1
|
Wang X, Li Z, Zhang C. Integrated Analysis of Serum and Tissue microRNA Transcriptome for Biomarker Discovery in Gastric Cancer. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39400980 DOI: 10.1002/tox.24430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, demanding a detailed exploration of its molecular landscape. Studies suggest that exposure to environmental pollutants can lead to changes in microRNA (miRNA) expression patterns, which may contribute to the development and progression of GC. MiRNAs have emerged as crucial regulators implicated in GC pathogenesis. The largest GC serum miRNA dataset to date, comprising 1417 non-cancer controls and 1417 GC samples was used. We conducted a comprehensive analysis of miRNA expression profiles. Differential expression analysis, co-expression network construction, and machine learning models were employed to identify key serum miRNAs and their association with clinical parameters. Weighted Gene Co-expression Network Analysis (WGCNA) and immune infiltration analysis were used to validate the importance of the key miRNA. A total of 1766 differentially expressed miRNAs were identified, with miR-1290, miR-1246, and miR-451a among the top up-regulated, and miR-6875-5p, miR-6784-5p, miR-1228-5p, and miR-6765-5p among the top down-regulated. WGCNA revealed that modules M1 and M5 were significantly associated with GC subtypes and disease status. MiRNA-target gene network analysis identified prognostically significant genes TP53, EMCN, CBX8, and ALDH1A3. Machine learning models LASSO, SVM, randomforest, and XGBOOST demonstrated the diagnostic potential of miRNA profiles. Tissue and serum miR-187 emerged as an independent prognostic factor, influencing patient survival across clinical parameters. Gene expression and immune cell infiltration were different in tissues stratified by miR-187 expression. In summary, the integration of differential gene expression, co-expression analysis, and immune cell profiling provided insights into the molecular intricacies of GC progression.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhuoran Li
- Department of Optometry, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Chengyan Zhang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Wu A, Zhao C. Astilbin Induces Apoptosis in Oral Squamous Cell Carcinoma through p53 Reactivation and Mdm-2 Inhibition. DOKL BIOCHEM BIOPHYS 2024; 518:429-441. [PMID: 39196525 DOI: 10.1134/s1607672924600374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a frequently occurring malignancy in the head and neck region. The most commonly mutated gene in OSCC is the tumor suppressor gene p53 (TP53), linked to lower survival and treatment resistance in OSCC patients. Astilbin is a flavonoid amongst several herbal treatments with a variety of pharmacological actions mainly including antioxidant, anti-inflammatory, and anti-cancer characteristics. This study evaluated the effects of astilbin on proliferation of OSCC cell lines SCC90 and SCC4 (bearing a p53 mutation) in relevance to p53 and Mdm-2 pathways. Astilbin inhibited the proliferation of SCC4 and SCC90 cells in a dose- and time-dependent manner. The IC50 values for both the cell lines were about 75 μM for astilbin. A p53 activator (RITA) was used to determine the effects of astilbin on p53 activity, and the results demonstrated synergistic reduction in cell growth. However, when combined with pifithrin-α (a p53 inhibitor), astilbin demonstrated a strong inhibition of its response. Astilbin reduced the mitochondrial membrane potential in SCC4 cells, which is a sign of apoptotic activity. Astilbin decreased the amounts of Mdm-2 (negative regulator of p53) and increased the expression of the p53 gene and protein. In a p53-dependent manner, astilbin suppressed the ability of SCC4 cells to form colonies and heal wounds. This was followed by the induction of mitochondrial intrinsic apoptosis via the activation of caspases 9 and 3, cleavage of PARP, and the suppression of pro-apoptotic Bid. Astilbin-induced p53-mediated apoptosis in OSCC cells as herbal medicinal ingredients.
Collapse
Affiliation(s)
- Aimin Wu
- School of Medicine, JingChu University of Technology, 448000, JingMen, Hubei, China
| | - Chungang Zhao
- School of Medicine, JingChu University of Technology, 448000, JingMen, Hubei, China.
| |
Collapse
|
3
|
Mazurek M, Szewc M, Sitarz MZ, Dudzińska E, Sitarz R. Gastric Cancer: An Up-to-Date Review with New Insights into Early-Onset Gastric Cancer. Cancers (Basel) 2024; 16:3163. [PMID: 39335135 PMCID: PMC11430327 DOI: 10.3390/cancers16183163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the fifth most common cause of cancer death in the world. Regarding the age at which the diagnosis was made, GC is divided into early-onset gastric cancer (EOGC-up to 45 years of age) and conventional GC (older than 45). EOGC constitutes approximately 10% of all GCs. Numerous reports indicate that EOGC is more aggressive than conventional GC and is often discovered at an advanced tumor stage, which has an impact on the five-year survival rate. The median survival rate for advanced-stage GC is very poor, amounting to less than 12 months. Risk factors for GC include family history, alcohol consumption, smoking, Helicobacter pylori, and Epstein-Barr virus infection. It has been shown that a proper diet and lifestyle can play a preventive role in GC. However, research indicates that risk factors for conventional GC are less correlated with EOGC. In addition, the unclear etiology of EOGC and the late diagnosis of this disease limit the possibilities of effective treatment. Genetic factors are considered a likely cause of EOGC, as young patients are less exposed to environmental carcinogens. Research characterizing GC in young patients is scarce. This comprehensive study presents all aspects: epidemiology, risk factors, new treatment strategies, and future directions.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Surgical Oncology, Masovian Cancer Hospital, 05-135 Wieliszew, Poland;
| | - Monika Szewc
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Monika Z. Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Ewa Dudzińska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Robert Sitarz
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-950 Lublin, Poland;
- Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
4
|
Khalili-Tanha G, Khalili-Tanha N, Rouzbahani AK, Mahdieh R, Jasemi K, Ghaderi R, Leylakoohi FK, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Ferns GA, Nazari E, Avan A. Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers. Transl Res 2024; 274:35-48. [PMID: 39260559 DOI: 10.1016/j.trsl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | - Ramisa Mahdieh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Jasemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Ghaderi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
5
|
Khoshdel F, Mottaghi-Dastjerdi N, Yazdani F, Salehi S, Ghorbani A, Montazeri H, Soltany-Rezaee-Rad M, Goodarzy B. CTGF, FN1, IL-6, THBS1, and WISP1 genes and PI3K-Akt signaling pathway as prognostic and therapeutic targets in gastric cancer identified by gene network modeling. Discov Oncol 2024; 15:344. [PMID: 39133458 PMCID: PMC11319544 DOI: 10.1007/s12672-024-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most common malignancies worldwide and it is considered the fourth most common cause of cancer death. This study aimed to find critical genes/pathways in GC pathogenesis to be used as biomarkers or therapeutic targets. METHODS Differentially expressed genes were explored between human gastric cancerous and noncancerous tissues, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analyses were done. Hub genes were identified based on the protein-protein interaction network constructed in the STRING database with Cytoscape software. The hub genes were selected for further investigation using GEPIA2 and DrugBank databases. RESULTS Ten overexpressed hub genes in GC were identified in the current study, including FN1, TP53, IL-6, CXCL5, ELN, ADAMTS2, WISP1, MMP2, CTGF, and THBS1. The study demonstrated the PI3K-Akt pathway's central involvement in GC, with pronounced alterations in essential components. Survival analysis revealed significant correlations between CTGF, FN1, IL-6, THBS1, and WISP1 overexpression and reduced overall survival times in GC patients. CONCLUSION A mutual interplay emerged, where PI3K-Akt signaling could upregulate certain genes, forming feedback loops and intensifying cancer phenotypes. The interconnected overexpression of genes and the PI3K-Akt pathway fosters gastric tumorigenesis, suggesting therapeutic potential. DrugBank analysis identified limited FDA-approved drugs, advocating for further exploration while targeting these hub genes could reshape GC treatment. The identified genes could be novel diagnostic/prognostic biomarkers or potential therapeutic targets for GC, but further clinical validation is required.
Collapse
Affiliation(s)
- Farzane Khoshdel
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Fateme Yazdani
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Salehi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | | | - Babak Goodarzy
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhao L, Kan Y, Wang L, Pan J, Li Y, Zhu H, Yang Z, Xiao L, Fu X, Peng F, Ren H. Roles of long non‑coding RNA SNHG16 in human digestive system cancer (Review). Oncol Rep 2024; 52:106. [PMID: 38940337 PMCID: PMC11234248 DOI: 10.3892/or.2024.8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
The incidence of tumors in the human digestive system is relatively high, including esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer. These malignancies arise from a complex interplay of environmental and genetic factors. Among them, long non‑coding RNAs (lncRNAs), which cannot be translated into proteins, serve an important role in the development, progression, migration and prognosis of tumors. Small nucleolar RNA host gene 16 (SNHG16) is a typical lncRNA, and its relationship with digestive system tumors has been widely explored. The prevailing hypothesis suggests that the principal molecular mechanism of SNHG16 in digestive system tumors involves it functioning as a competitive endogenous RNA that interacts with other proteins, regulates various genes and influences a downstream target molecule. The present review summarizes recent research on the relationship between SNHG16 and numerous types of digestive system cancer, encompassing its biological functions, underlying mechanisms and potential clinical implications. Furthermore, it outlines the association between SNHG16 expression and pertinent risk factors, such as smoking, infection and diet. The present review indicated the promise of SNHG16 as a potential biomarker and therapeutic target in human digestive system cancer.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuling Kan
- Central Laboratory of Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Lu Wang
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiquan Pan
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yun Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiyan Zhu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinhua Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Weifang Key Laboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haipeng Ren
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
7
|
Daliri K, Hescheler J, Pfannkuche KP. Prime Editing and DNA Repair System: Balancing Efficiency with Safety. Cells 2024; 13:858. [PMID: 38786078 PMCID: PMC11120019 DOI: 10.3390/cells13100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Prime editing (PE), a recent progression in CRISPR-based technologies, holds promise for precise genome editing without the risks associated with double-strand breaks. It can introduce a wide range of changes, including single-nucleotide variants, insertions, and small deletions. Despite these advancements, there is a need for further optimization to overcome certain limitations to increase efficiency. One such approach to enhance PE efficiency involves the inhibition of the DNA mismatch repair (MMR) system, specifically MLH1. The rationale behind this approach lies in the MMR system's role in correcting mismatched nucleotides during DNA replication. Inhibiting this repair pathway creates a window of opportunity for the PE machinery to incorporate the desired edits before permanent DNA repair actions. However, as the MMR system plays a crucial role in various cellular processes, it is important to consider the potential risks associated with manipulating this system. The new versions of PE with enhanced efficiency while blocking MLH1 are called PE4 and PE5. Here, we explore the potential risks associated with manipulating the MMR system. We pay special attention to the possible implications for human health, particularly the development of cancer.
