1
|
Capoferri D, Bignotti E, Ravaggi A, Mitola S, Romani C. Finding the junction between claudins and endometrial carcinoma. Biochim Biophys Acta Rev Cancer 2023; 1878:189019. [PMID: 37951482 DOI: 10.1016/j.bbcan.2023.189019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Endometrial carcinoma (EC) defines a heterogeneous group of neoplastic diseases originating from the transformation of endometrial cells that constitute the internal lining of the uterus. To date several molecular targets have been analysed to describe the natural course of the disease, claudins being among these. Claudins are the main components of tight junctions (TJs), and their main functions are ascribed to the compartmentalization of tissues and cell-cell communication by means of intracellular ions diffusion: these features are typical of epithelial cells. Their overexpression, mis-localization or loss contribute to the malignancy of EC cells. This review collected all available data regarding the expression, regulation and claudin-related signaling pathways to provide a comprehensive view on the influence of claudin in EC progression. Further, the translational potential of claudin differential expression was explored, indicating that their role in personalized medicine could also contribute to EC therapy besides their employment for diagnosis and prognosis.
Collapse
Affiliation(s)
- Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Eliana Bignotti
- Angelo Nocivelli Institute for Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia 25123, Italy; Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia 25123, Italy
| | - Antonella Ravaggi
- Angelo Nocivelli Institute for Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia 25123, Italy; Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia 25123, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Chiara Romani
- Angelo Nocivelli Institute for Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia 25123, Italy; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy.
| |
Collapse
|
2
|
Sun Z, Yan T, Jiang H, Cai J, Zhu X, Chen Q. Claudin-3 facilitates the progression and mediates the tumorigenic effects of TGF-β in glioblastoma multiforme. Med Oncol 2023; 40:268. [PMID: 37578554 DOI: 10.1007/s12032-023-02136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Glioblastoma multiforme (GBM) is a significantly malignant and lethal brain tumor with an average survival time of less than 12 months. Several researches had shown that Claudin-3 (CLDN3) is overexpressed in various cancers and might be important in their growth and spread. In this study, we used qRT-PCR, western blotting, immunohistochemistry, and immunofluorescence staining assays to investigate the expression levels of various proteins. To explore the proliferation abilities of GBM cells, we conducted the CCK-8 and EdU-DNA formation assays. Wound healing and transwell assays were used to investigate the capacities of invasion and migration of GBM cells. Additionally, we constructed an intracranial xenograft model of GBM to study the in vivo role of CLDN3. Our study devoted to investigate the function of CLDN3 in the pathogenesis and progression of GBM. Our study revealed that CLDN3 was upregulated in GBM and could stimulate tumor cell growth and epithelial-mesenchymal transition (EMT) in both laboratory and animal models. We also discovered that CLDN3 expression could be triggered by transforming growth factor-β (TGF-β) and reduced by specific inhibitors of the TGF-β signaling pathway, such as ITD-1. Further analysis revealed that increased CLDN3 levels enhanced TGF-β-induced growth and EMT in GBM cells, while reducing CLDN3 levels weakened these effects. Our study demonstrated the function of CLDN3 in facilitating GBM growth and metastasis and indicated its involvement in the tumorigenic effects of TGF-β. Developing specific inhibitors of CLDN3 might, therefore, represent a promising new approach for treating this devastating disease.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiwei Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Waldow A, Beier LS, Arndt J, Schallenberg S, Vollbrecht C, Bischoff P, Farrera-Sal M, Loch FN, Bojarski C, Schumann M, Winkler L, Kamphues C, Ehlen L, Piontek J. cCPE Fusion Proteins as Molecular Probes to Detect Claudins and Tight Junction Dysregulation in Gastrointestinal Cell Lines, Tissue Explants and Patient-Derived Organoids. Pharmaceutics 2023; 15:1980. [PMID: 37514167 PMCID: PMC10385049 DOI: 10.3390/pharmaceutics15071980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.
