaced by endotypes defined by causal, multitarget signaling modules that also explain respective comorbidities. Precise and effective therapeutic intervention is achieved by synergistic multicompound network pharmacology and drug repurposing, obviating the need for drug discovery and speeding up clinical translation.
Collapse
|
26
|
Halatsch ME, Dwucet A, Schmidt CJ, Mühlnickel J, Heiland T, Zeiler K, Siegelin MD, Kast RE, Karpel-Massler G. In Vitro and Clinical Compassionate Use Experiences with the Drug-Repurposing Approach CUSP9v3 in Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14121241. [PMID: 34959641 PMCID: PMC8708851 DOI: 10.3390/ph14121241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Glioblastoma represents the most common primary brain tumor in adults. Despite technological advances, patients with this disease typically die within 1–2 years after diagnosis. In the search for novel therapeutics, drug repurposing has emerged as an alternative to traditional drug development pipelines, potentially facilitating and expediting the transition from drug discovery to clinical application. In a drug repurposing effort, the original CUSP9 and its derivatives CUSP9* and CUSP9v3 were developed as combinations of nine non-oncological drugs combined with metronomic low-dose temozolomide. Methods: In this work, we performed pre-clinical testing of CUSP9v3 in different established, primary cultured and stem-like glioblastoma models. In addition, eight patients with heavily pre-treated recurrent glioblastoma received the CUSP9v3 regime on a compassionate use basis in a last-ditch effort. Results: CUSP9v3 had profound antiproliferative and pro-apoptotic effects across all tested glioblastoma models. Moreover, the cells’ migratory capacity and ability to form tumor spheres was drastically reduced. In vitro, additional treatment with temozolomide did not significantly enhance the antineoplastic activity of CUSP9v3. CUSP9v3 was well-tolerated with the most frequent grade 3 or 4 adverse events being increased hepatic enzyme levels. Conclusions: CUSP9v3 displays a strong anti-proliferative and anti-migratory activity in vitro and seems to be safe to apply to patients. These data have prompted further investigation of CUSP9v3 in a phase Ib/IIa clinical trial (NCT02770378).
Collapse
Affiliation(s)
- Marc-Eric Halatsch
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
- Department of Neurological Surgery, Cantonal Hospital of Winterthur, 8401 Winterthur, Switzerland
- Correspondence: (M.-E.H.); (G.K.-M.)
| | - Annika Dwucet
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Carl Julius Schmidt
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Julius Mühlnickel
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Tim Heiland
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Katharina Zeiler
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | | | - Georg Karpel-Massler
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
- Correspondence: (M.-E.H.); (G.K.-M.)
| |
Collapse
|
27
|
Van Loenhout J, Freire Boullosa L, Quatannens D, De Waele J, Merlin C, Lambrechts H, Lau HW, Hermans C, Lin A, Lardon F, Peeters M, Bogaerts A, Smits E, Deben C. Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells 2021; 10:2936. [PMID: 34831159 PMCID: PMC8616410 DOI: 10.3390/cells10112936] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.
Collapse
Affiliation(s)
- Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Laurie Freire Boullosa
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Abraham Lin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| |
Collapse
|
28
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Martinez EG, Correa-Basurto J, Duenas-Gonzalez A. BAPST. A Combo of Common use drugs as metabolic therapy of cancer-a theoretical proposal. Curr Mol Pharmacol 2021; 15:815-831. [PMID: 34620071 DOI: 10.2174/1874467214666211006123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Advances in cancer therapy have yet to impact worldwide cancer mortality. Poor cancer drug affordability is one of the factors limiting mortality burden strikes. Up to now, cancer drug repurposing had no meet expectations concerning drug affordability. The three FDA-approved cancer drugs developed under repurposing -all-trans-retinoic acid, arsenic trioxide, and thalidomide- do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows they have a good safety profile and lack predicted pharmacokinetic interaction among them. Most importantly, the inhibitory enzymatic concentrations required for inhibiting their cancer targets enzymes are below the plasma concentrations observed when these drugs are used for their primary indication. Based on that, we propose that the regimen BAPTS merits preclinical testing.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| | | | - Alma Chavez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Aurora Gonzalez-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | | | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City. Mexico
| | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| |
Collapse
|
29
|
Harland A, Liu X, Ghirardello M, Galan MC, Perks CM, Kurian KM. Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies. Front Oncol 2021; 11:743814. [PMID: 34532295 PMCID: PMC8438230 DOI: 10.3389/fonc.2021.743814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance.
