1
|
Wang J, Li X, Wang X, Zhang C, Hao Y, Jin LH. The zinc finger protein CG12744 regulates intestinal stem cells in aged Drosophila through the EGFR and BMP pathways. Life Sci 2024; 340:122485. [PMID: 38311220 DOI: 10.1016/j.lfs.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
AIM Aging is a process characterized by a time-dependent decline in the functionality of adult stem cells and is closely associated with age-related diseases. However, understanding how aging promotes disease and its underlying causes is critical for combating aging. MAIN METHODS The offspring of UAS-Gal4 and CG12744RNAiDrosophila were cultured for 33 days to evaluate the role of CG12744 in the aging intestine. Immunofluorescence was performed to detect specific cell type markers for assessing proliferation and differentiation. qRT-PCR was used to observe the changes in signaling regulating intestinal homeostasis in the aging intestine after CG12744 knockdown. 16S rRNA-seq analysis was also conducted to elucidate the role of gut microbes in CG12744-mediated intestinal dysfunction. KEY FINDINGS The mRNA levels of CG12744 were significantly increased in the aged midguts. Knockdown of CG12744 in progenitor cells further exacerbates the age-related intestinal hyperplasia and dysfunction. In particular, upon depletion of CG12744 in progenitors, enteroblasts (EBs) exhibited an increased propensity to differentiate along the enteroendocrine cell (EE) lineage. In contrast, the overexpression of CG12744 in progenitor cells restrained age-related gut hyperplasia in Drosophila. Moreover, CG12744 prevented age-related intestinal stem cell (ISC) overproliferation and differentiation by modulating the EGFR, JNK, and BMP pathways. In addition, the inhibition of CG12744 resulted in a significant increase in the gut microbial composition in aging flies. SIGNIFICANCE This study established a role for the CG12744 in regulating the proliferation and differentiation of adult stem cells, thereby identifying a potential therapeutic target for diseases caused by age-related dysfunction stem cell dysfunction.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Xianhao Li
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Xiaoran Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Chengcheng Zhang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China.
| |
Collapse
|
2
|
Ponsuksili S, Hadlich F, Perdomo-Sabogal A, Reyer H, Oster M, Trakooljul N, Iqbal MA, Schmucker S, Stefanski V, Roth C, Silva AC, Huber K, Sommerfeld V, Rodehutscord M, Wimmers K. The dynamics of molecular, immune and physiological features of the host and the gut microbiome, and their interactions before and after onset of laying in two hen strains. Poult Sci 2022; 102:102256. [PMID: 36335740 PMCID: PMC9640326 DOI: 10.1016/j.psj.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Aggregation of data, including deep sequencing of mRNA and miRNA data in jejunum mucosa, abundance of immune cells, metabolites, or hormones in blood, composition of microbiota in digesta and duodenal mucosa, and production traits collected along the lifespan, provides a comprehensive picture of lifelong adaptation processes. Here, respective data from two laying hen strains (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) collected at 10, 16, 24, 30, and 60 wk of age were analyzed. Data integration revealed strain- and stage-specific biosignatures, including elements indicative of molecular pathways discriminating the strains. Although the strains performed the same, they differed in the activity of immunological and metabolic functions and pathways and showed specific gut-microbiota-interactions in different production periods. The study shows that both strains employ different strategies to acquire and maintain their capabilities under high performance conditions, especially during the transition phase. Furthermore, the study demonstrates the capacity of such integrative analyses to elucidate molecular pathways that reflect functional biodiversity. The bioinformatic reduction of the multidimensional data provides good guidance for further manual review of the data.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany,Corresponding author:
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Sonja Schmucker
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| | - Volker Stefanski
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Christoph Roth
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | | | - Korinna Huber
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| |
Collapse
|
3
|