Collapse
Affiliation(s)
- Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Arndt
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Simon Schallenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Philip Bischoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Florian N Loch
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Lars Winkler
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin, Germany
| | - Carsten Kamphues
- Park-Klinik Weißensee, Department of General-Visceral and Minimally-Invasive Surgery, 13086 Berlin, Germany
| | - Lukas Ehlen
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
4
|
Neville MC, Webb PG, Baumgartner HK, Bitler BG. Claudin-4 localization in epithelial ovarian cancer. Heliyon 2022; 8:e10862. [PMID: 36237976 PMCID: PMC9552118 DOI: 10.1016/j.heliyon.2022.e10862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Claudin-4, a protein with the structure of classic claudins most often found in cell-cell junctions, is frequently overexpressed in epithelial cancers where its localization has not been studied. In this study we aimed to find out where this membrane protein is localized in an ovarian tumor model, OVCAR3 cells, that express high levels of the protein. Immunohistochemical studies showed claudin-4 staining in a perinuclear region, at most plasma membranes and in cytoplasmic puncta. Native claudin-4 did not overlap with phosphorylated claudin-4, which was partially located in focal adhesions. Using claudin-4 BioID technology we confirmed that large amounts of claudin-4 are localized to the Golgi compartment, including in dispersed Golgi in cells where claudin-4 is partially knocked down and in dividing cells. Claudin-4 appears to be present in the vicinity of several types of cell-cell junctions, but there is no evidence that it forms tight junctions in these tumor cells. Both claudin-4, the Golgi marker GM130, and the plasma membrane receptor Notch2 were found in dispersed Golgi in dividing cells. This definition of the cellular architecture of claudin-4 should provide a framework for better understanding of the function of claudin-4 in tumor cells and its molecular interactions.
Collapse
Affiliation(s)
- Margaret C. Neville
- Departments of Obstetrics and Gynecology and Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, 80845, USA
- Corresponding author.
| | - Patricia G. Webb
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80845, USA
| | - Heidi K. Baumgartner
- University of Colorado Anschutz Medical Campus, 2700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Denver Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19 Ave., Aurora, CO, 80045, USA
| |
Collapse
|
5
|
Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells. Mol Biol Rep 2022; 49:11663-11674. [PMID: 36169897 DOI: 10.1007/s11033-022-07976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gastric cancer is a heterogeneous disease associated to deregulated gastric epithelia tight junction barrier function and di novo expression of claudin-6; these changes are associated with epithelial-mesenchymal transition, enhanced invasiveness, metastatic progression, resistance to chemotherapy, and poor prognosis. Gastric cancer stem cells represent a rare population of cells within the tumor implicated in tumor growth and higher tumorigenic capacity. The possible relation between claudin-6 expression and the expression of some markers associated to epithelial mesenchymal transition and cancer stem cells in gastric cancer cells have never been explored. METHODS AND RESULTS CD44, CD24, Twist, Villin, DCLK1, claudin-6, NANOG, E-Cadherin, SOX2, and SNAI1 expression was evaluated by immunofluorescence and cytofluorometry in wild type and Claudin-6 transfected AGS cells. Cell migration assays were also performed. Differentially expressed genes and biological processes analysis was performed to determine gene preponderance. The results showed that claudin-6 overexpression enriched the CD44 + /CD24- subpopulation with an overall increase in the expression and the number of CD44 + cells. A significant increase in NANOG, SOX2 and SNAI1 expression and enhanced cell migration was observed in claudin-6 transfected cells. Transcriptome analysis revealed 271 genes involved in enhanced biological processes with only 31 with a significantly p value; thirteen of those genes are closely associated to epithelial mesenchymal transition processes and folding and unfolding processes of proteins in the endoplasmic reticulum. CONCLUSIONS The pro-tumorigenic effect of claudin-6 in gastric cancer could be associated to dedifferentiation of epithelial cells and an increase in di novo cancer stem cell genesis.
