1
|
Ouyang Q, Zhao Y, Xu K, He Y, Qin M. Hyaluronic Acid Receptor-Mediated Nanomedicines and Targeted Therapy. SMALL METHODS 2024; 8:e2400513. [PMID: 39039982 DOI: 10.1002/smtd.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Indexed: 07/24/2024]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide found in the extracellular matrix with broad applications in disease treatment. HA possesses good biocompatibility, biodegradability, and the ability to interact with various cell surface receptors. Its wide range of molecular weights and modifiable chemical groups make it an effective drug carrier for drug delivery. Additionally, the overexpression of specific receptors for HA on cell surfaces in many disease states enhances the accumulation of drugs at pathological sites through receptor binding. In this review, the modification of HA with drugs, major receptor proteins, and the latest advances in receptor-targeted nano drug delivery systems (DDS) for the treatment of tumors and inflammatory diseases are summarized. Furthermore, the functions of HA with varying molecular weights of HA in vivo and the selection of drug delivery methods for different diseases are discussed.
Collapse
Affiliation(s)
- Qiuhong Ouyang
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kunyao Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuechen He
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Qin
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Rashki Ghaleno L, Pennisi CP, Shahverdi A, Dardmeh F, Alipour H, Rezazadeh Valojerdi M. Exploring the Role of Hyaluronic Acid in Reproductive Biology and Beyond: Applications in Assisted Reproduction and Tissue Engineering. Adv Biol (Weinh) 2024; 8:e2300621. [PMID: 38580620 DOI: 10.1002/adbi.202300621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Hyaluronic acid (HA) plays a prominent role in various aspects of reproductive biology and assisted reproductive technologies (ART). This review describes the multifaceted influence of HA, ranging from primordial germ cell migration, ovarian follicle development, and ovulation in females to sperm structure, physiology, motility, and capacitation in males. In addition, HA also plays an important role in fertilization and promotes embryo implantation by mediating cellular adhesion and communication within the uterus. Against this physiological background, the review examines the current applications of HA in the context of ART. In addition, the article addresses the emerging field of reproductive tissue engineering, where HA-based hydrogels offer promising perspectives as they can support the development of mature oocytes and spermatogenesis in vitro. Overall, this review highlights the integral role of HA in the intricate mechanisms of reproductive biology and its growing importance for improving ART outcomes and the field of tissue engineering of the reproductive system.
Collapse
Affiliation(s)
- Leila Rashki Ghaleno
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, 19395-4644, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, 9260, Denmark
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, 9260, Denmark
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, 9260, Denmark
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| |
Collapse
|
3
|
Shabir A, Qayoom H, Haq BU, Abo Mansoor A, Abdelrahim A, Ahmad I, Almilabairy A, Ahmad F, Mir MA. Exploring HMMR as a therapeutic frontier in breast cancer treatment, its interaction with various cell cycle genes, and targeting its overexpression through specific inhibitors. Front Pharmacol 2024; 15:1361424. [PMID: 38576486 PMCID: PMC10991682 DOI: 10.3389/fphar.2024.1361424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Among women, breast carcinoma is one of the most complex cancers, with one of the highest death rates worldwide. There have been significant improvements in treatment methods, but its early detection still remains an issue to be resolved. This study explores the multifaceted function of hyaluronan-mediated motility receptor (HMMR) in breast cancer progression. HMMR's association with key cell cycle regulators (AURKA, TPX2, and CDK1) underscores its pivotal role in cancer initiation and advancement. HMMR's involvement in microtubule assembly and cellular interactions, both extracellularly and intracellularly, provides critical insights into its contribution to cancer cell processes. Elevated HMMR expression triggered by inflammatory signals correlates with unfavorable prognosis in breast cancer and various other malignancies. Therefore, recognizing HMMR as a promising therapeutic target, the study validates the overexpression of HMMR in breast cancer and various pan cancers and its correlation with certain proteins such as AURKA, TPX2, and CDK1 through online databases. Furthermore, the pathways associated with HMMR were explored using pathway enrichment analysis, such as Gene Ontology, offering a foundation for the development of effective strategies in breast cancer treatment. The study further highlights compounds capable of inhibiting certain pathways, which, in turn, would inhibit the upregulation of HMMR in breast cancer. The results were further validated via MD simulations in addition to molecular docking to explore protein-protein/ligand interaction. Consequently, these findings imply that HMMR could play a pivotal role as a crucial oncogenic regulator, highlighting its potential as a promising target for the therapeutic intervention of breast carcinoma.