Collapse
Affiliation(s)
- Karim Daliri
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
- Marga and Walter Boll-Laboratory for Cardiac Tissue Engineering, University of Cologne, 50931 Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
| | - Kurt Paul Pfannkuche
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
- Marga and Walter Boll-Laboratory for Cardiac Tissue Engineering, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
8
|
Lin W, Yan Y, Huang Q, Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biologics 2024; 18:61-78. [PMID: 38318098 PMCID: PMC10839028 DOI: 10.2147/btt.s436629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
The p53 tumor suppressor protein plays an important role in physiological and pathological processes. MDM2 and its homolog MDMX are the most important negative regulators of p53. Many studies have shown that MDMX promotes the growth of cancer cells by influencing the regulation of the downstream target gene of tumor suppressor p53. Studies have found that inhibiting the MDMX-p53 interaction can effectively restore the tumor suppressor activity of p53. MDMX has growth-promoting activities without p53 or in the presence of mutant p53. Therefore, it is extremely important to study the function of MDMX in tumorigenesis, progression and prognosis. This article mainly reviews the current research progress and mechanism on MDMX function, summarizes known MDMX inhibitors and provides new ideas for the development of more specific and effective MDMX inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Wu Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
9
|
Awadh M, Darwish A, Alqatari H, Buzaid FM, Darwish A. A descriptive analysis of gastric cancer with an immunohistochemical Study of Ki67 and p53 as prognostic factors.: Bahrain experience. Saudi Med J 2023; 44:1300-1309. [PMID: 38016751 PMCID: PMC10712787 DOI: 10.15537/smj.2023.44.12.20230246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVES To describe the increasing number of gastric cancer cases at Bahrain Defense Force Hospital with implementation of immunohistochemistry markers as prognostic factors. METHODS This study included histologically confirmed malignant gastric tumors diagnosed at Bahrain Defense Force Hospital from January 2009 to June 2019. Various epidemiological and pathological data were abstracted and recorded with immunohistochemical analysis of the proliferation marker Ki67 and cell-cycle regulator p53 as prognostic factors. RESULTS A total of 53 patients with gastric cancer were included in the study, with mean age of 59.75 ± 12.9 years. The typical histological types were signet ring cell adenocarcinoma (68%) and intestinal type adenocarcinoma (17%). Helicobacter pylori and intestinal metaplasia were significantly associated with gastric cancer (p<0.01). The studied population's mortality was 39 (74%). The Ki67 proliferation index showed a mean and standard deviation of 67.09 ± 16.338, with a higher mortality rate in patients with low Ki67 but no difference in survival time. No statistically significant association was found between clinicopathological findings with p53 immunostaining positivity. CONCLUSION The common gastric cancers are signet ring cell adenocarcinoma and intestinal type adenocarcinoma, affecting a wide range of age groups (33-91 years), with those over 60 years at greater risk. Interestingly, low Ki67 is associated with a higher mortality rate, whereas p53 has no prognostic significance. Expression of both Ki67 and p53 showed no association with survival time.
Collapse
Affiliation(s)
- Mohmmed Awadh
- From the Department of Pathology (Awadh), from the Department of Pathology (Darwish), and from the Department of Training (Buzaid), Crown Prince Centre for Training and Medical Research, Bahrain Defense Force Royal Medical Services; from the Department of Surgery (Darwish, Alqatari), Royal College of Surgeons in Ireland - Medical University of Bahrain, Albussatun, Bahrain.
| | - Aysha Darwish
- From the Department of Pathology (Awadh), from the Department of Pathology (Darwish), and from the Department of Training (Buzaid), Crown Prince Centre for Training and Medical Research, Bahrain Defense Force Royal Medical Services; from the Department of Surgery (Darwish, Alqatari), Royal College of Surgeons in Ireland - Medical University of Bahrain, Albussatun, Bahrain.
| | - Huda Alqatari
- From the Department of Pathology (Awadh), from the Department of Pathology (Darwish), and from the Department of Training (Buzaid), Crown Prince Centre for Training and Medical Research, Bahrain Defense Force Royal Medical Services; from the Department of Surgery (Darwish, Alqatari), Royal College of Surgeons in Ireland - Medical University of Bahrain, Albussatun, Bahrain.
| | - Fatema M. Buzaid
- From the Department of Pathology (Awadh), from the Department of Pathology (Darwish), and from the Department of Training (Buzaid), Crown Prince Centre for Training and Medical Research, Bahrain Defense Force Royal Medical Services; from the Department of Surgery (Darwish, Alqatari), Royal College of Surgeons in Ireland - Medical University of Bahrain, Albussatun, Bahrain.
| | - Abdulla Darwish
- From the Department of Pathology (Awadh), from the Department of Pathology (Darwish), and from the Department of Training (Buzaid), Crown Prince Centre for Training and Medical Research, Bahrain Defense Force Royal Medical Services; from the Department of Surgery (Darwish, Alqatari), Royal College of Surgeons in Ireland - Medical University of Bahrain, Albussatun, Bahrain.
| |
Collapse
|
10
|
São José C, Garcia-Pelaez J, Ferreira M, Arrieta O, André A, Martins N, Solís S, Martínez-Benítez B, Ordóñez-Sánchez ML, Rodríguez-Torres M, Sommer AK, Te Paske IBAW, Caldas C, Tischkowitz M, Tusié MT, Hoogerbrugge N, Demidov G, de Voer RM, Laurie S, Oliveira C. Combined loss of CDH1 and downstream regulatory sequences drive early-onset diffuse gastric cancer and increase penetrance of hereditary diffuse gastric cancer. Gastric Cancer 2023; 26:653-666. [PMID: 37249750 PMCID: PMC10361908 DOI: 10.1007/s10120-023-01395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Germline CDH1 pathogenic or likely pathogenic variants cause hereditary diffuse gastric cancer (HDGC). Once a genetic cause is identified, stomachs' and breasts' surveillance and/or prophylactic surgery is offered to asymptomatic CDH1 carriers, which is life-saving. Herein, we characterized an inherited mechanism responsible for extremely early-onset gastric cancer and atypical HDGC high penetrance. METHODS Whole-exome sequencing (WES) re-analysis was performed in an unsolved HDGC family. Accessible chromatin and CDH1 promoter interactors were evaluated in normal stomach by ATAC-seq and 4C-seq, and functional analysis was performed using CRISPR-Cas9, RNA-seq and pathway analysis. RESULTS We identified a germline heterozygous 23 Kb CDH1-TANGO6 deletion in a family with eight diffuse gastric cancers, six before age 30. Atypical HDGC high penetrance and young cancer-onset argued towards a role for the deleted region downstream of CDH1, which we proved to present accessible chromatin, and CDH1 promoter interactors in normal stomach. CRISPR-Cas9 edited cells mimicking the CDH1-TANGO6 deletion display the strongest CDH1 mRNA downregulation, more impacted adhesion-associated, type-I interferon immune-associated and oncogenic signalling pathways, compared to wild-type or CDH1-deleted cells. This finding solved an 18-year family odyssey and engaged carrier family members in a cancer prevention pathway of care. CONCLUSION In this work, we demonstrated that regulatory elements lying down-stream of CDH1 are part of a chromatin network that control CDH1 expression and influence cell transcriptome and associated signalling pathways, likely explaining high disease penetrance and very young cancer-onset. This study highlights the importance of incorporating scientific-technological updates and clinical guidelines in routine diagnosis, given their impact in timely genetic diagnosis and disease prevention.
Collapse
Affiliation(s)
- Celina São José
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Garcia-Pelaez
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Department Computer Science Faculty of Science, University of Porto, Porto, Portugal
| | - Oscar Arrieta
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ana André
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Nelson Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Master Programme in Molecular Medicine and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Samantha Solís
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, INCMNSZ Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Anna K Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre (ECMC), CRUK Cambridge Centre, NIHR Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Maria Teresa Tusié
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Steve Laurie
- The Barcelona Institute of Science and Technology, CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Carla Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.
- FMUP-Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
12
|
Seo JW, Park KB, Chin HM, Jun KH. Does Epstein-Barr virus-positive gastric cancer establish a significant relationship with the multiple genes related to gastric carcinogenesis? PLoS One 2023; 18:e0283366. [PMID: 37285389 DOI: 10.1371/journal.pone.0283366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 06/09/2023] Open
Abstract
Gastric cancer has been categorized into molecular subtypes including Epstein-Barr virus (EBV)-positive tumors, which provide clinicopathological and prognostic information. In this study, we investigated the EBV infection status of patients with gastric cancer and its correlation with the clinicopathological characteristics and multiple genes related to gastric carcinogenesis. The data of 460 gastric cancer patients who underwent curative gastrectomy with D2 lymph node dissection between January 2017 and February 2022 were analyzed. The clinicopathological features and prognosis of the patients with EBV-positive gastric cancers were compared with those of EBV-negative gastric cancers. Immunohistochemistry for epidermal growth factor receptor (EGFR), C-erb B2, Ki-67, and p53 was performed. Additionally, in situ hybridization was conducted to detect EBV, and microsatellite instability (MSI) analysis was used to assess the deficiency in mismatch repair (MMR) genes. EBV-positivity and MSI were identified in 10.4% and 37.3% of gastric cancer patients, respectively. EBV positivity was associated with male gender (P = 0.001), proximal location (P = 0.004), poorly differentiated histological type (P = 0.048), moderate to severe lymphoid stroma (P = 0.006), high Ki-67 expression (P = 0.02), and a shorter resection margin. EGFR was more often expressed in EBV-negative gastric cancers (P < 0.001). MSI tumors were associated with older age (P = 0.01), the presence of lymphatic invasion (P = 0.02), less perineural invasion (P = 0.05), and the presence of H. pylori infection (P = 0.05). EBV positive gastric cancer is associated with increased Ki-67 and decreased EGFR expression and a shorter resection margin due to the prominent lymphoid stroma. However, MMR deficiency is not associated with EBV status even though MSI gastric cancer is related to H. pylori status.