Collapse
Affiliation(s)
- Abigail Harland
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattia Ghirardello
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - M Carmen Galan
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
The Renin-Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2021; 13:cancers13164004. [PMID: 34439159 PMCID: PMC8392691 DOI: 10.3390/cancers13164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GB) is the most aggressive brain cancer in humans. Patient survival outcomes have remained dismal despite intensive research over the past 50 years, with a median overall survival of only 14.6 months. We highlight the critical role of the renin–angiotensin system (RAS) on GB cancer stem cells and the tumor microenvironment which, in turn, influences cancer stem cells in driving tumorigenesis and treatment resistance. We present recent developments and underscore the need for further research into the GB tumor microenvironment. We discuss the novel therapeutic targeting of the RAS using existing commonly available medications and utilizing model systems to further this critical investigation. Abstract Glioblastoma (GB) is an aggressive primary brain tumor. Despite intensive research over the past 50 years, little advance has been made to improve the poor outcome, with an overall median survival of 14.6 months following standard treatment. Local recurrence is inevitable due to the quiescent cancer stem cells (CSCs) in GB that co-express stemness-associated markers and components of the renin–angiotensin system (RAS). The dynamic and heterogeneous tumor microenvironment (TME) plays a fundamental role in tumor development, progression, invasiveness, and therapy resistance. There is increasing evidence showing the critical role of the RAS in the TME influencing CSCs via its upstream and downstream pathways. Drugs that alter the hallmarks of cancer by modulating the RAS present a potential new therapeutic alternative or adjunct to conventional treatment of GB. Cerebral and GB organoids may offer a cost-effective method for evaluating the efficacy of RAS-modulating drugs on GB. We review the nexus between the GB TME, CSC niche, and the RAS, and propose re-purposed RAS-modulating drugs as a potential therapeutic alternative or adjunct to current standard therapy for GB.
Collapse
|
31
|
Abadi B, Shahsavani Y, Faramarzpour M, Rezaei N, Rahimi HR. Antidepressants with anti-tumor potential in treating glioblastoma: A narrative review. Fundam Clin Pharmacol 2021; 36:35-48. [PMID: 34212424 DOI: 10.1111/fcp.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) is known as the deadliest form of brain tumor. In addition, its high treatment resistance, heterogeneity, and invasiveness make it one of the most challenging tumors. Depression is a common psychological disorder among patients with cancer, especially GBM. Due to the high occurrence rates of depression in GBM patients and the overlap of molecular and cellular mechanisms involved in the pathogenesis of these diseases, finding antidepressants with antitumor effects could be considered as an affordable strategy for the treatment of GBM. Antidepressants exert their antitumor properties through different mechanisms. According to available evidence in this regard, some of them can eliminate the adverse effects resulting from chemo-radiotherapy in several cancers along with their synergistic effects caused by chemotherapy. Therefore, providing comprehensive insight into this issue would guide scientists and physicians in developing further preclinical studies and clinical trials, in order to evaluate antidepressants' antitumor potential. Considering that no narrative review has been recently published on this issue, specifically on these classes of drugs, we present this article with the purpose of describing the antitumor cellular mechanisms of three classes of antidepressants as follows: tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and monoamine oxidase inhibitors (MAOIs) in GBM.
Collapse
Affiliation(s)
- Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasamin Shahsavani
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Faramarzpour
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Halatsch ME, Kast RE, Karpel-Massler G, Mayer B, Zolk O, Schmitz B, Scheuerle A, Maier L, Bullinger L, Mayer-Steinacker R, Schmidt C, Zeiler K, Elshaer Z, Panther P, Schmelzle B, Hallmen A, Dwucet A, Siegelin MD, Westhoff MA, Beckers K, Bouche G, Heiland T. A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neurooncol Adv 2021; 3:vdab075. [PMID: 34377985 PMCID: PMC8349180 DOI: 10.1093/noajnl/vdab075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The dismal prognosis of glioblastoma (GBM) may be related to the ability of GBM cells to develop mechanisms of treatment resistance. We designed a protocol called Coordinated Undermining of Survival Paths combining 9 repurposed non-oncological drugs with metronomic temozolomide—version 3—(CUSP9v3) to address this issue. The aim of this phase Ib/IIa trial was to assess the safety of CUSP9v3. Methods Ten adults with histologically confirmed GBM and recurrent or progressive disease were included. Treatment consisted of aprepitant, auranofin, celecoxib, captopril, disulfiram, itraconazole, minocycline, ritonavir, and sertraline added to metronomic low-dose temozolomide. Treatment was continued until toxicity or progression. Primary endpoint was dose-limiting toxicity defined as either any unmanageable grade 3–4 toxicity or inability to receive at least 7 of the 10 drugs at ≥ 50% of the per-protocol doses at the end of the second treatment cycle. Results One patient was not evaluable for the primary endpoint (safety). All 9 evaluable patients met the primary endpoint. Ritonavir, temozolomide, captopril, and itraconazole were the drugs most frequently requiring dose modification or pausing. The most common adverse events were nausea, headache, fatigue, diarrhea, and ataxia. Progression-free survival at 12 months was 50%. Conclusions CUSP9v3 can be safely administered in patients with recurrent GBM under careful monitoring. A randomized phase II trial is in preparation to assess the efficacy of the CUSP9v3 regimen in GBM.