Collapse
Affiliation(s)
- Aisha Shabir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Adel Abo Mansoor
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Adil Abdelrahim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Almilabairy
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences Almaarefa University, Diriya, Riyadh, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
4
|
Setting the stage for universal pharmacological targeting of the glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:61-88. [PMID: 37080681 DOI: 10.1016/bs.ctm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
All cells in the human body are covered by a complex meshwork of sugars as well as proteins and lipids to which these sugars are attached, collectively termed the glycocalyx. Over the past few decades, the glycocalyx has been implicated in a range of vital cellular processes in health and disease. Therefore, it has attracted considerable interest as a therapeutic target. Considering its omnipresence and its relevance for various areas of cell biology, the glycocalyx should be a versatile platform for therapeutic intervention, however, the full potential of the glycocalyx as therapeutic target is yet to unfold. This might be attributable to the fact that glycocalyx alterations are currently discussed mainly in the context of specific diseases. In this perspective review, we shift the attention away from a disease-centered view of the glycocalyx, focusing on changes in glycocalyx state. Furthermore, we survey important glycocalyx-targeted drugs currently available and finally discuss future steps. We hope that this approach will inspire a unified, holistic view of the glycocalyx in disease, helping to stimulate novel glycocalyx-targeted therapy strategies.
Collapse
|
5
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
6
|
Chen X, Du YCN. " RHAMM knockout" mice express a truncated RHAMM protein that promotes pancreatic cancer progression with dysfunctional p53. ANNALS OF PANCREATIC CANCER 2022; 5:7. [PMID: 36507054 PMCID: PMC9733914 DOI: 10.21037/apc-2022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Chen X, Lee SK, Song M, Zhang T, Han MS, Chen YT, Chen Z, Ma X, Tung CH, Du YCN. RHAMM B-mediated bifunctional nanotherapy targeting Bcl-xL and mitochondria for pancreatic neuroendocrine tumor treatment. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:277-287. [PMID: 34761107 PMCID: PMC8560716 DOI: 10.1016/j.omto.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
The incidence of pancreatic neuroendocrine tumor (PNET) has continued to rise. Due to their indolent feature, PNET patients often present with incurable, metastatic diseases. Novel therapies are urgently needed. We have previously shown that Receptor for Hyaluronic Acid-Mediated Motility isoform B (RHAMMB) and Bcl-xL are upregulated in PNETs and both of them promote PNET metastasis. Because RHAMM protein is undetectable in most adult tissues, we hypothesized that RHAMMB could be a gateway for nanomedicine delivery into PNETs. To test this, we developed a RHAMMB-targeting nanoparticle (NP). Inside this NP, we assembled small interfering RNA (siRNA) against Bcl-xL (siBcl-xL) and mitochondria-fusing peptide KLA. We demonstrated that RHAMMB-positive PNETs picked up the RHAMMB-targeting NPs. siBcl-xL or KLA alone killed only 30% of PNET cells. In contrast, a synergistic killing effect was achieved with the co-delivery of siBcl-xL and KLA peptide in vitro. Unexpectedly, siBcl-xL induced cell death before reducing Bcl-xL protein levels. The systemically injected RHAMMB-targeting NPs carrying siBcl-xL and KLA peptide significantly reduced tumor burden in mice bearing RHAMMB-positive PNETs. Together, these findings indicate that the RHAMMB-targeting nanotherapy serves as a promising drug delivery system for PNET and possibly other malignancies with upregulated RHAMMB. The combination of siBcl-xL and KLA peptide can be a therapy for PNET treatment.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Seung Koo Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Myung Shin Han
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
The Impact of Hyaluronic Acid on Tendon Physiology and Its Clinical Application in Tendinopathies. Cells 2021; 10:cells10113081. [PMID: 34831304 PMCID: PMC8625461 DOI: 10.3390/cells10113081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
The physical-chemical, structural, hydrodynamic, and biological properties of hyaluronic acid within tendons are still poorly investigated. Medical history and clinical applications of hyaluronic acid for tendinopathies are still debated. In general, the properties of hyaluronic acid depend on several factors including molecular weight. Several preclinical and clinical experiences show a good efficacy and safety profile of hyaluronic acid, despite the absence of consensus in the literature regarding the classification according to molecular weight. In in vitro and preclinical studies, hyaluronic acid has shown physical-chemical properties, such as biocompatibility, mucoadhesivity, hygroscopicity, and viscoelasticity, useful to contribute to tendon healing. Additionally, in clinical studies, hyaluronic acid has been used with promising results in different tendinopathies. In this narrative review, findings encourage the clinical application of HA in tendinopathies such as rotator cuff, epicondylitis, Achilles, and patellar tendinopathy.