Collapse
Affiliation(s)
- Ji Won Seo
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Bum Park
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Min Chin
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyong Hwa Jun
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Zhu Z, Lu H, Zhao X, Sun Y, Yao J, Xue C, Huang B. circDYRK1A tethers biological behaviors of gastric carcinoma using novel bioinformatics analysis and experimental validations. Sci Rep 2023; 13:8265. [PMID: 37217530 DOI: 10.1038/s41598-023-33861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Gastric cancer has been one of the wide public health burdens with its high morbidity and mortality over several decades. As the unconventional modules among RNA families, circular RNAs present their blazing biological effects during gastric carcinogenesis. Though diverse hypothetical mechanisms were reported, further tests were necessitated for authentication. Herein, this study pinpointed a representative circDYRK1A which screened from vast amounts of public data sets using surprisingly novel bioinformatics approaches together with validations from the in vitro findings and then concluded that circDYRK1A tethered the biological behavior and swayed the clinicopathological features with gastric cancer patients thus providing an in-depth awareness for gastric carcinoma.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China
- School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Huiwen Lu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Yimeng Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Junqiao Yao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Chi Xue
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Baojun Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, No.155 Nanjing North Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
14
|
Liu Y, Zhang B, Zhou Y, Xing Y, Wang Y, Jia Y, Liu D. Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment. Biomed Pharmacother 2023; 161:114549. [PMID: 36958190 DOI: 10.1016/j.biopha.2023.114549] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Bingkai Zhang
- Department of Anorectal Surgery, Qingzhou People's Hospital, Qingzhou, People's Republic of China
| | - Yimin Zhou
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China.
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|
15
|
Choi EK, Kim HD, Park EJ, Song SY, Phan TT, Nam M, Kim M, Kim DU, Hoe KL. 8-Methoxypsoralen Induces Apoptosis by Upregulating p53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells. Biomol Ther (Seoul) 2023; 31:219-226. [PMID: 36782271 PMCID: PMC9970839 DOI: 10.4062/biomolther.2023.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOPinduced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.
Collapse
Affiliation(s)
- Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hae Dong Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seuk Young Song
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Tien Thuy Phan
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minjung Kim
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Corresponding Authors E-mail: (Hoe KL), (Kim DU), Tel: +82-42-821-8627 (Hoe KL), +82-42-860-4159 (Kim DU), Fax: +82-42-821-8927 (Hoe KL), +82-42-860-8589 (Kim DU)
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea,Corresponding Authors E-mail: (Hoe KL), (Kim DU), Tel: +82-42-821-8627 (Hoe KL), +82-42-860-4159 (Kim DU), Fax: +82-42-821-8927 (Hoe KL), +82-42-860-8589 (Kim DU)
| |
Collapse
|
16
|
Song B, Li T, Zhang Y, Yang Q, Pei B, Liu Y, Wang J, Dong G, Sun Q, Fan S, Li X. Identification and verification of ferroptosis-related genes in gastric intestinal metaplasia. Front Genet 2023; 14:1152414. [PMID: 37144125 PMCID: PMC10151495 DOI: 10.3389/fgene.2023.1152414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Background: Gastric intestinal metaplasia (IM) is the key link of gastric precancerous lesions. Ferroptosis is a novel form of programmed cell death. However, its impact on IM is unclear. The focus of this study is to identify and verify ferroptosis-related genes (FRGs) that may be involved in IM by bioinformatics analysis. Materials and methods: Differentially expressed genes (DEGs) were obtained from microarray dataset GSE60427 and GSE78523 downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed ferroptosis-related genes (DEFRGs) were obtained from overlapping genes of DEGs and FRGs got from FerrDb. DAVID database was used for functional enrichment analysis. Protein-protein interaction (PPI) analysis and Cytoscape software were used to screen hub gene. In addition, we built a receiver operating characteristic (ROC) curve and verified the relative mRNA expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the CIBERSORT algorithm was used to analyze the immune infiltration in IM. Results: First, a total of 17 DEFRGs were identified. Second, a gene module identified by Cytoscape software was considered as hub gene: PTGS2, HMOX1, IFNG, and NOS2. Third, ROC analysis showed that HMOX1 and NOS2 had good diagnostic characteristics. qRT-PCR experiments confirmed the differential expression of HMOX1 in IM and normal gastric tissues. Finally, immunoassay showed that the proportion of T cells regulatory (Tregs) and macrophages M0 in IM was relatively higher, while the proportion of T cells CD4 memory activated and dendritic cells activated was lower. Conclusion: We found significant associations between FRGs and IM, and HMOX1 may be diagnostic biomarkers and therapeutic targets for IM. These results may enhance our understanding of IM and may contribute to its treatment.
Collapse
Affiliation(s)
- Biao Song
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Tingting Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yi Zhang
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qi Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Bei Pei
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jieyu Wang
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Gang Dong
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Xuejun Li,
| |
Collapse
|
17
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Yuan Y, Zhang X, Du K, Zhu X, Chang S, Chen Y, Xu Y, Sun J, Luo X, Deng S, Qin Y, Feng X, Wei Y, Fan X, Liu Z, Zheng B, Ashktorab H, Smoot D, Li S, Xie X, Jin Z, Peng Y. Circ_CEA promotes the interaction between the p53 and cyclin-dependent kinases 1 as a scaffold to inhibit the apoptosis of gastric cancer. Cell Death Dis 2022; 13:827. [PMID: 36167685 PMCID: PMC9515085 DOI: 10.1038/s41419-022-05254-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023]
Abstract
Circular RNAs (circRNAs) have been reported to play essential roles in tumorigenesis and progression. This study aimed to identify dysregulated circRNAs in gastric cancer (GC) and investigate the functions and underlying mechanism of these circRNAs in GC development. Here, we identify circ_CEA, a circRNA derived from the back-splicing of CEA cell adhesion molecule 5 (CEA) gene, as a novel oncogenic driver of GC. Circ_CEA is significantly upregulated in GC tissues and cell lines. Circ_CEA knockdown suppresses GC progression, and enhances stress-induced apoptosis in vitro and in vivo. Mechanistically, circ_CEA interacts with p53 and cyclin-dependent kinases 1 (CDK1) proteins. It serves as a scaffold to enhance the association between p53 and CDK1. As a result, circ_CEA promotes CDK1-mediated p53 phosphorylation at Ser315, then decreases p53 nuclear retention and suppresses its activity, leading to the downregulation of p53 target genes associated with apoptosis. These findings suggest that circ_CEA protects GC cells from stress-induced apoptosis, via acting as a protein scaffold and interacting with p53 and CDK1 proteins. Combinational therapy of targeting circ_CEA and chemo-drug caused more cell apoptosis, decreased tumor volume and alleviated side effect induced by chemo-drug. Therefore, targeting circ_CEA might present a novel treatment strategy for GC.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaojing Zhang
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Kaining Du
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaohui Zhu
- grid.499351.30000 0004 6353 6136Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118 People’s Republic of China
| | - Shanshan Chang
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yang Chen
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yidan Xu
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Jiachun Sun
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, No. 24, Jinhua Road, Jianxi District, Luoyang, Henan 471003 People’s Republic of China
| | - Xiaonuan Luo
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Shiqi Deng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Ying Qin
- grid.452847.80000 0004 6068 028XDepartment of Gastrointestinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xianling Feng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yanjie Wei
- grid.458489.c0000 0001 0483 7922Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xinmin Fan
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Ziyang Liu
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Baixin Zheng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060 USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Song Li
- grid.454883.60000 0004 1788 7648Shenzhen Science & Technology Development Exchange Center, Shenzhen, Guangdong 518055 People’s Republic of China
| | - Xiaoxun Xie
- grid.256607.00000 0004 1798 2653School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhe Jin
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yin Peng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| |
Collapse
|
19
|
Wood AC, Zhang Y, Mo Q, Cen L, Fontaine J, Hoffe SE, Frakes J, Dineen SP, Pimiento JM, Walko CM, Mehta R. Evaluation of Tumor DNA Sequencing Results in Patients with Gastric and Gastroesophageal Junction Adenocarcinoma Stratified by TP53 Mutation Status. Oncologist 2022; 27:307-313. [PMID: 35380714 PMCID: PMC8982441 DOI: 10.1093/oncolo/oyac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Gastric cancer (GC) and gastroesophageal junction adenocarcinomas (GEJ) are molecularly diverse. TP53 is the most frequently altered gene with approximately 50% of patients harboring mutations. This qualitative study describes the distinct genomic alterations in GCs and GEJs stratified by TP53 mutation status.
Patients and Methods
Tumor DNA sequencing results of 324 genes from 3741 patients with GC and GEJ were obtained from Foundation Medicine. Association between gene mutation frequency and TP53 mutation status was examined using Fisher’s exact test. Functional gene groupings representing molecular pathways suggested to be differentially mutated in TP53 wild-type (TP53WT) and TP53 mutant (TP53MUT) tumors were identified. The association of the frequency of tumors containing a gene mutation in the molecular pathways of interest and TP53 mutation status was assessed using Fisher’s exact test with a P-value of <.01 deemed statistically significant for all analyses.