Collapse
Affiliation(s)
| | | | | | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Oliver Zolk
- Department of Clinical Pharmacology, Ulm University Hospital, Ulm, Germany
| | - Bernd Schmitz
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Angelika Scheuerle
- Division of Neuropathology, Department of Pathology, Ulm University Hospital, Ulm, Germany
| | - Ludwig Maier
- Central Pharmacy, Ulm University Hospital, Ulm, Germany
| | - Lars Bullinger
- Division of Hematology and Oncology, Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Regine Mayer-Steinacker
- Division of Hematology and Oncology, Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Carl Schmidt
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Katharina Zeiler
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Ziad Elshaer
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Patricia Panther
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Birgit Schmelzle
- Institute of Experimental Cancer Research, Ulm University Hospital, Ulm, Germany
| | - Anke Hallmen
- Division of Hematology and Oncology, Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Annika Dwucet
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Mike-Andrew Westhoff
- Department of Pediatric and Adolescent Medicine, Basic Research Division, Ulm University Hospital, Ulm, Germany
| | | | | | - Tim Heiland
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
33
|
OPALS: A New Osimertinib Adjunctive Treatment of Lung Adenocarcinoma or Glioblastoma Using Five Repurposed Drugs. Cells 2021; 10:cells10051148. [PMID: 34068720 PMCID: PMC8151869 DOI: 10.3390/cells10051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.
Collapse
|
34
|
COXIBs and 2,5-dimethylcelecoxib counteract the hyperactivated Wnt/β-catenin pathway and COX-2/PGE2/EP4 signaling in glioblastoma cells. BMC Cancer 2021; 21:493. [PMID: 33941107 PMCID: PMC8091781 DOI: 10.1186/s12885-021-08164-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the deadliest and the most common primary brain tumor in adults. The invasiveness and proliferation of GBM cells can be decreased through the inhibition of Wnt/β-catenin pathway. In this regard, celecoxib is a promising agent, but other COXIBs and 2,5-dimethylcelecoxib (2,5-DMC) await elucidation. Thus, the aim of this study was to analyze the impact of celecoxib, 2,5-DMC, etori-, rofe-, and valdecoxib on GBM cell viability and the activity of Wnt/β-catenin pathway. In addition, the combination of the compounds with temozolomide (TMZ) was also evaluated. Cell cycle distribution and apoptosis, MGMT methylation level, COX-2 and PGE2 EP4 protein levels were also determined in order to better understand the molecular mechanisms exerted by these compounds and to find out which of them can serve best in GBM therapy. METHODS Celecoxib, 2,5-DMC, etori-, rofe- and valdecoxib were evaluated using three commercially available and two patient-derived GBM cell lines. Cell viability was analyzed using MTT assay, whereas alterations in MGMT methylation level were determined using MS-HRM method. The impact of COXIBs, in the presence and absence of TMZ, on Wnt pathway was measured on the basis of the expression of β-catenin target genes. Cell cycle distribution and apoptosis analysis were performed using flow cytometry. COX-2 and PGE2 EP4 receptor expression were evaluated using Western blot analysis. RESULTS Wnt/β-catenin pathway was attenuated by COXIBs and 2,5-DMC irrespective of the COX-2 expression profile of the treated cells, their MGMT methylation status, or radio/chemoresistance. Celecoxib and 2,5-DMC were the most cytotoxic. Cell cycle distribution was altered, and apoptosis was induced after the treatment with celecoxib, 2,5-DMC, etori- and valdecoxib in T98G cell line. COXIBs and 2,5-DMC did not influence MGMT methylation status, but inhibited COX-2/PGE2/EP4 pathway. CONCLUSIONS Not only celecoxib, but also 2,5-DMC, etori-, rofe- and valdecoxib should be further investigated as potential good anti-GBM therapeutics.