Collapse
|
9
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
10
|
Lin A, Feng J, Chen X, Wang D, Wong M, Zhang G, Na J, Zhang T, Chen Z, Chen YT, Nancy Du YC. High levels of truncated RHAMM cooperate with dysfunctional p53 to accelerate the progression of pancreatic cancer. Cancer Lett 2021; 514:79-89. [PMID: 34044069 PMCID: PMC8235875 DOI: 10.1016/j.canlet.2021.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has the lowest survival rate out of all types of cancer. Pancreatic cancer patients are often diagnosed at advanced stages, hence an urgent need for a better therapeutic development of this devastating disease. Receptor for hyaluronan-mediated motility (RHAMM), not expressed in adult normal pancreas, has been suggested as a prognostic factor and a potential therapeutic target for pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET). In this study, we initially sought to determine whether genetic deletion of RHAMM would slow down pancreatic cancer progression using Rhamm-/- mice. However, we found that Rhamm-/- mice expressed a truncated HMMRΔexon8-16 protein at higher abundance levels than wild-type RHAMM. While HMMRΔexon8-16 did not enable malignant progression of pancreatic intraepithelial neoplasia in p48-Cre; LSL-KRASG12D mice, it accelerated the formation of invasive PDAC and shortened the survival of p48-Cre; LSL-KRASG12D mice with heterozygous p53 knockout. KrasG12D PDAC mice with homozygous p53 knockout mice died around 10 weeks, and the effect of HMMRΔexon8-16 was not apparent in these short lifespan mice. In addition, HMMRΔexon8-16 shortened the survival of PNET-bearing RIP-Tag mice, which had inactivated p53. In our analysis of TCGA dataset, pancreatic cancer patients with mutant TP53 or loss of one copy of TP53 had higher RHAMM expression, which, combined, predicted worse outcomes. Taken together, by collaborating with dysfunctional p53, high levels of HMMRΔexon8-16 , which lacks the centrosome targeting domain and degrons for interaction with the Anaphase-Promoting Complex (APC), accelerated pancreatic cancer progression.
Collapse
Affiliation(s)
- Anthony Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennifer Feng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan Wong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joseph Na
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Expression of the Receptor for Hyaluronic Acid-Mediated Motility (RHAMM) in Endometrial Cancer is Associated With Adverse Histologic Parameters and Tumor Progression. Appl Immunohistochem Mol Morphol 2021; 28:453-459. [PMID: 30920393 DOI: 10.1097/pai.0000000000000763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Endometrial cancer is one of the most common gynecologic malignancies worldwide. Only 2 agents have been approved by Food and Drug Administration for endometrial cancer since 1971. There is a need to identify molecular targets to treat advanced endometrial cancer. The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various types of cancer. Here, we aimed to determine the clinical significance of RHAMM expression in endometrial cancer. Two hundred twenty-five cases of endometrial cancer, including serous and endometrioid types, and 8 cases of normal endometrium were used for studying RHAMM protein levels. The Cancer Genome Atlas database was also queried for RHAMM mRNA expression in endometrial cancer. Increased expression of RHAMM protein was seen in endometrial cancer compared with no or weak expression in normal endometrium. RHAMM expression positively correlated with tumor grade. RHAMM expression was significantly increased in endometrial serous carcinomas, which are high-grade, aggressive types of endometrial cancer, compared with the relatively less aggressive endometrioid carcinomas. RHAMM expression also correlated with the presence of lymphovascular invasion. RHAMM mRNA expression correlated with decreased survival in The Cancer Genome Atlas cohort. Therefore, increased RHAMM expression in endometrial cancer is associated with high-grade tumors and is indicative of more aggressive behavior. These findings suggest RHAMM as a prognostic factor in endometrial cancer and as a potential therapeutic target in advanced endometrial cancer for future studies.