Results
TP53 mutations were noted in 61.6% of 2946 GCs and 81.4% of 795 GEJs (P < .001). Forty-nine genes had statistically different mutation frequencies in TP53WT vs. TP53MUT patients. TP53WT tumors more likely had mutations related to DNA mismatch repair, homologous recombination repair, DNA and histone methylation, Wnt/B-catenin, PI3K/Akt/mTOR, and chromatin remodeling complexes. TP53MUT tumors more likely had mutations related to fibroblast growth factor, epidermal growth factor receptor, other receptor tyrosine kinases, and cyclin and cyclin-dependent kinases.
Conclusion
The mutational profiles of GCs and GEJs varied according to TP53 mutation status. These mutational differences can be used when designing future studies assessing the predictive ability of TP53 mutation status when targeting differentially affected molecular pathways.
Collapse
Affiliation(s)
- Anthony C Wood
- Department of Gastrointestinal Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yonghong Zhang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jacques Fontaine
- Department of Thoracic Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sarah E Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jessica Frakes
- Department of Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sean P Dineen
- Department of Gastrointestinal Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jose M Pimiento
- Department of Gastrointestinal Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine M Walko
- Department of Individualized Cancer Medicine, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rutika Mehta
- Department of Gastrointestinal Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
20
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Perspective Investigation of the Pharmacological Mechanisms of the Herbal Drug FDY003 in Gastric Cancer. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211073030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly malignant tumors worldwide. While the application of herbal drugs for GC treatment is increasing, the multicompound–multitarget pharmacological mechanisms involved are yet to be elucidated. By adopting a network pharmacology strategy, we investigated the properties of the anticancer herbal drug FDY003 against GC. We found that FDY003 reduced the viability of human GC cells and enhanced their chemosensitivity. We also identified 8 active phytochemical compounds in FDY003 that target 70 GC-associated genes and proteins. Gene ontology (GO) enrichment analysis suggested that the targets of FDY003 are involved in various cellular processes, such as cellular proliferation, survival, and death. We further identified various major FDY003 target GC-associated pathways, including PIK3-Akt, MAPK, Ras, HIF-1, ErbB, and p53 pathways. Taken together, the overall analysis presents insight at the systems level into the pharmacological activity of FDY003 against GC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
21
|
OUP accepted manuscript. Carcinogenesis 2022; 43:494-503. [DOI: 10.1093/carcin/bgac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/08/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
|
22
|
Yu R, Sun T, Zhang X, Li Z, Xu Y, Liu K, Shi Y, Wu X, Shao Y, Kong L. TP53 Co-Mutational Features and NGS-Calibrated Immunohistochemistry Threshold in Gastric Cancer. Onco Targets Ther 2021; 14:4967-4978. [PMID: 34629881 PMCID: PMC8493115 DOI: 10.2147/ott.s321949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose TP53 is the most frequently mutated gene in gastric cancer and it can be potentially used for gastric cancer diagnosis and screening. However, standardized clinical approaches that could accurately and cost-effectively detect TP53 mutations in gastric cancer are largely lagged behind. Patients and Methods We conducted next-generation sequencing (NGS) analysis of 425 cancer-related genes in 42 gastric cancer patients in our cohort. A 1313-patient cohort derived from the cBioPortal database was used for validation. We performed immunohistochemistry (IHC) staining with four commonly used p53 antibodies, and the NGS results were used as the gold standard to optimize the IHC threshold for each antibody. Results By NGS analysis, we found that around 80% of gastric cancer patients in our cohort harbored TP53 alterations. Genetic alterations of BRCA1/2 or KMT2B were mostly exclusive with TP53 mutations, so were the MSI status or low grade of tumors. These results were further validated using the data from cBioPortal. We then used the NGS-derived TP53 status to optimize four commonly used IHC antibodies for detecting TP53 mutations. We showed that all antibodies could achieve more than 93% accuracy when proper IHC positivity thresholds were used, especially for the SP5 antibody that could reach 100% sensitivity and specificity with the 20% threshold. Conclusion Our results indicated that exclusivity between TP53 and BRCA mutations could be potentially used as a cost-effective way to predict BRCA status. Also, setting proper IHC thresholds for each specific antibody is critical to accurately detect TP53 mutations and facilitate disease diagnosis.
Collapse
Affiliation(s)
- Ruili Yu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tingyi Sun
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xianwei Zhang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Kaihua Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Yuqian Shi
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
23
|
Timóteo M, Tavares A, Cruz S, Campos C, Medeiros R, Sousa H. Association of Murine Double Minute 2 polymorphisms with gastric cancer: A systematic review with meta-analysis. Biomed Rep 2021; 15:69. [PMID: 34257965 DOI: 10.3892/br.2021.1445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer (GC) is the 5th most common type of cancer, with the 3rd highest mortality rate worldwide in both sexes. Murine double minute 2 (MDM2) protein is the major negative regulator of p53, and genetic polymorphisms in this gene have shown to be associated with several types of cancer. In the present study, a literature search was performed using PubMed and Scopus with the following key word combinations 'gastric cancer AND polymorphism AND MDM2'. Studies were carefully revised according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify eligible studies that matched the inclusion criteria. Statistical analysis was performed to assess the association between the different genetic polymorphisms and GC risk, by calculating the odds ratios (OR) and the confidence intervals (CI), with a 5% level of significance. A total of 11 manuscripts studied MDM2 polymorphisms in GC: rs937283 (n=1), rs3730485 (n=1) and rs2279744 (n=9). Both the rs937283 and rs3730485 reports showed an association with GC; however, there was only one study on each of these polymorphisms in the literature. A meta-analysis was performed for the rs2279744 polymorphism, of which studies showed a positive association between the G allele and risk of GC, either in the dominant model (OR=1.46; 95% CI 1.21-1.75; P<0.001) or recessive model (OR 1.65; 95% CI 1.45-1.87; P<0.001). In conclusion, genetic polymorphisms in MDM2 seemed to be associated with an increased risk of GC development, nevertheless, the number of studies were relatively low and the studied populations were primarily Chinese. The present meta-analysis emphasizes the need for additional studies in other populations to corroborate the association of these polymorphisms with GC.
Collapse
Affiliation(s)
- Mafalda Timóteo
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Ana Tavares
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Pathology Department, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Sara Cruz
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Carla Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Microbiology Service, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-172 Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
24
|
Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021; 26:775. [PMID: 33546106 PMCID: PMC7913218 DOI: 10.3390/molecules26040775] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aula Ammar
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow City G61 1BD, UK;
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
25
|
Development of a cell-based pathway modulator screening system to screen the targeted cancer therapeutic candidates. Hum Cell 2021; 34:445-456. [PMID: 33405176 DOI: 10.1007/s13577-020-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
To overcome the issues of poor prognosis and to tackle the non-responsiveness to various chemotherapeutics; it is necessary to develop targeted cancer therapeutic agents. Also, it is being necessary to understand the molecular targets of the drug candidates and drugs in the context of cellular signaling pathways, to make progress towards the development of targeted cancer therapeutics. Towards addressing these, we have established a cell-based and pathway-focused drug screening system for the pathways such as MYC, E2F, WNT, ERK, NRF1/2, HIF1α, p53, YY1 and NFκB. These signaling pathways are highly dysregulated in many cancers, including gastric cancer. The developed firefly luciferase assay-based screening system in gastric cancer lineage is suitable for the screening of the massive panel of drugs, drug candidates, small molecule inhibitors, chemicals and alternate drug formulations. The developed stable cell lines have been demonstrated for their pathway activity reporting features using the corresponding pathway-specific modulators. A proof-of-concept medium throughput screening focusing on YY1 signaling pathway also revealed the connection between calcium channel blockers and YY1 signaling. The developed signaling pathway screening assay cells are valuable resource and will serve as the screening platform for screening the drug libraries towards the development of targeted cancer therapeutics.
Collapse
|
26
|
Zhang R, Cui Y, Guan X, Jiang X. A Recombinant Human Adenovirus Type 5 (H101) Combined With Chemotherapy for Advanced Gastric Carcinoma: A Retrospective Cohort Study. Front Oncol 2021; 11:752504. [PMID: 34956877 PMCID: PMC8695551 DOI: 10.3389/fonc.2021.752504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This retrospective cohort study aimed to evaluate the clinical outcomes of H101 combined with chemotherapy for advanced gastric carcinoma (GC) patients. METHODS The advanced GC patients, who were treated with H101 and/or chemotherapy, were enrolled and divided into three groups according to treatment method. The clinical characteristics of patients, clinical short-term and long-term outcomes, followed up, and complication were analyzed. RESULTS A total of 95 patients (30 patients in group A were treated with H101, 33 in group B patients were treated with chemotherapy, 32 patients in group C were treated with H101 combined with chemotherapy) were retrospectively reviewed. The disease control rate (DCR) and overall response rate (ORR) were significantly greater in group C (81.3% and 50.0%) than in groups A (63.3% and 30.0%) and B (66.7% and 33.3%, all p < 0.05). The 1- and 2-year survival rates and progression-free survival were significantly greater in group C than in groups A and B (all p < 0.05). There was no significant difference in complication among the three groups. At dose levels of 0.5 × 1012 vp/day, 1.0 × 1012 vp/day, and 1.5 × 1012 vp/day, complications were not increased as increased of dose. CONCLUSIONS H101 combined with chemotherapy may be a potential therapeutic option for patients with advanced GC, and prospective studies with proper assessment of toxicity will be needed in the future.