Collapse
|
6
|
Romani C, Capoferri D, Reijnen C, Lonardi S, Ravaggi A, Ratti M, Bugatti M, Zanotti L, Tognon G, Sartori E, Odicino F, Calza S, Pijnenborg JMA, Bignotti E. L1CAM
expression as a predictor of platinum response in high‐risk endometrial carcinoma. Int J Cancer 2022; 151:637-648. [PMID: 35429348 PMCID: PMC9321598 DOI: 10.1002/ijc.34035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Romani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Davide Capoferri
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Casper Reijnen
- Department of Radiation OncologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Silvia Lonardi
- Department of PathologyASST Spedali Civili of BresciaBresciaItaly
| | - Antonella Ravaggi
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Martina Ratti
- Division of Obstetrics and GynecologyASST Spedali Civili di BresciaBresciaItaly
| | - Mattia Bugatti
- Department of PathologyASST Spedali Civili of BresciaBresciaItaly
| | - Laura Zanotti
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Germana Tognon
- Division of Obstetrics and GynecologyASST Spedali Civili di BresciaBresciaItaly
| | - Enrico Sartori
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Franco Odicino
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Stefano Calza
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Johanna M. A. Pijnenborg
- Department of Obstetrics and GynaecologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Eliana Bignotti
- Division of Obstetrics and GynecologyASST Spedali Civili di BresciaBresciaItaly
| |
Collapse
|
7
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
8
|
Romani C, Capoferri D, Grillo E, Silvestri M, Corsini M, Zanotti L, Todeschini P, Ravaggi A, Bignotti E, Odicino F, Sartori E, Calza S, Mitola S. The Claudin-Low Subtype of High-Grade Serous Ovarian Carcinoma Exhibits Stem Cell Features. Cancers (Basel) 2021; 13:906. [PMID: 33671478 PMCID: PMC7926503 DOI: 10.3390/cancers13040906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023] Open
Abstract
Claudin-low cancer (CL) represents a rare and biologically aggressive variant of epithelial tumor. Here, we identified a claudin-low molecular profile of ovarian high-grade serous carcinoma (HGSOC), which exhibits the main characteristics of the homonym breast cancer subtype, including low epithelial differentiation and high mesenchymal signature. Hierarchical clustering and a centroid based algorithm applied to cell line collection expression dataset labeled 6 HGSOC cell lines as CL. These have a high energy metabolism and are enriched in CD44+/CD24- mesenchymal stem-like cells expressing low levels of cell-cell adhesion molecules (claudins and E-Cadherin) and high levels of epithelial-to-mesenchymal transition (EMT) induction transcription factors (Zeb1, Snai2, Twist1 and Twist2). Accordingly, the centroid base algorithm applied to large retrospective collections of primary HGSOC samples reveals a tumor subgroup with transcriptional features consistent with the CL profile, and reaffirms EMT as the dominant biological pathway functioning in CL-HGSOC. HGSOC patients carrying CL profiles have a worse overall survival when compared to others, likely to be attributed to its undifferentiated/stem component. These observations highlight the lack of a molecular diagnostic in the management of HGSOC and suggest a potential prognostic utility of this molecular subtyping.
Collapse
Affiliation(s)
- Chiara Romani
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Davide Capoferri
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
| | - Marco Silvestri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
| | - Laura Zanotti
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Paola Todeschini
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Antonella Ravaggi
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology University of Brescia, 25123 Brescia, Italy
| | - Eliana Bignotti
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology University of Brescia, 25123 Brescia, Italy
| | - Enrico Sartori
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology University of Brescia, 25123 Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
- BDbiomed, Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
| |
Collapse
|
9
|
Romani C, Zizioli V, Silvestri M, Ardighieri L, Bugatti M, Corsini M, Todeschini P, Marchini S, D'Incalci M, Zanotti L, Ravaggi A, Facchetti F, Gambino A, Odicino F, Sartori E, Santin AD, Mitola S, Bignotti E, Calza S. Low Expression of Claudin-7 as Potential Predictor of Distant Metastases in High-Grade Serous Ovarian Carcinoma Patients. Front Oncol 2020; 10:1287. [PMID: 32850397 PMCID: PMC7417514 DOI: 10.3389/fonc.2020.01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) usually spreads directly into the peritoneal cavity following a transcoelomic dissemination route, although distant hematogenous metastasis exist and have been reported. However, no tumor markers can currently predict the risk of distant metastases in HGSOC. Claudins, belonging to tight-junction proteins, are dysregulated