Collapse
|
12
|
Vaiman EE, Shnayder NA, Dyuzhakova AV, Nikitina EI, Borzykh OB, Nasyrova RF. Pharmacogenomics of hyaluronic acid. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract.Introduction: Hyaluronic acid (hyaluronan, HA) has become the most popular tool for improving the skin condition during aging, correcting wrinkles and other cosmetic defects. Objective: Analysis of the results of studies that reflect the pharmacogenomics of the synthesis, degradation, and reception of HA. Materials and methods: We searched for full-text publications in Russian and English in the E-Library, PubMed, Springer, Clinical keys, Google Scholar databases, using keywords and combined word searches (hyaluronic acid, hyaluronan, synthesis, degradation, reception, receptor, genetics), over the past decade. In addition, the review included earlier publications of historical interest. Despite our comprehensive searches of these commonly used databases and search terms, it cannot be excluded that some publications may have been missed. Results: The lecture examines: the role of ha in normal and aging human; genes involved in the synthesis (HAS1, HAS2, HAS3), degradation (HYAL1, HYAL2, HYAL3) and reception of ha (CD44, HARE, RHAMM); as well as the expression of their encoded proteins and enzymes in the skin. Conclusion: Expanding our knowledge of the pharmacogenomics of endogenous ha and increasing the exogenous HA drugs (used in anti-aging therapy and medical cosmetology) on the pharmaceutical market requires taking into account individual, including genetically determined, characteristics of the body of each individual patient to ensure an optimal balance of effectiveness/safety of exogenous HA from the point of view of personalized medicine
Collapse
|
13
|
SnapshotDx Quiz: June 2021. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Li M, Jin S, Cao Y, Xu J, Zhu S, Li Z. Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway. Cancer Cell Int 2021; 21:19. [PMID: 33407495 PMCID: PMC7789699 DOI: 10.1186/s12935-020-01711-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Non-small cell lung cancers (NSCLC) account for most cases of lung cancer. More effort is needed to research new drug and combination therapies for this disease. An anthraquinone derivative, emodin shows anticancer potency. We hypothesis that emodin suppresses lung cancer cells through hyaluronan (HA) synthase 2-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway mediated cell cycle regulation. Methods We tested the effect of emodin on viability, apoptosis, and HA secretion of 5 NSCLC cell lines. We used NSCLC cells A549 for two rounds of knockdown study: (1) knocking down either the synthases (HAS2 and HAS3) or the receptors (CD44 and RHAMM); (2) knocking down either HAS2 or HAS3. Then determined the effect of emodin on viability, HA secretion, cell cycle, and expression of cyclin proteins. Results Emodin suppressed viability and HA secretion of all 5 NSCLC cell lines except for HA secretion of H460. Emodin had a slight apoptosis induction effect on all cell lines and was not different among cell lines. The knockdown of either the synthases or the receptors blocked emodin effects on viability while the knockdown of HAS2 block emodin effects but not HAS3. Emodin increased cells in the G1/G0 phase, and decreased cells in the S and G2/M phase by down-regulating cyclin A and B and up-regulating cyclin C, D, and E. HAS2 knockdown blocked the effects of emodin on the cell cycle. Conclusions This study demonstrated that emodin regulates the cell cycle of NSCLC cells through the HAS2-HA-CD44/RHAMM interaction-dependent signaling pathway.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Shengbo Jin
- Traditional Therapy Center, Liaoning TCM Hospital, Liaoning, China
| | - Yang Cao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Shendong Zhu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Zheng Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China.