Collapse
|
27
|
Aumpan N, Vilaichone RK, Nunanan P, Chonprasertsuk S, Siramolpiwat S, Bhanthumkomol P, Pornthisarn B, Uchida T, Vilaichone V, Wongcha-Um A, Yamaoka Y, Mahachai V. Predictors for development of complete and incomplete intestinal metaplasia (IM) associated with H. pylori infection: A large-scale study from low prevalence area of gastric cancer (IM-HP trial). PLoS One 2020; 15:e0239434. [PMID: 33002050 PMCID: PMC7529201 DOI: 10.1371/journal.pone.0239434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Gastric intestinal metaplasia (IM) is precancerous lesion of gastric cancer related to H. pylori infection. There has been limited data about IM and associated risk factors. This study aimed to determine risk factors related to development of IM to guide proper management. Methods 1,370 patients undergoing UGI endoscopy at Thammasat University Hospital, Thailand were included between January 2018-August 2019. Patients’ data including baseline characteristics, laboratory results, and histopathology from medical database were extensively reviewed. Immunohistochemical staining for p53 expression from gastric biopsies was also performed. Results Overall H. pylori prevalence was 43.8%. Mean age was 60.7 years and 45% of whom were males. Chronic gastritis was observed in 1,064(77.7%) patients, while 223(16.3%) had IM. Of 223 patients with IM, 194(87%) patients had complete IM, while 29 (13%) had incomplete IM. In groups of complete and incomplete IM, current H. pylori infection rates were 66.5% and 58.6%, respectively. The BMI of incomplete IM group(27.4) was significantly higher than BMI of complete IM group (23.6). Overweight and obese patients (BMI ≥23 kg/m2) were significantly associated with higher risk for the development of incomplete IM (OR 3.25; 95%CI 1.14–9.27, p = 0.027). Males, age >50 years, and current H. pylori infection were significantly higher in IM than chronic gastritis group with OR 1.43 (95%CI 1.01–2.03, p = 0.048), OR 1.67 (95% CI 1.08–2.57, p = 0.021), and OR 3.14 (95% CI 2.29–4.30, p<0.001), respectively. During 20 months of study, there were 15 patients (1.1%) diagnosed with gastric cancer and 1-year survival rate was only 60%. Conclusions Males, age >50 years, and current H. pylori infection are significant predictors for the presence of intestinal metaplasia. BMI might be beneficial for using as a predictive risk factor to reduce the development of incomplete intestinal metaplasia. H. pylori eradication could be an effective way to prevent the development of gastric precancerous lesions.
Collapse
Affiliation(s)
- Natsuda Aumpan
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Ratha-Korn Vilaichone
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
- Digestive Diseases Research Center (DRC), Thammasat University Hospital, Pathumthani, Thailand
- * E-mail:
| | - Pongjarat Nunanan
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Soonthorn Chonprasertsuk
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Sith Siramolpiwat
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
| | - Patommatat Bhanthumkomol
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Bubpha Pornthisarn
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Virunpat Vilaichone
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
| | - Arti Wongcha-Um
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Varocha Mahachai
- Digestive Diseases Research Center (DRC), Thammasat University Hospital, Pathumthani, Thailand
- Gastrointestinal and Liver Center, Bangkok Medical Center, Bangkok, Thailand
| |
Collapse
|
28
|
Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:762-774. [PMID: 33511334 PMCID: PMC7840151 DOI: 10.20517/cdr.2020.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of effective metabolic therapies.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
30
|
Choi EK, Park EJ, Phan TT, Kim HD, Hoe KL, Kim DU. Econazole Induces p53-Dependent Apoptosis and Decreases Metastasis Ability in Gastric Cancer Cells. Biomol Ther (Seoul) 2020; 28:370-379. [PMID: 32209732 PMCID: PMC7327138 DOI: 10.4062/biomolther.2019.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/09/2022] Open
Abstract
Econazole, a potent broad-spectrum antifungal agent and a Ca2+ channel antagonist, induces cytotoxicity in leukemia cells and is used for the treatment of skin infections. However, little is known about its cytotoxic effects on solid tumor cells. Here, we investigated the molecular mechanism underlying econazole-induced toxicity in vitro and evaluated its regulatory effect on the metastasis of gastric cancer cells. Using the gastric cancer cell lines AGS and SNU1 expressing wild-type p53 we demonstrated that econazole could significantly reduce cell viability and colony-forming (tumorigenesis) ability. Econazole induced G0/G1 phase arrest, promoted apoptosis, and effectively blocked proliferation- and survival-related signal transduction pathways in gastric cancer cells. In addition, econazole inhibited the secretion of matrix metalloproteinase- 2 (MMP-2) and MMP-9, which degrade the extracellular matrix and basement membrane. Econazole also effectively inhibited the metastasis of gastric cancer cells, as confirmed from cell invasion and wound healing assays. The protein level of p53 was significantly elevated after econazole treatment of AGS and SNU1 cells. However, apoptosis was blocked in econazole-treated cells exposed to a p53-specific small-interfering RNA to eliminate p53 expression. These results provide evidence that econazole could be repurposed to induce gastric cancer cell death and inhibit cancer invasion.
Collapse
Affiliation(s)
- Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Tien Thuy Phan
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Biosciences, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hea Dong Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int J Mol Sci 2020; 21:E4012. [PMID: 32512697 PMCID: PMC7312039 DOI: 10.3390/ijms21114012] [Citation(s) in RCA: 663] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide and it is the fourth leading cause of cancer-related death. GC is a multifactorial disease, where both environmental and genetic factors can have an impact on its occurrence and development. The incidence rate of GC rises progressively with age; the median age at diagnosis is 70 years. However, approximately 10% of gastric carcinomas are detected at the age of 45 or younger. Early-onset gastric cancer is a good model to study genetic alterations related to the carcinogenesis process, as young patients are less exposed to environmental carcinogens. Carcinogenesis is a multistage disease process specified by the progressive development of mutations and epigenetic alterations in the expression of various genes, which are responsible for the occurrence of the disease.
Collapse
Affiliation(s)
- Julita Machlowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland;
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
- Department of Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-090 Lublin, Poland
| |
Collapse
|
32
|
Abstract
Inflammation is often associated with the development and progression of cancer. The cells responsible for cancer-associated inflammation are genetically stable and thus are not subjected to rapid emergence of drug resistance; therefore, the targeting of inflammation represents an attractive strategy both for cancer prevention and for cancer therapy. Tumor-extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, tobacco smoking, asbestos exposure, and excessive alcohol consumption, all of which increase cancer risk and stimulate malignant progression. In contrast, cancer-intrinsic or cancer-elicited inflammation can be triggered by cancer-initiating mutations and can contribute to malignant progression through the recruitment and activation of inflammatory cells. Both extrinsic and intrinsic inflammations can result in immunosuppression, thereby providing a preferred background for tumor development. The current review provides a link between inflammation and cancer development.
Collapse
Affiliation(s)
- Nitin Singh
- Department of Pedodontics and Preventive Dentistry, Chandra Dental College and Hospital, Safedabad, Barabanki, Uttar Pradesh, India
| | - Deepak Baby
- Department of Conservative and Endodontics, P.S.M Dental College and Research Centre, Akkikavu, Thrissur, Kerala, India
| | - Jagadish Prasad Rajguru
- Department of Oral Pathology and Microbiology, Hi-Tech Dental College and Hospital, Bhubaneswar, Odisha, India
| | - Pankaj B Patil
- Department of Oral and Maxillofacial Surgery, School of Dental Sciences, Krishna Institute of Health Sciences Deemed to be University, Karad, Maharashtra, India
| | - Savita S Thakkannavar
- Department of Oral Pathology and Microbiology, Tatyasaheb Kore Dental College and Research Centre, New Pargaon, Kolhapur, Maharashtra, India
| | - Veena Bhojaraj Pujari
- Department of Oral Medicine and Radiology, Tatyasaheb Kore Dental College and Research Centre, New Pargaon, Kolhapur, Maharashtra, India
| |
Collapse
|
33
|
Abstract
Gastric cancer is an active topic of clinical and basic research due to high morbidity and mortality. To date, gastrectomy and chemotherapy are the only therapeutic options for gastric cancer patients, but drug resistance, either acquired or primary, is the main cause for treatment failure. Differences in development and response to cancer treatments have been observed among ethnically diverse GC patient populations. In spite of major incidence, GC Asian patients have a significantly better prognosis and response to treatments than Caucasian ones due to genetic discordances between the two populations. Gene therapy could be an alternative strategy to overcome such issues and especially CRISPR/Cas9 represents one of the most intriguing gene-editing system. Thus, in this review article, we want to provide an update on the currently used therapies for the treatment of advanced GC. Graphical abstract.
Collapse
|
34
|
Ke X, Qin Q, Deng T, Liao Y, Gao SJ. Heterogeneous Responses of Gastric Cancer Cell Lines to Tenovin-6 and Synergistic Effect with Chloroquine. Cancers (Basel) 2020; 12:cancers12020365. [PMID: 32033497 PMCID: PMC7072542 DOI: 10.3390/cancers12020365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/14/2020] [Accepted: 02/02/2020] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer death. Approximately 15% of GC is associated with Epstein-Barr virus (EBV). GC is largely incurable with a dismal five-year survival rate. There is an urgent need to identify new therapeutic agents for the treatment of GC. Tenovin-6 was initially identified as a p53 activator, but it was later found to inhibit autophagy flux, and the protein deacetylase activity of sirtuins. Tenovin-6 shows promising therapeutic effect in various malignancies. However, it remains unknown whether Tenovin-6 is effective for GC. In this study, we found that EBV-positive and -negative GC cell lines were sensitive to Tenovin-6 but with different response times and doses. Tenovin-6 suppressed anchorage-independent growth of GC cells. Tenovin-6 induced different levels of apoptosis and phases of cell-cycle arrest depending on the cell lines with some manifesting gap 1 (G1) and others showing synthesis (S) phase cell-cycle arrest. Mechanistically, Tenovin-6 induced autophagy or p53 activation in GC cells depending on the status of TP53 gene. However, initiation of autophagy following treatment with Tenovin-6 conferred some protective effect on numerous cells. Combined treatment with Tenovin-6 and autophagy inhibitor chloroquine increased the cytotoxic effect by inducing microtubule-associated protein 1 light chain 3B (LC3B)-II accumulation, and by enhancing apoptosis and cell-cycle arrest. These results indicated that Tenovin-6 can be used as a potential therapeutic agent for GC, but the genetic background of the cancer cells might determine the response and mechanism of action. Treatment with Tenovin-6 alone or in combination with chloroquine could be a promising therapeutic approach for GC.