Collapse
|
35
|
Lah Turnšek T, Jiao X, Novak M, Jammula S, Cicero G, Ashton AW, Joyce D, Pestell RG. An Update on Glioblastoma Biology, Genetics, and Current Therapies: Novel Inhibitors of the G Protein-Coupled Receptor CCR5. Int J Mol Sci 2021; 22:4464. [PMID: 33923334 PMCID: PMC8123168 DOI: 10.3390/ijms22094464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanisms governing therapeutic resistance of the most aggressive and lethal primary brain tumor in adults, glioblastoma, have increasingly focused on tumor stem cells. These cells, protected by the periarteriolar hypoxic GSC niche, contribute to the poor efficacy of standard of care treatment of glioblastoma. Integrated proteogenomic and metabolomic analyses of glioblastoma tissues and single cells have revealed insights into the complex heterogeneity of glioblastoma and stromal cells, comprising its tumor microenvironment (TME). An additional factor, which isdriving poor therapy response is the distinct genetic drivers in each patient's tumor, providing the rationale for a more individualized or personalized approach to treatment. We recently reported that the G protein-coupled receptor CCR5, which contributes to stem cell expansion in other cancers, is overexpressed in glioblastoma cells. Overexpression of the CCR5 ligand CCL5 (RANTES) in glioblastoma completes a potential autocrine activation loop to promote tumor proliferation and invasion. CCL5 was not expressed in glioblastoma stem cells, suggesting a need for paracrine activation of CCR5 signaling by the stromal cells. TME-associated immune cells, such as resident microglia, infiltrating macrophages, T cells, and mesenchymal stem cells, possibly release CCR5 ligands, providing heterologous signaling between stromal and glioblastoma stem cells. Herein, we review current therapies for glioblastoma, the role of CCR5 in other cancers, and the potential role for CCR5 inhibitors in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Sriharsha Jammula
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
| | - Gina Cicero
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
| | - Anthony W. Ashton
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
36
|
An Alternative Pipeline for Glioblastoma Therapeutics: A Systematic Review of Drug Repurposing in Glioblastoma. Cancers (Basel) 2021; 13:cancers13081953. [PMID: 33919596 PMCID: PMC8073966 DOI: 10.3390/cancers13081953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma is a devastating malignancy that has continued to prove resistant to a variety of therapeutics. No new systemic therapy has been approved for use against glioblastoma in almost two decades. This observation is particularly disturbing given the amount of money invested in identifying novel therapies for this disease. A relatively rapid and economical pipeline for identification of novel agents is drug repurposing. Here, a comprehensive review detailing the state of drug repurposing in glioblastoma is provided. We reveal details on studies that have examined agents in vitro, in animal models and in patients. While most agents have not progressed beyond the initial stages, several drugs, from a variety of classes, have demonstrated promising results in early phase clinical trials. Abstract The treatment of glioblastoma (GBM) remains a significant challenge, with outcome for most pa-tients remaining poor. Although novel therapies have been developed, several obstacles restrict the incentive of drug developers to continue these efforts including the exorbitant cost, high failure rate and relatively small patient population. Repositioning drugs that have well-characterized mechanistic and safety profiles is an attractive alternative for drug development in GBM. In ad-dition, the relative ease with which repurposed agents can be transitioned to the clinic further supports their potential for examination in patients. Here, a systematic analysis of the literature and clinical trials provides a comprehensive review of primary articles and unpublished trials that use repurposed drugs for the treatment of GBM. The findings demonstrate that numerous drug classes that have a range of initial indications have efficacy against preclinical GBM models and that certain agents have shown significant potential for clinical benefit. With examination in randomized, placebo-controlled trials and the targeting of particular GBM subgroups, it is pos-sible that repurposing can be a cost-effective approach to identify agents for use in multimodal anti-GBM strategies.
Collapse
|
37
|
Ghadi M, Hosseinimehr SJ, Amiri FT, Mardanshahi A, Noaparast Z. Itraconazole synergistically increases therapeutic effect of paclitaxel and 99mTc-MIBI accumulation, as a probe of P-gp activity, in HT-29 tumor-bearing nude mice. Eur J Pharmacol 2021; 895:173892. [PMID: 33497608 DOI: 10.1016/j.ejphar.2021.173892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (P-gp), is an important efflux pump involved in chemotherapy resistance in human colon cancer. We investigated the efficacy of itraconazole as a P-gp inhibitor and its therapeutic synergistic relationship to paclitaxel through 99mTc-MIBI accumulation in HT-29 tumor-bearing nude mice. Histopathological screening along with in vitro experiments was done for further assessment. Itraconazole successfully inhibited P-gp mediated 99mTc-MIBI efflux, increasing its in vitro accumulation in itraconazole-receiving dishes. Notably, the co-administration of itraconazole with paclitaxel significantly enhanced the in vitro cytotoxicity effect of paclitaxel in itraconazole + paclitaxel wells containing HT-29 cells. Compared to the control, tumor volume in mice treated with itraconazole, paclitaxel and itraconazole +paclitaxel showed growth suppression approximately by 36.21, 60.02, and 73.3% respectively. And compared to paclitaxel group, the nude mice co-treated with paclitaxel and itraconazole showed suppression of tumor growth by about 33.31 % at the end of the treatment period. Also the biodistribution result showed that the co-administration of itraconazole with paclitaxel raised the mean tumor radioactivity accumulation compared to control and paclitaxel group. When given paclitaxel alone, the ID% of hepatic and cardiac tissue was reduced while co-administration of itraconazole with paclitaxel increased 99mTc-MIBI accumulation in these organs. Furthermore, the histopathological findings confirmed the biodistribution results. These results demonstrate that although monotherapy with itraconazole or paclitaxel has anti-tumor activity against HT-29 human colorectal cancer, a synergistic anti-tumor activity can be achieved when itraconazole is co-administered with paclitaxel. Also, 99mTc-MIBI is an effective radiotracer for monitoring response to treatment in MDR tumors.