| |
Collapse
|
15
|
Pan DC, Krishnan V, Salinas AK, Kim J, Sun T, Ravid S, Peng K, Wu D, Nurunnabi M, Nelson JA, Niziolek Z, Guo J, Mitragotri S. Hyaluronic acid-doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioeng Transl Med 2021; 6:e10166. [PMID: 33532580 PMCID: PMC7823125 DOI: 10.1002/btm2.10166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer, common in both men and women, occurs when tumors form in the linings of the colon. Common treatments of colorectal cancer include surgery, chemotherapy, and radiation therapy; however, many colorectal cancer treatments often damage healthy tissues and cells, inducing severe side effects. Conventional chemotherapeutic agents such as doxorubicin (Dox) can be potentially used for the treatment of colorectal cancer; however, they suffer from limited targeting and lack of selectivity. Here, we report that doxorubicin complexed to hyaluronic acid (HA) (HA-Dox) exhibits an unusual behavior of high accumulation in the intestines for at least 24 hr when injected intravenously. Intravenous administrations of HA-Dox effectively preserved the mucosal epithelial intestinal integrity in a chemical induced colon cancer model in mice. Moreover, treatment with HA-Dox decreased the expression of intestinal apoptotic and inflammatory markers. The results suggest that HA-Dox could effectively inhibit the development of colorectal cancer in a safe manner, which potentially be used a promising therapeutic option.
Collapse
Affiliation(s)
- Daniel C. Pan
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Vinu Krishnan
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Alyssa K. Salinas
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Jayoung Kim
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Tao Sun
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Sagi Ravid
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Kevin Peng
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Debra Wu
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Md Nurunnabi
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Jeffery A. Nelson
- Faculty of Arts and Sciences, Division of SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Zachary Niziolek
- Faculty of Arts and Sciences, Division of SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Junling Guo
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Samir Mitragotri
- School of Engineering & Applied Sciences, Harvard UniversityWyss Institute of Biologically Inspired EngineeringCambridgeMassachusettsUSA
| |
Collapse
|
16
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
17
|
Chen W, Gao C, Liu Y, Wen Y, Hong X, Huang Z. Bioinformatics Analysis of Prognostic miRNA Signature and Potential Critical Genes in Colon Cancer. Front Genet 2020; 11:478. [PMID: 32582275 PMCID: PMC7296168 DOI: 10.3389/fgene.2020.00478] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
This study aims to lay a foundation for studying the regulation of microRNAs (miRNAs) in colon cancer by applying bioinformatics methods to identify miRNAs and their potential critical target genes associated with colon cancer and prognosis. Data of differentially expressed miRNAs (DEMs) and genes (DEGs) downloaded from two independent databases (TCGA and GEO) and analyzed by R software resulted in 472 DEMs and 565 DEGs in colon cancers, respectively. Next, we developed an 8-miRNA (hsa-mir-6854, hsa-mir-4437, hsa-mir-216a, hsa-mir-3677, hsa-mir-887, hsa-mir-4999, hsa-mir-34b, and hsa-mir-3189) prognostic signature for patients with colon cancer by Cox proportional hazards regression analysis. To predict the target genes of these miRNAs, we used TargetScan and miRDB. The intersection of DEGs with the target genes predicted for these eight miRNAs retrieved 112 consensus genes. GO and KEGG pathway enrichment analyses showed these 112 genes were mainly involved in protein binding, one-carbon metabolic process, nitrogen metabolism, proteoglycans in cancer, and chemokine signaling pathways. The protein-protein interaction network of the consensus genes, constructed using the STRING database and imported into Cytoscape, identified 14 critical genes in the pathogenesis of colon cancer (CEP55, DTL, FANCI, HMMR, KIF15, MCM6, MKI67, NCAPG2, NEK2, RACGAP1, RRM2, TOP2A, UBE2C, and ZWILCH). Finally, we verified the critical genes by weighted gene co-expression network analysis (WGCNA) of the GEO data, and further mined the core genes involved in colon cancer. In summary, this study identified an 8-miRNA model that can effectively predict the prognosis of colon cancer patients and 14 critical genes with vital roles in colon cancer carcinogenesis. Our findings contribute new ideas for elucidating the molecular mechanisms of colon cancer carcinogenesis and provide new therapeutic targets and biomarkers for future treatment and prognosis.