Collapse
Affiliation(s)
- Xiangyu Ke
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou 515000, China; (X.K.); (T.D.); (Y.L.)
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou 515000, China; (X.K.); (T.D.); (Y.L.)
- Correspondence: (Q.Q.); (S.-J.G.); Tel.: +86-0754-88900474 (Q.Q.); +1-412-339-9484 (S.-J.G.)
| | - Tianyi Deng
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou 515000, China; (X.K.); (T.D.); (Y.L.)
| | - Yueyan Liao
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou 515000, China; (X.K.); (T.D.); (Y.L.)
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (Q.Q.); (S.-J.G.); Tel.: +86-0754-88900474 (Q.Q.); +1-412-339-9484 (S.-J.G.)
| |
Collapse
|
35
|
Stefan-van Staden RI, Ilie-Mihai RM, Pogacean F, Pruneanu SM. Needle stochastic sensors for on-site fast recognition and quantification of biomarkers for gastric cancer in biological samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj03847d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-Doped graphenes recognised CA19-9, CEA, and p53 in biological samples.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB
- National Institute of Research for Electrochemistry and Condensed Matter
- 060021 Bucharest-6
- Romania
- Faculty of Applied Chemistry and Material Science
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB
- National Institute of Research for Electrochemistry and Condensed Matter
- 060021 Bucharest-6
- Romania
- Faculty of Applied Chemistry and Material Science
| | - Florina Pogacean
- National Institute for Research and Development of Isotopic and Molecular Technologies
- Cluj-Napoca
- Romania
| | - Stela Maria Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies
- Cluj-Napoca
- Romania
| |
Collapse
|
36
|
Koulis A, Buckle A, Boussioutas A. Premalignant lesions and gastric cancer: Current understanding. World J Gastrointest Oncol 2019; 11:665-678. [PMID: 31558972 PMCID: PMC6755108 DOI: 10.4251/wjgo.v11.i9.665] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/29/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
Over the last two decades there has been a broad paradigm shift in our understanding of gastric cancer (GC) and its premalignant states from gross histological models to increasingly precise molecular descriptions. In this review we reflect upon the historic approaches to describing premalignant lesions and GC, highlight the current molecular landscape and how this could inform future risk assessment prevention strategies.
Collapse
Affiliation(s)
- Athanasios Koulis
- Upper Gastrointestinal Translational Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- the Sir Peter MacCallum Department of Surgical Oncology, the University of Melbourne, Melbourne 3010, Australia
| | - Andrew Buckle
- Upper Gastrointestinal Translational Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- the Sir Peter MacCallum Department of Surgical Oncology, the University of Melbourne, Melbourne 3010, Australia
| | - Alex Boussioutas
- Upper Gastrointestinal Translational Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- the Sir Peter MacCallum Department of Surgical Oncology, the University of Melbourne, Melbourne 3010, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, 3050, Australia
| |
Collapse
|
37
|
Ahmed A. Prevalence of Her3 in gastric cancer and its association with molecular prognostic markers: a Saudi cohort based study. Libyan J Med 2019; 14:1574532. [PMID: 30915908 PMCID: PMC6442113 DOI: 10.1080/19932820.2019.1574532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Her 3 is a member of epidermal growth factor receptors. Mutated, oncogenic Her3 is reported in gastric and colonic cancers with emerging evidence that Her3 can be a potential target for molecular therapies. There is a paucity of studies regarding Her3 and its prognostic implications in gastric cancer in our region. In this study, we evaluated prevalence of Her3 in gastric cancer, in a Saudi cohort of cases, along with its association with prognostic markers p53 and Ki-67. The study was conducted in Department of Pathology of King Fahd Hospital of Imam Abdulrahman Bin Faisal University, Dammam, KSA. Fifty cases of gastric carcinoma were selected from the pathology files that fulfilled the inclusion criteria. Clinico-pathological parameters, Laurens histological classification, and immunohistochemical staining for Her3, p53, and Ki-67 were done. Her 3 positive cases were also evaluated for Her-2neu co-expression. Her3 positivity was seen in 16% (n = 8) out of a total of 50 cases. The median age of presentation was 44 years. Within Her3 positive cases, a female preponderance of 63% (n = 5), presence of high grade tumors in 75% (n = 6), diffuse gastric carcinoma in 63% (n = 5), diffuse to focal p53 positivity in 63% (n = 5), and a high to moderate Ki-67 proliferation index in 75% (n = 6) of cases was seen. Her3 expression was independent of Her-2neu status. Her3 prevalence of 16% with a median age of 44 years at presentation was less than in other reported studies, highlighting the concept of ethnic and regional variation in tumor characteristics. Her3 association with diffuse gastric carcinoma, high grade tumors, diffuse to focal p53 positivity and high to moderate Ki-67 proliferation index points towards a more aggressive clinical behavior.
Collapse
Affiliation(s)
- Ayesha Ahmed
- a Department of Pathology, College of Medicine , Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University , Al-Khobar , Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Pizzi MP, Bartelli TF, Pelosof AG, Freitas HC, Begnami MD, de Abrantes LLS, Sztokfisz C, Valieris R, Knebel FH, Coelho LGV, da Costa WL, Coimbra FJF, da Silva IT, de Amorim MG, Nunes DN, Dias-Neto E. Identification of DNA mutations in gastric washes from gastric adenocarcinoma patients: Possible implications for liquid biopsies and patient follow-up. Int J Cancer 2019; 145:1090-1098. [PMID: 30779121 DOI: 10.1002/ijc.32217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
Whereas cancer patients have benefited from liquid biopsies, the scenario for gastric adenocarcinoma (GAC) is still dismal. We used next-generation deep sequencing of TP53-a highly mutated and informative gene in GAC-to assess mutations in tumor biopsies, plasma (PL) and stomach fluids (gastric wash-GW). We evaluated their potential to reveal tumor-derived mutations, useful for monitoring mutational dynamics at diagnosis, progression and treatment. Exon-capture libraries were constructed from 46 patients including tumor biopsies, GW and PL pre and post-treatment (196 samples), with high vertical coverage >8,000×. At diagnosis, we detected TP53 mutations in 15/46 biopsies (32.6%), 7/46 GW- (15.2%) and 6/46 PL-samples (13%). Biopsies and GW were concordant in 38/46 cases (82.6%) for the presence/absence of mutations and, furthermore, four GW-exclusive mutations were identified, suggesting tumor heterogeneity. Considering the combined analysis of GW and PL, TP53 mutations found in biopsies were also identified in 9/15 (60%) of cases, the highest detection level reported for GAC. Our study indicates that GW could be useful to track DNA alterations, especially if anchored to a comprehensive gene-panel designed for this malignancy.
Collapse
Affiliation(s)
- Melissa Pool Pizzi
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | - Helano Carioca Freitas
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Clinical Oncology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | - Renan Valieris
- Laboratory of Computational Biology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Luiz Gonzaga Vaz Coelho
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wilson Luiz da Costa
- Department of Abdominal Surgery, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Felipe J F Coimbra
- Department of Abdominal Surgery, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Israel Tojal da Silva
- Laboratory of Computational Biology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Diana Noronha Nunes
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.,Laboratory of Neurosciences Alzira Denise Hertzog Silva (LIM-27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Ahmed A, Al-Tamimi DM. Incorporation of p-53 mutation status and Ki-67 proliferating index in classifying Her2-neu positive gastric adenocarcinoma. Libyan J Med 2018; 13:1466573. [PMID: 29697008 PMCID: PMC5917891 DOI: 10.1080/19932820.2018.1466573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Her2-neu overexpression has a pathogenetic, therapeutic and a controversial prognostic role in gastric cancer. p-53 mutation status and Ki-67 proliferation index are established prognostic markers in many tumors. In this study we evaluated p-53 and Ki-67 in relation to Her2-neu positive and negative gastric adenocarcinoma (GA). This cross-sectional study was carried out at King Fahd Hospital of Imam Abdulrahman bin Faisal University. Fifty cases of GA were retrieved from pathology archives. Clinico-pathological parameters were evaluated. Immunohistochemical protein analysis for Her2-neu, Ki-67 and p-53 was carried out. Fluorescent in situ hybridization (FISH) analysis was done for Her2-neu positive cases showing 2+ immunoexpression. Frequency of Ki-67 and p-53 positivity in Her2-neu positive cases was calculated and compared with those in Her2-neu negative cases. Correlation of clinicopatological parameters with Her2 positive and negative cases, p-53 mutation status and Ki-67 proliferation index was carried out. Her2-neu overexpression was present in 12% (n = 6) cases. A high Ki-67 was seen predominantly in Her2-neu positive cases (83%, n = 5). Her2-neu negative cases (n = 44) showed moderate (31.88%, n = 14) to low (34%, n = 15) Ki-67. Diffuse p-53 positivity was seen predominantly in Her2-neu positive cases (33.33%, n = 2). Focal p-53 was seen mainly in Her2-neu negative cases 56.8% (n = 25). Negative p-53 was seen to be independent of Her2-neu status. Her2-neu positivity is strongly associated with diffuse p-53 mutation status and high Ki-67 proliferation. Her 2-neu negative status is associated with focal p-53 positivity and low to moderate Ki-67 proliferation index. Such stratifications in prognostic markers could not only be predictive in patient's prognostics but could also form a basis of molecular classification of gastric cancer.