Collapse
Affiliation(s)
- Mahdi Ghadi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
38
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
39
|
Yamashita D, Bernstock JD, Elsayed G, Sadahiro H, Mohyeldin A, Chagoya G, Ilyas A, Mooney J, Estevez-Ordonez D, Yamaguchi S, Flanary VL, Hackney JR, Bhat KP, Kornblum HI, Zamboni N, Kim SH, Chiocca EA, Nakano I. Targeting glioma-initiating cells via the tyrosine metabolic pathway. J Neurosurg 2021; 134:721-732. [PMID: 32059178 PMCID: PMC8447888 DOI: 10.3171/2019.11.jns192028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/19/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Despite an aggressive multimodal therapeutic regimen, glioblastoma (GBM) continues to portend a grave prognosis, which is driven in part by tumor heterogeneity at both the molecular and cellular levels. Accordingly, herein the authors sought to identify metabolic differences between GBM tumor core cells and edge cells and, in so doing, elucidate novel actionable therapeutic targets centered on tumor metabolism. METHODS Comprehensive metabolic analyses were performed on 20 high-grade glioma (HGG) tissues and 30 glioma-initiating cell (GIC) sphere culture models. The results of the metabolic analyses were combined with the Ivy GBM data set. Differences in tumor metabolism between GBM tumor tissue derived from within the contrast-enhancing region (i.e., tumor core) and that from the peritumoral brain lesions (i.e., tumor edge) were sought and explored. Such changes were ultimately confirmed at the protein level via immunohistochemistry. RESULTS Metabolic heterogeneity in both HGG tumor tissues and GBM sphere culture models was identified, and analyses suggested that tyrosine metabolism may serve as a possible therapeutic target in GBM, particularly in the tumor core. Furthermore, activation of the enzyme tyrosine aminotransferase (TAT) within the tyrosine metabolic pathway influenced the noted therapeutic resistance of the GBM core. CONCLUSIONS Selective inhibition of the tyrosine metabolism pathway may prove highly beneficial as an adjuvant to multimodal GBM therapies.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Hirokazu Sadahiro
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - James Mooney
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | | | - Shinobu Yamaguchi
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | | | - James R. Hackney
- Departments of Pathology, University of Alabama at Birmingham, Alabama
| | - Krishna P. Bhat
- Department of Translational Molecular Pathology and Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harley I. Kornblum
- Departments of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior
- Broad Stem Cell Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama
| |
Collapse
|
40
|
Ghiaseddin A, Hoang Minh LB, Janiszewska M, Shin D, Wick W, Mitchell DA, Wen PY, Grossman SA. Adult precision medicine: learning from the past to enhance the future. Neurooncol Adv 2021; 3:vdaa145. [PMID: 33543142 PMCID: PMC7846182 DOI: 10.1093/noajnl/vdaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite therapeutic advances for other malignancies, gliomas remain challenging solid tumors to treat. Complete surgical resection is nearly impossible due to gliomas’ diffuse infiltrative nature, and treatment is hampered by restricted access to the tumors due to limited transport across the blood–brain barrier. Recent advances in genomic studies and next-generation sequencing techniques have led to a better understanding of gliomas and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in the management of gliomas, with encouraging results in preclinical studies and early clinical trials. However, molecular characterization of gliomas revealed significant heterogeneity, which poses a challenge for targeted therapeutic approaches. In this context, leading neuro-oncology researchers and clinicians, industry innovators, and patient advocates convened at the inaugural annual Remission Summit held in Orlando, FL in February 2019 to discuss the latest advances in immunotherapy and precision medicine approaches for the treatment of adult and pediatric brain tumors and outline the unanswered questions, challenges, and opportunities that lay ahead for advancing the duration and quality of life for patients with brain tumors. Here, we provide historical context for precision medicine in other cancers, present emerging approaches for gliomas, discuss their limitations, and outline the steps necessary for future success. We focus on the advances in small molecule targeted therapy, as the use of immunotherapy as an emerging precision medicine modality for glioma treatment has recently been reviewed by our colleagues.