Känel P, Noll GA, Schroedter K, Naffin E, Kronenberg J, Busswinkel F, Twyman RM, Klämbt C, Prüfer D. The tobacco phosphatidylethanolamine-binding protein NtFT4 increases the lifespan of Drosophila melanogaster by interacting with the proteostasis network. Aging (Albany NY) 2022; 14:2989-3029. [PMID: 35396341 PMCID: PMC9037272 DOI: 10.18632/aging.204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Proteostasis reflects the well-balanced synthesis, trafficking and degradation of cellular proteins. This is a fundamental aspect of the dynamic cellular proteome, which integrates multiple signaling pathways, but it becomes increasingly error-prone during aging. Phosphatidylethanolamine-binding proteins (PEBPs) are highly conserved regulators of signaling networks and could therefore affect aging-related processes. To test this hypothesis, we expressed PEPBs in a heterologous context to determine their ectopic activity. We found that heterologous expression of the tobacco (Nicotiana tabacum) PEBP NtFT4 in Drosophila melanogaster significantly increased the lifespan of adult flies and reduced age-related locomotor decline. Similarly, overexpression of the Drosophila ortholog CG7054 increased longevity, whereas its suppression by RNA interference had the opposite effect. In tobacco, NtFT4 acts as a floral regulator by integrating environmental and intrinsic stimuli to promote the transition to reproductive growth. In Drosophila, NtFT4 engaged distinct targets related to proteostasis, such as HSP26. In older flies, it also prolonged Hsp26 gene expression, which promotes longevity by maintaining protein integrity. In NtFT4-transgenic flies, we identified deregulated genes encoding proteases that may contribute to proteome stability at equilibrium. Our results demonstrate that the expression of NtFT4 influences multiple aspects of the proteome maintenance system via both physical interactions and transcriptional regulation, potentially explaining the aging-related phenotypes we observed.
Collapse
Affiliation(s)
- Philip Känel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Katrin Schroedter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Elke Naffin
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Julia Kronenberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Franziska Busswinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | | | - Christian Klämbt
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Song HR, Kim HK, Kim SG, Lim HJ, Kim HY, Han MK. Changes in the phosphorylation of nucleotide metabolism‑associated proteins by leukemia inhibitory factor in mouse embryonic stem cells. Mol Med Rep 2021; 23:431. [PMID: 33846773 PMCID: PMC8060798 DOI: 10.3892/mmr.2021.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/22/2020] [Indexed: 11/05/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a stem cell growth factor that maintains self‑renewal of mouse embryonic stem cells (mESCs). LIF is a cytokine in the interleukin‑6 family and signals via the common receptor subunit gp130 and ligand‑specific LIF receptor. LIF causes heterodimerization of the LIF receptor and gp130, activating the Janus kinase/STAT and MAPK pathways, resulting in changes in protein phosphorylation. The present study profiled LIF‑mediated protein phosphorylation changes in mESCs via proteomic analysis. mESCs treated in the presence or absence of LIF were analyzed via two‑dimensional differential in‑gel electrophoresis and protein and phosphoprotein staining. Protein identification was performed by matrix‑assisted laser desorption/ionization‑time of flight mass spectrophotometry. Increased phosphorylation of 16 proteins and decreased phosphorylation of 34 proteins in response to LIF treatment was detected. Gene Ontology terms enriched in these proteins included 'organonitrogen compound metabolic process', 'regulation of mRNA splicing via spliceosome' and 'nucleotide metabolic process'. The present results revealed that LIF modulated phosphorylation levels of nucleotide metabolism‑associated proteins, thus providing insight into the mechanism underlying LIF action in mESCs.
Collapse
Affiliation(s)
- Hwa-Ryung Song
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Han-Kyu Kim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Seung-Gook Kim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyung-Jin Lim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyun-Yi Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Bandyopadhyay S, Araujo LP, Tong K, Flores J, Laubitz D, Zhao Y, Yap G, Wang J, Zou Q, Ferraris R, Zhang L, Hu W, Bonder EM, Kiela PR, Coffey R, Verzi MP, Ivanov II, Gao N. Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight 2020; 5:135923. [PMID: 32686657 PMCID: PMC7455142 DOI: 10.1172/jci.insight.135923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Leandro Pires Araujo
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kevin Tong
- Department of Genetics, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - George Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
- Department of Pathology, University Medical Center of Princeton, Plainsboro, New Jersey, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Robert Coffey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael P. Verzi
- Department of Genetics, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nan Gao
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|