Collapse
Affiliation(s)
- Ayesha Ahmed
- a Department of Pathology, College of Medicine , King Fahd Hospital of Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Dalal M Al-Tamimi
- a Department of Pathology, College of Medicine , King Fahd Hospital of Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| |
Collapse
|
40
|
Aboushousha T, Helal N, Hammam O, Ibrahim M, Khaled S, Mostafa A, Anas A. Overview of MDM2 and B-RAF Expression in Gastric Lesions. Open Access Maced J Med Sci 2018; 6:1795-1802. [PMID: 30455751 PMCID: PMC6236038 DOI: 10.3889/oamjms.2018.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Globally, gastric cancer (GC) it is the fourth most common cancer and the third cause of cancer-related deaths. Overexpression of MDM2 and B-RAF appeared to be increased in malignancy and associated with poor prognosis in several human tumours, but their role in gastric cancer remains controversial. AIM: We had investigated the immunohistochemical expression of MDM2 and B-RAF in 136 gastric lesions with/without H. pylori association. MATERIAL AND METHODS: Studied specimens include chronic gastritis (32), intestinal type GC (70), diffuse GC (22) and gastrointestinal stromal tumours (GIST) (12). RESULTS: MDM2 expression increased significantly in intestinal GC compared to other groups (p < 0.001), while B-RAF expression increased significantly in GIST compared to other groups (p < 0.001). H. pylori increased expression of MDM2 in intestinal GC cases but did not affect B-RAF expression. MDM2 expression correlated with high grade of tumor differentiation (p < 0.001), deep invasion (p < 0.05), nodal metastases (p < 0.05) and distant metastases (p < 0.1) in intestinal GC, while B-RAF expression did not correlate with TNM stage (p < 0.1). CONCLUSION: MDM2 up-regulation was more frequent in intestinal GC, while B-RAF up-regulation was more frequent in GIST compared to other groups; MDM2 expression in intestinal GC was correlated with H. pylori association, high grade of differentiation, deep invasion, nodal and distant metastases, meanwhile, B-RAF expression was correlated with high-grade intestinal GC but did not correlate with H. pylori or TNM stage. The possible role of both MDM2 and B-RAF in predicting progression of gastric tumours and prognosis deserves further investigations.
Collapse
Affiliation(s)
- Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Noha Helal
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Olfat Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Manar Ibrahim
- Faculty of Biotechnology, October University of Modern Sciences and Arts, Giza, Egypt
| | - Samar Khaled
- Faculty of Biotechnology, October University of Modern Sciences and Arts, Giza, Egypt
| | - Amr Mostafa
- Department of Surgery, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Amgad Anas
- Department of Hepato-Gastroenterology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
41
|
Qi W, Sun L, Liu N, Zhao S, Lv J, Qiu W. Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Mol Med Rep 2018; 18:3599-3610. [PMID: 30106120 PMCID: PMC6131613 DOI: 10.3892/mmr.2018.9360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2018] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer has become a serious disease in the past decade. It has the second highest mortality rate among the four most common cancer types, leading to ~700,000 mortalities annually. Previous studies have attempted to elucidate the underlying biological mechanisms of gastric cancer. The present study aimed to obtain useful biomarkers and to improve the understanding of gastric cancer mechanisms at the genetic level. The present study used bioinformatics analysis to identify 1,829 differentially expressed genes (DEGs) which were obtained from the GSE54129 dataset. Using protein‑protein interaction information from the Search Tool for the Retrieval of Interacting Genes database, disease modules were constructed for gastric cancer using Cytoscape software. In the Gene Ontology analysis of biology processes, upregulated genes were significantly enriched in 'extracellular matrix organization', 'cell adhesion' and 'inflammatory response', whereas downregulated DEGs were significantly enriched in 'xenobiotic metabolic process', 'oxidation‑reduction process' and 'steroid metabolic process'. During Kyoto Encyclopedia of Genes and Genomes analysis, upregulated DEGs were significantly enriched in 'extracellular matrix‑receptor interaction', 'focal adhesion' and 'PI3K‑Akt signaling pathway', whereas the downregulated DEGs were significantly enriched in 'chemical carcinogenesis', 'metabolism of xenobiotics by cytochrome P450' and 'peroxisome'. The present study additionally identified 10 hub genes from the DEGs: Tumor protein p53 (TP53), C‑X‑C motif chemokine ligand 8 (CXCL8), tetraspanin 4 (TSPAN4), lysophosphatidic acid receptor 2 (LPAR2), adenylate cyclase 3 (ADCY3), phosphoinositide‑3‑kinase regulatory subunit 1 (PIK3R1), neuromedin U (NMU), C‑X‑C motif chemokine ligand (CXCL12), fos proto‑oncogene, AP‑1 transcription factor subunit (FOS) and sphingosine‑1‑phosphate receptor 1 (S1PR1), which have high degrees with other DEGs. The survival analysis revealed that the high expression of ADCY3, LPAR2, S1PR1, TP53 and TSPAN4 was associated with a lower survival rate, whereas high expression of CXCL8, FOS, NMU and PIK3R1 was associated with a higher survival rate. No significant association was identified between CXCL12 and survival rate. Additionally, TSPAN1 and TSPAN8 appeared in the top 100 DEGs. Finally, it was observed that 4 hub genes were highly expressed in gastric cancer tissue compared with para‑carcinoma tissue in the 12 patients; the increased TSPAN4 was significant (>5‑fold). Tetraspanin family genes may be novel biomarkers of gastric cancer. The findings of the present study may improve the understanding of the molecular mechanisms underlying the development of gastric cancer.
Collapse
Affiliation(s)
- Weiwei Qi
- Department of Oncology and Chemotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Libin Sun
- Department of Oncology and Chemotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ning Liu
- Department of Oncology and Chemotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Shufen Zhao
- Department of Oncology and Chemotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Jing Lv
- Department of Oncology and Chemotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Wensheng Qiu
- Department of Tumor Combined Therapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| |
Collapse
|
42
|
Liu X, Wu J, Zhang D, Wang K, Duan X, Meng Z, Zhang X. Network Pharmacology-Based Approach to Investigate the Mechanisms of Hedyotis diffusa Willd. in the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7802639. [PMID: 29853970 PMCID: PMC5954954 DOI: 10.1155/2018/7802639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hedyotis diffusa Willd. (HDW) is one of the renowned herbs often used in the treatment of gastric cancer (GC). However, its curative mechanism has not been fully elucidated. OBJECTIVE To systematically investigate the mechanisms of HDW in GC. METHODS A network pharmacology approach mainly comprising target prediction, network construction, and module analysis was adopted in this study. RESULTS A total of 353 targets of the 32 bioactive compounds in HDW were obtained. The network analysis showed that CA isoenzymes, p53, PIK3CA, CDK2, P27Kip1, cyclin D1, cyclin B1, cyclin A2, AKT1, BCL2, MAPK1, and VEGFA were identified as key targets of HDW in the treatment of GC. The functional enrichment analysis indicated that HDW probably produced the therapeutic effects against GC by synergistically regulating many biological pathways, such as nucleotide excision repair, apoptosis, cell cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling pathway, and Ras signaling pathway. CONCLUSIONS This study holistically illuminates the fact that the pharmacological mechanisms of HDW in GC might be strongly associated with its synergic modulation of apoptosis, cell cycle, differentiation, proliferation, migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
43
|
Brasacchio D, Busuttil RA, Noori T, Johnstone RW, Boussioutas A, Trapani JA. Down-regulation of a pro-apoptotic pathway regulated by PCAF/ADA3 in early stage gastric cancer. Cell Death Dis 2018; 9:442. [PMID: 29670108 PMCID: PMC5906598 DOI: 10.1038/s41419-018-0470-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022]
Abstract
The loss of p300/CBP-associated protein (PCAF) expression is associated with poor clinical outcome in gastric cancer, and a potential bio-marker for invasive and aggressive tumors. However, the mechanism linking loss of PCAF to the onset of gastric cancer has not been identified. Given that PCAF and its binding partner transcriptional adaptor protein 3 (ADA3) were recently shown to regulate the intrinsic (mitochondrial) pathway to apoptosis via epigenetic regulation of phosphofurin acidic cluster sorting proteins 1 and 2 (PACS1, PACS2), we analyzed PCAF, ADA3, and PACS1/2 expression in 99 patient-matched surgical samples ranging from normal gastric mucosa, through pre-malignant chronic gastritis and intestinal metaplasia to stage I–III invasive cancers. PCAF mRNA levels were not reduced in either pre-malignant state but were significantly down-regulated in all stages of gastric cancer, commencing at AJCC stage I (p < 0.05), thus linking reduced PCAF expression with early malignant change. Furthermore, patients with combined reduction of PCAF and PACS1 had significantly poorer overall survival (p = 0.0257), confirmed in an independent dataset of 359 patients (p = 5.8 × 10e-6). At the protein level, PCAF, ADA3, and PACS1 expression were all significantly down-regulated in intestinal-type gastric cancer, and correlated with reduced progression free survival. We conclude that a pro-apoptotic mechanism centered on the intrinsic (mitochondrial) pathway and regulated by PCAF/ADA3 can influence the progression from premalignant to malignant change, and thus act as a tumor suppression mechanism in gastric cancer.