Collapse
Affiliation(s)
- Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Lan B Hoang Minh
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - David Shin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center, Heidelberg, Germany
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Patrick Y Wen
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Lah TT, Novak M, Pena Almidon MA, Marinelli O, Žvar Baškovič B, Majc B, Mlinar M, Bošnjak R, Breznik B, Zomer R, Nabissi M. Cannabigerol Is a Potential Therapeutic Agent in a Novel Combined Therapy for Glioblastoma. Cells 2021; 10:cells10020340. [PMID: 33562819 PMCID: PMC7914500 DOI: 10.3390/cells10020340] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Among primary brain tumours, glioblastoma is the most aggressive. As early relapses are unavoidable despite standard-of-care treatment, the cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) alone or in combination have been suggested as a combined treatment strategy for glioblastomas. However, the known psychoactive effects of THC hamper its medical applications in these patients with potential cognitive impairment due to the progression of the disease. Therefore, nontoxic cannabigerol (CBG), being recently shown to exhibit anti-tumour properties in some carcinomas, is assayed here for the first time in glioblastoma with the aim to replace THC. We indeed found CBG to effectively impair the relevant hallmarks of glioblastoma progression, with comparable killing effects to THC and in addition inhibiting the invasion of glioblastoma cells. Moreover, CBG can destroy therapy-resistant glioblastoma stem cells, which are the root of cancer development and extremely resistant to various other treatments of this lethal cancer. CBG should present a new yet unexplored adjuvant treatment strategy of glioblastoma. Abstract Glioblastoma is the most aggressive cancer among primary brain tumours. As with other cancers, the incidence of glioblastoma is increasing; despite modern therapies, the overall mean survival of patients post-diagnosis averages around 16 months, a figure that has not changed in many years. Cannabigerol (CBG) has only recently been reported to prevent the progression of certain carcinomas and has not yet been studied in glioblastoma. Here, we have compared the cytotoxic, apoptotic, and anti-invasive effects of the purified natural cannabinoid CBG together with CBD and THC on established differentiated glioblastoma tumour cells and glioblastoma stem cells. CBG and THC reduced the viability of both types of cells to a similar extent, whereas combining CBD with CBG was more efficient than with THC. CBD and CBG, both alone and in combination, induced caspase-dependent cell apoptosis, and there was no additive THC effect. Of note, CBG inhibited glioblastoma invasion in a similar manner to CBD and the chemotherapeutic temozolomide. We have demonstrated that THC has little added value in combined-cannabinoid glioblastoma treatment, suggesting that this psychotropic cannabinoid should be replaced with CBG in future clinical studies of glioblastoma therapy.
Collapse
Affiliation(s)
- Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-41-651-629
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Milagros A. Pena Almidon
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| | - Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| | - Barbara Žvar Baškovič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Roby Zomer
- MGC Pharmaceuticals d.o.o., 1000 Ljubljana, Slovenia;
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| |
Collapse
|
42
|
Abstract
BACKGROUND The worldwide increase in the occurrence of cancer associated with the limitations of immunotherapy and the emergence of resistance have impaired the prognosis of cancer patients, which leads to the search for alternative treatment methods. Drug repositioning, a well-established process approved by regulatory agencies, is considered an alternative strategy for the fast identification of drugs, because it is relatively less costly and represents lower risks for patients. AREAS OF UNCERTAINTY We report the most relevant studies about drug repositioning in oncology, emphasizing that its implementation faces financial and regulatory obstacles, making the creation of incentives necessary to stimulate the involvement of the pharmaceutical industry. DATA SOURCES We present 63 studies in which 52 non-anticancer drugs with anticancer activity against a number of malignancies are described. THERAPEUTIC INNOVATIONS Some have already been the target of phase III studies, such as the Add-Aspirin trial for nonmetastatic solid tumors, as well as 9 other drugs (aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, and sertraline) in the CUSP9* clinical trial for the treatment of recurrent glioblastoma. Others have already been successful in repositioning such as thalidomide, zoledronic acid, celecoxib, methotrexate, and gemcitabine. CONCLUSIONS Therefore, drug repositioning represents a promising alternative for the treatment of oncological disorders; however, the support from funding agencies and from the government is still needed, the latter regarding regulatory issues.