in HGSOC and functionally related to cancer progression. Here we analyzed claudin-3, -4, and -7 expression as potential markers of distant metastases. Using quantitative RT-PCR and immunohistochemistry we assessed the expression of claudins in primary HGSOC tissues, normal ovarian, and normal fallopian tube epithelia and correlated it with clinicopathological features, including the site of metastasis and the route of dissemination. Gene set enrichment analysis was performed on microarray-generated gene expression data to investigate key pathways in patients with distant metastases. We found the overall expression level of claudin-3, -4, and -7 mRNA decreased in HGSOC compared to normal tubal epithelium, currently considered the potential site of origin of many HGSOC. The reduced expression of claudin-7 is significantly associated with the development of distant metastases (p = 0.016), mainly by hematogenous route (p = 0.025). In patients with diminished expression of claudin-7, immunohistochemical staining revealed a heterogeneous pattern of membranous staining with discontinuous expression of claudin-7 along the cell border, indicative of a dischoesive architecture. The estimated reduction in the probability of distant disease is of 39% per unit increase in the level of claudin-7 (p = 0.03). Genes involved in epithelial to mesenchymal transition, hypoxia, and angiogenesis processes resulted strongly associated to hematogenous recurrence. Our data suggest a potential role of claudin-7 in discriminating distant metastatic events in HGSOC patients. The quantification of its expression levels could be a useful tool to identify patient deserving a personalized follow-up in terms of clinical and radiological assessment.
Collapse
Affiliation(s)
- Chiara Romani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Zizioli
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Silvestri
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Ardighieri
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Todeschini
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Laura Zanotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Antonella Ravaggi
- Division of Obstetrics and Gynecology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
| | - Fabio Facchetti
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Angela Gambino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
| | - Enrico Sartori
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
| | - Alessandro Davide Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Big & Open Data Innovation Laboratory, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Piontek A, Eichner M, Zwanziger D, Beier L, Protze J, Walther W, Theurer S, Schmid KW, Führer‐Sakel D, Piontek J, Krause G. Targeting claudin-overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin. Mol Oncol 2020; 14:261-276. [PMID: 31825142 PMCID: PMC6998413 DOI: 10.1002/1878-0261.12615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) can be used to eliminate carcinoma cells that overexpress on their cell surface CPE receptors - a subset of claudins (e.g., Cldn3 and Cldn4). However, CPE cannot target tumors expressing solely CPE-insensitive claudins (such as Cldn1 and Cldn5). To overcome this limitation, structure-guided modifications were used to generate CPE variants that can strongly bind to Cldn1, Cldn2 and/or Cldn5, while maintaining the ability to bind Cldn3 and Cldn4. This enabled (a) targeting of the most frequent endocrine malignancy, namely, Cldn1-overexpressing thyroid cancer, and (b) improved targeting of the most common cancer type worldwide, non-small-cell lung cancer (NSCLC), which is characterized by high expression of several claudins, including Cldn1 and Cldn5. Different CPE variants, including the novel mutant CPE-Mut3 (S231R/S313H), were applied on thyroid cancer (K1 cells) and NSCLC (PC-9 cells) models. In vitro, CPE-Mut3, but not CPEwt, showed Cldn1-dependent binding and cytotoxicity toward K1 cells. For PC-9 cells, CPE-Mut3 improved claudin-dependent cytotoxic targeting, when compared to CPEwt. In vivo, intratumoral injection of CPE-Mut3 in xenograft models bearing K1 or PC-9 tumors induced necrosis and reduced the growth of both tumor types. Thus, directed modification of CPE enables eradication of tumor entities that cannot be targeted by CPEwt, for instance, Cldn1-overexpressing thyroid cancer by using the novel CPE-Mut3.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Miriam Eichner
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Laura‐Sophie Beier
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Jonas Protze
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Wolfgang Walther
- Experimental and Clinical Research CenterCharitè and Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Sarah Theurer
- Institute of PathologyUniversity Hospital EssenGermany
| | | | - Dagmar Führer‐Sakel
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Jörg Piontek
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Gerd Krause
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|