Collapse
Affiliation(s)
- Daniella Brasacchio
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rita A Busuttil
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tahereh Noori
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Spoto CP, Gullo I, Carneiro F, Montgomery EA, Brosens LA. Hereditary gastrointestinal carcinomas and their precursors: An algorithm for genetic testing. Semin Diagn Pathol 2018; 35:170-183. [DOI: 10.1053/j.semdp.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Cerda-Opazo P, Valenzuela-Valderrama M, Wichmann I, Rodríguez A, Contreras-Reyes D, Fernández EA, Carrasco-Aviño G, Corvalán AH, Quest AF. Inverse expression of survivin and reprimo correlates with poor patient prognosis in gastric cancer. Oncotarget 2018; 9:12853-12867. [PMID: 29560115 PMCID: PMC5849179 DOI: 10.18632/oncotarget.24402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The objective of the study was to determine the relationship between Survivin and Reprimo transcript/protein expression levels, and gastric cancer outcome. METHODS In silico correlations between an agnostic set of twelve p53-dependent apoptosis and cell-cycle genes were explored in the gastric adenocarcinoma TCGA database, using cBioPortal. Findings were validated by regression analysis of RNAseq data. Separate regression analyses were performed to assess the impact of p53 status on Survivin and Reprimo. Quantitative reverse-transcription PCR (RT-qPCR) and immunohistochemistry confirmed in silico findings on fresh-frozen and paraffin-embedded gastric cancer tissues, respectively. Wild-type (AGS, SNU-1) and mutated p53 (NCI-N87) cell lines transfected with pEGFP-Survivin or pCMV6-Reprimo were evaluated by RT-qPCR and Western blotting. Kaplan-Meier method and Long-Rank test were used to assess differences in patient outcome. RESULTS cBioPortal analysis revealed an inverse correlation between Survivin and Reprimo expression (Pearson's r= -0.3, Spearman's ρ= -0.55). RNAseq analyses confirmed these findings (Spearman's ρ= -0.37, p<4.2e-09) and revealed p53 dependence in linear regression models (p<0.05). mRNA and protein levels validated these observations in clinical samples (p<0.001). In vitro analysis in cell lines demonstrated that increasing Survivin reduced Reprimo, while increasing Reprimo reduced Survivin expression, but only did so in p53 wild-type gastric cells (p<0.05). Survivin-positive but Reprimo-negative patients displayed shorter overall survival rates (p=0.047, Long Rank Test) (HR=0.32; 95%IC: 0.11-0.97; p=0.044). CONCLUSIONS TCGA RNAseq data analysis, evaluation of clinical samples and studies in cell lines identified an inverse relationship between Survivin and Reprimo. Elevated Survivin and reduced Reprimo protein expression correlated with poor patient prognosis in gastric cancer.
Collapse
Affiliation(s)
- Paulina Cerda-Opazo
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago, Chile
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Ignacio Wichmann
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Core Biodata, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Andrés Rodríguez
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Daniel Contreras-Reyes
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Elmer A. Fernández
- CIDIE – CONICET - Facultad de Ingeniería, Campus Universitario, Universidad Católica de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- National Bioinformatics Consortia (BIA) of Argentina, Buenos Aires, Argentina
| | - Gonzalo Carrasco-Aviño
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Anatomía Patológica, Hospital Clínico José Joaquín Aguirre, Universidad de Chile, Santiago, Chile
| | - Alejandro H. Corvalán
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Core Biodata, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Andrew F.G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| |
Collapse
|
46
|
Li N, Xie C, Lu NH. p53, a potential predictor of Helicobacter pylori infection-associated gastric carcinogenesis? Oncotarget 2018; 7:66276-66286. [PMID: 27556187 PMCID: PMC5323233 DOI: 10.18632/oncotarget.11414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/13/2016] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is an ancient and persistent inhabitant of the human stomach that is closely linked to the development of gastric cancer (GC). . Emerging evidence suggests that H. pylori strain interactions with gastric epithelial cells subvert the best- characterized p53 tumour suppressor pathway. A high prevalence of p53 mutations is related to H. pylori infection. H. pylori also accelerates p53 protein degradation by disturbing the MDM2-P53 feedback loop. Additionally, H. pylori triggers the alteration of other p53 isoforms. Dysregulation of p53 by H. pylori infection contributes to gastric carcinogenesis by mediating cell proliferation and apoptosis. This review focuses on the regulation of p53 in H. pylori infection-associated GC.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
47
|
Huang KK, Ramnarayanan K, Zhu F, Srivastava S, Xu C, Tan ALK, Lee M, Tay S, Das K, Xing M, Fatehullah A, Alkaff SMF, Lim TKH, Lee J, Ho KY, Rozen SG, Teh BT, Barker N, Chia CK, Khor C, Ooi CJ, Fock KM, So J, Lim WC, Ling KL, Ang TL, Wong A, Rao J, Rajnakova A, Lim LG, Yap WM, Teh M, Yeoh KG, Tan P. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell 2018; 33:137-150.e5. [PMID: 29290541 DOI: 10.1016/j.ccell.2017.11.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. We performed (epi)genomic profiling of 138 IMs from 148 cancer-free patients, recruited through a 10-year prospective study. Compared with GCs, IMs exhibit low mutational burdens, recurrent mutations in certain tumor suppressors (FBXW7) but not others (TP53, ARID1A), chromosome 8q amplification, and shortened telomeres. Sequencing identified more IM patients with active Helicobacter pylori infection compared with histopathology (11%-27%). Several IMs exhibited hypermethylation at DNA methylation valleys; however, IMs generally lack intragenic hypomethylation signatures of advanced malignancy. IM patients with shortened telomeres and chromosomal alterations were associated with subsequent dysplasia or GC; conversely patients exhibiting normal-like epigenomic patterns were associated with regression.
Collapse
Affiliation(s)
- Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kalpana Ramnarayanan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Pathology, National University of Singapore, Singapore 119228, Singapore
| | - Chang Xu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Angie Lay Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Minghui Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Suting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kakoli Das
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Manjie Xing
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore; Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Aliya Fatehullah
- Institute of Medical Biology, A-STAR, Singapore 138648, Singapore
| | | | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jonathan Lee
- Department of Gastroenterology and Hepatology, National University Health System, Singapore 119074, Singapore
| | - Khek Yu Ho
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore 119074, Singapore
| | - Steven George Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Nick Barker
- Institute of Medical Biology, A-STAR, Singapore 138648, Singapore; Centre for Regenerative Medicine, Edinburgh EH16 4UU, UK
| | - Chung King Chia
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Christopher Khor
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Choon Jin Ooi
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Jimmy So
- Department of Surgery, National University of Singapore, Singapore 119228, Singapore
| | - Wee Chian Lim
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Khoon Lin Ling
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Andrew Wong
- Department of Surgery, Changi General Hospital, Singapore 529889, Singapore
| | - Jaideepraj Rao
- Department of Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | | | | | - Wai Ming Yap
- Department of Pathology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore 119228, Singapore.
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore 119074, Singapore; Singapore Gastric Cancer Consortium, Singapore 119074, Singapore.
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169856, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore; Singapore Gastric Cancer Consortium, Singapore 119074, Singapore.
| |
Collapse
|
48
|
p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget 2017; 7:11785-802. [PMID: 26930720 PMCID: PMC4914248 DOI: 10.18632/oncotarget.7600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN.
Collapse
|
49
|
Zhou C, Jiang H, Zhang Z, Zhang G, Wang H, Zhang Q, Sun P, Xiang R, Yang S. ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget 2017; 8:54388-54401. [PMID: 28903350 PMCID: PMC5589589 DOI: 10.18632/oncotarget.17077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells believed to be implicated in cancer initiation, progression, and recurrence. Here, we report that ectopic expression of zinc finger E-box binding homeobox 1 protein (ZEB1) results in the acquisition of CSC properties by breast cancer cells, leading to tumor initiation and progression in vitro and in vivo. The neurogenin 3 gene (Ngn3) is a bona fide target of ZEB1, and its repression is a key factor contributing to ZEB1-induced cancer cell stemness. ZEB1 suppressed Ngn3 transcription by forming a ZEB1/DNA methyltransferase (DNMT)3B/histone deacetylase 1 (HDAC1) complex on the Ngn3 promoter, leading to promoter hypermethylation and gene silencing. The rescue of Ngn3 expression attenuated ZEB1-induced cancer stemness and symmetric CSC division. Immunohistological analysis of human breast cancer specimens revealed a strong inverse relationship between ZEB1 and NGN3 protein expression. Thus, our findings suggest ZEB1-mediated silencing of Ngn3 is required for breast tumor initiation and maintenance. Targeted therapies against the ZEB1/Ngn3 axis may be highly valuable for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Guomin Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Rong Xiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Klameth L, Rath B, Hamilton G. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines. J Cancer 2017; 8:1733-1743. [PMID: 28819369 PMCID: PMC5556635 DOI: 10.7150/jca.17816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/01/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Furthermore, the role of HSP90 in chemoresistance of these lines was investigated using the specific inhibitor ganetespib. The KATO-III, MKN-1, MKN-28, MKN-45 lines were used in MTT chemosensitivity, cell cycle and apoptosis assays. KATO-III is a signet ring diffuse cell type, MKN-1 an adenosquamous primary, MKN-28 a well-differentiated intestinal type and the MKN-45 a poorly differentiated, diffuse type gastric carcinoma line. Cytotoxicity was tested in MTT assays and intracellular signal transduction with proteome profiler Western blot arrays. Interactions of platinum drugs and ganetespib were calculated with help of the Chou-Talalay method. The prodrug oxoplatin revealed low activity against the four gastric cancer cell lines, whereas the platinum tetrachlorido(IV) complex and cisplatin gave IC50 values of 1-3 µg/ml with increasing chemoresistance observed in the order of MKN-1, KATO-III, MKN-28 to MKN-45. With exception of KATO-III and MKN-28/oxoplatin, all other cell lines featured marked synergistic toxicity with clinically achievable concentrations of ganetespib. Oral administration of a platinum agent such as oxoplatin would be of great value for patients and care providers alike. These results suggest that the oncogene-stabilizing HSP90 chaperone represents an important mediator of chemoresistance in gastric cancer. Ganetespib reduced the phosphorylation of p53, Akt1/2/3 and PRAS40, as well as of WNK1, a kinase which regulates intracellular chloride concentrations. Intracellular chloride was reported to control proliferation of gastric cancer cell lines. Expression of MUC1 was not downregulated in contrast to the expression of CAIX, a prognostic marker in gastric cancer. In conclusion, the HSP90 inhibitor ganetespib synergizes with platinum anticancer drugs and modulates intracellular signal transduction in direction of a less proliferative and aggressive phenotype.
Collapse
Affiliation(s)
- Lukas Klameth
- Department for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|