Collapse
|
43
|
Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers (Basel) 2020; 13:cancers13010032. [PMID: 33374196 PMCID: PMC7796083 DOI: 10.3390/cancers13010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Although multiple meta-analyses on active specific immunotherapy treatment for glioblastoma multiforme (GBM) have demonstrated a significant prolongation of overall survival, no single research group has succeeded in demonstrating the efficacy of this type of treatment in a prospective, double-blind, placebo-controlled, randomized clinical trial. In this paper, we explain how the complexity of the tumor biology and tumor–host interactions make proper stratification of a control group impossible. The individualized characteristics of advanced therapy medicinal products for immunotherapy contribute to heterogeneity within an experimental group. The dynamics of each tumor and in each patient aggravate comparative stable patient groups. Finally, combinations of immunotherapy strategies should be integrated with first-line treatment. We illustrate the complexity of a combined first-line treatment with individualized multimodal immunotherapy in a group of 70 adults with GBM and demonstrate that the integration of immunogenic cell death treatment within maintenance chemotherapy followed by dendritic cell vaccines and maintenance immunotherapy might provide a step towards improving the overall survival rate of GBM patients. Abstract Immunotherapies represent a promising strategy for glioblastoma multiforme (GBM) treatment. Different immunotherapies include the use of checkpoint inhibitors, adoptive cell therapies such as chimeric antigen receptor (CAR) T cells, and vaccines such as dendritic cell vaccines. Antibodies have also been used as toxin or radioactive particle delivery vehicles to eliminate target cells in the treatment of GBM. Oncolytic viral therapy and other immunogenic cell death-inducing treatments bridge the antitumor strategy with immunization and installation of immune control over the disease. These strategies should be included in the standard treatment protocol for GBM. Some immunotherapies are individualized in terms of the medicinal product, the immune target, and the immune tumor–host contact. Current individualized immunotherapy strategies focus on combinations of approaches. Standardization appears to be impossible in the face of complex controlled trial designs. To define appropriate control groups, stratification according to the Recursive Partitioning Analysis classification, MGMT promotor methylation, epigenetic GBM sub-typing, tumor microenvironment, systemic immune functioning before and after radiochemotherapy, and the need for/type of symptom-relieving drugs is required. Moreover, maintenance of a fixed treatment protocol for a dynamic, deadly cancer disease in a permanently changing tumor–host immune context might be inappropriate. This complexity is illustrated using our own data on individualized multimodal immunotherapies for GBM. Individualized medicines, including multimodal immunotherapies, are a rational and optimal yet also flexible approach to induce long-term tumor control. However, innovative methods are needed to assess the efficacy of complex individualized treatments and implement them more quickly into the general health system.
Collapse
|
44
|
Stylli SS. Novel Treatment Strategies for Glioblastoma. Cancers (Basel) 2020; 12:cancers12102883. [PMID: 33049911 PMCID: PMC7599818 DOI: 10.3390/cancers12102883] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor in adults. It is a highly invasive disease, making it difficult to achieve a complete surgical resection, resulting in poor prognosis with a median survival of 12–15 months after diagnosis, and less than 5% of patients survive more than 5 years. Surgical, instrument technology, diagnostic and radio/chemotherapeutic strategies have slowly evolved over time, but this has not translated into significant increases in patient survival. The current standard of care for GBM patients involving surgery, radiotherapy, and concomitant chemotherapy temozolomide (known as the Stupp protocol), has only provided a modest increase of 2.5 months in median survival, since the landmark publication in 2005. There has been considerable effort in recent years to increase our knowledge of the molecular landscape of GBM through advances in technology such as next-generation sequencing, which has led to the stratification of the disease into several genetic subtypes. Current treatments are far from satisfactory, and studies investigating acquired/inherent resistance to current therapies, restricted drug delivery, inter/intra-tumoral heterogeneity, drug repurposing and a tumor immune-evasive environment have been the focus of intense research over recent years. While the clinical advancement of GBM therapeutics has seen limited progression compared to other cancers, developments in novel treatment strategies that are being investigated are displaying encouraging signs for combating this disease. This aim of this editorial is to provide a brief overview of a select number of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Stanley S. Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; or
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
45
|
Ruhnau J, Parczyk J, Danker K, Eickholt B, Klein A. Synergisms of genome and metabolism stabilizing antitumor therapy (GMSAT) in human breast and colon cancer cell lines: a novel approach to screen for synergism. BMC Cancer 2020; 20:617. [PMID: 32615946 PMCID: PMC7331156 DOI: 10.1186/s12885-020-07062-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite an improvement of prognosis in breast and colon cancer, the outcome of the metastatic disease is still severe. Microevolution of cancer cells often leads to drug resistance and tumor-recurrence. To target the driving forces of the tumor microevolution, we focused on synergistic drug combinations of selected compounds. The aim is to prevent the tumor from evolving in order to stabilize disease remission. To identify synergisms in a high number of compounds, we propose here a three-step concept that is cost efficient, independent of high-throughput machines and reliable in its predictions. METHODS We created dose response curves using MTT- and SRB-assays with 14 different compounds in MCF-7, HT-29 and MDA-MB-231 cells. In order to efficiently screen for synergies, we developed a screening tool in which 14 drugs were combined (91 combinations) in MCF-7 and HT-29 using EC25 or less. The most promising combinations were verified by the method of Chou and Talalay. RESULTS All 14 compounds exhibit antitumor effects on each of the three cell lines. The screening tool resulted in 19 potential synergisms detected in HT-29 (20.9%) and 27 in MCF-7 (29.7%). Seven of the top combinations were further verified over the whole dose response curve, and for five combinations a significant synergy could be confirmed. The combination Nutlin-3 (inhibition of MDM2) and PX-478 (inhibition of HIF-1α) could be confirmed for all three cell lines. The same accounts for the combination of Dichloroacetate (PDH activation) and NHI-2 (LDH-A inhibition). Our screening method proved to be an efficient tool that is reliable in its projections. CONCLUSIONS The presented three-step concept proved to be cost- and time-efficient with respect to the resulting data. The newly found combinations show promising results in MCF-7, HT-29 and MDA-MB231 cancer cells.
Collapse
Affiliation(s)
- Jérôme Ruhnau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany.
| | - Jonas Parczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany.
| | - Kerstin Danker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Britta Eickholt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
46
|
The Expression of Carbonic Anhydrases II, IX and XII in Brain Tumors. Cancers (Basel) 2020; 12:cancers12071723. [PMID: 32610540 PMCID: PMC7408524 DOI: 10.3390/cancers12071723] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that participate in the regulation of pH homeostasis in addition to many other important physiological functions. Importantly, CAs have been associated with neoplastic processes and cancer. Brain tumors represent a heterogeneous group of diseases with a frequently dismal prognosis, and new treatment options are urgently needed. In this review article, we summarize the previously published literature about CAs in brain tumors, especially on CA II and hypoxia-inducible CA IX and CA XII. We review here their role in tumorigenesis and potential value in predicting prognosis of brain tumors, including astrocytomas, oligodendrogliomas, ependymomas, medulloblastomas, meningiomas, and craniopharyngiomas. We also introduce both already completed and ongoing studies focusing on CA inhibition as a potential anti-cancer strategy.
Collapse
|
47
|
Mohammadi F, Javid H, Afshari AR, Mashkani B, Hashemy SI. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol Biol Rep 2020; 47:4263-4272. [PMID: 32436041 DOI: 10.1007/s11033-020-05532-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Tachykinins such as Substance P (SP) are a group of neuropeptides that are involved in cancer development. Neurokinin-1 receptor (NK-1R) is the main tachykinin receptor mediating the effects of SP, which is overexpressed in human esophageal squamous cell carcinoma (ESCC) and other malignant tissues. However, the effects of SP/NK-1R system on the migration of esophageal cancer cells and angiogenesis is not clear yet. This study seeks to obtain data to address these research gaps. In order to assess the effects of the FDA-approved aprepitant drug, a commercially available NK-1R antagonist, on the viability of KYSE-30 ESCC cells, resazurin assay was performed. The influence of SP/NK-1R system on the migration potential of these cells was examined using scratch assay. The effects of this system on the expression levels of metastatic factors were also examined by RT-PCR and western blot analyses. The half-maximal inhibitory concentration (IC50) value for KYSE-30 cells treated with aprepitant found to be 29.88 μM. Treatment with SP significantly promoted KYSE-30 esophageal cancer cell migration, and aprepitant blocked this effect. In addition, SP significantly induced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor1 (VEGFR1) in the cells, whereas aprepitant inhibited the up-regulation effects caused by SP. SP plays important roles in the development of human esophageal squamous cell carcinoma by promoting cancer cell invasion and enhancing the expression of factors involved in cellular migration and angiogenesis, which can be blocked by the NK-1R antagonist, aprepitant.
Collapse
Affiliation(s)
- Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Afshari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Westhoff MA, Baisch T, Herbener VJ, Karpel-Massler G, Debatin KM, Strobel H. Comment in Response to "Temozolomide in Glioblastoma Therapy: Role of Apoptosis, Senescence and Autophagy etc. by B. Kaina". Biomedicines 2020; 8:biomedicines8040093. [PMID: 32326020 PMCID: PMC7235879 DOI: 10.3390/biomedicines8040093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
It is with great pleasure that we acknowledge the fact that our review on Temozolomide (TMZ) has initiated a discussion [1-3]. [...].
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (T.B.); (V.J.H.); (K.-M.D.); (H.S.)
- Correspondence:
| | - Tim Baisch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (T.B.); (V.J.H.); (K.-M.D.); (H.S.)
| | - Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (T.B.); (V.J.H.); (K.-M.D.); (H.S.)
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (T.B.); (V.J.H.); (K.-M.D.); (H.S.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (T.B.); (V.J.H.); (K.-M.D.); (H.S.)
| |
Collapse
|
49
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
50
|
Garrett AM, Lastakchi S, McConville C. The Personalisation of Glioblastoma Treatment Using Whole Exome Sequencing: A Pilot Study. Genes (Basel) 2020; 11:genes11020173. [PMID: 32041307 PMCID: PMC7074406 DOI: 10.3390/genes11020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
The molecular heterogeneity of glioblastoma has been linked to differences in survival and treatment response, while the development of personalised treatments may be a novel way of combatting this disease. Here we show for the first time that low passage number cells derived from primary tumours are greater than an 86% match genetically to the tumour tissue. We used these cells to identify eight genes that could be used for the personalisation of glioblastoma treatment and discovered a number of personalised drug combinations that were significantly more effective at killing glioblastoma cells and reducing recurrence than the individual drugs as well as the control and non-personalised combinations. This pilot study demonstrates for the first time that whole exome sequencing has the potential be used to improve the treatment of glioblastoma patients by personalising treatment. This novel approach could potentially offer a new avenue for treatment for this terrible disease.
Collapse
|