Collapse
Affiliation(s)
- Weigang Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yong Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ying Wen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xiaoling Hong
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020; 62:20-30. [DOI: 10.1016/j.semcancer.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
19
|
Mitra M, Lee HN, Coller HA. Splicing Busts a Move: Isoform Switching Regulates Migration. Trends Cell Biol 2020; 30:74-85. [PMID: 31810769 PMCID: PMC8219349 DOI: 10.1016/j.tcb.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Cell migration is essential for normal development, neural patterning, pathogen eradication, and cancer metastasis. Pre-mRNA processing events such as alternative splicing and alternative polyadenylation result in greater transcript and protein diversity as well as function and activity. A critical role for alternative pre-mRNA processing in cell migration has emerged in axon outgrowth during neuronal development, immune cell migration, and cancer metastasis. These findings suggest that migratory signals result in expression changes of post-translational modifications of splicing or polyadenylation factors, leading to splicing events that generate promigratory isoforms. We summarize this recent progress and suggest emerging technologies that may facilitate a deeper understanding of the role of alternative splicing and polyadenylation in cell migration.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ha Neul Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Pineau C, Hikmet F, Zhang C, Oksvold P, Chen S, Fagerberg L, Uhlén M, Lindskog C. Cell Type-Specific Expression of Testis Elevated Genes Based on Transcriptomics and Antibody-Based Proteomics. J Proteome Res 2019; 18:4215-4230. [PMID: 31429579 DOI: 10.1021/acs.jproteome.9b00351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most complex organs in the human body is the testis, where spermatogenesis takes place. This physiological process involves thousands of genes and proteins that are activated and repressed, making testis the organ with the highest number of tissue-specific genes. However, the function of a large proportion of the corresponding proteins remains unknown and testis harbors many missing proteins (MPs), defined as products of protein-coding genes that lack experimental mass spectrometry evidence. Here, an integrated omics approach was used for exploring the cell type-specific protein expression of genes with an elevated expression in testis. By combining genome-wide transcriptomics analysis with immunohistochemistry, more than 500 proteins with distinct testicular protein expression patterns were identified, and these were selected for in-depth characterization of their in situ expression in eight different testicular cell types. The cell type-specific protein expression patterns allowed us to identify six distinct clusters of expression at different stages of spermatogenesis. The analysis highlighted numerous poorly characterized proteins in each of these clusters whose expression overlapped with that of known proteins involved in spermatogenesis, including 85 proteins with an unknown function and 60 proteins that previously have been classified as MPs. Furthermore, we were able to characterize the in situ distribution of several proteins that previously lacked spatial information and cell type-specific expression within the testis. The testis elevated expression levels both at the RNA and protein levels suggest that these proteins are related to testis-specific functions. In summary, the study demonstrates the power of combining genome-wide transcriptomics analysis with antibody-based protein profiling to explore the cell type-specific expression of both well-known proteins and MPs. The analyzed proteins constitute important targets for further testis-specific research in male reproductive disorders.
Collapse
Affiliation(s)
- Charles Pineau
- Univ Rennes , Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085 , 35042 Rennes Cedex, France.,Protim , Univ Rennes , 35042 Rennes Cedex, France
| | - Feria Hikmet
- Uppsala University , Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , 75185 Uppsala , Sweden
| | - Cheng Zhang
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Per Oksvold
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Shuqi Chen
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Linn Fagerberg
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Mathias Uhlén
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Cecilia Lindskog
- Uppsala University , Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , 75185 Uppsala , Sweden
| |
Collapse
|
21
|
Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol 2019; 62:9-19. [PMID: 31319162 DOI: 10.1016/j.semcancer.2019.07.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) is a complex network of macromolecules such as proteoglycans (PGs), glycosaminoglycans (GAGs) and fibrous proteins present within all tissues and organs. The main role of ECM is not only to provide an essential mechanical scaffold for the cells but also to mediate crucial biochemical cues that are required for tissue homeostasis. Dysregulations in ECM deposition alter cell microenvironment, triggering the onset or the rapid progression of several diseases, including cancer. Hyaluronan (HA) is a ubiquitous component of ECM considered as one of the main players of cancer initiation and progression. This review discusses how HA participate in and regulate several aspects of tumorigenesis, with particular attention to the hallmarks of cancer proposed by Hanahan and Weinberg such as sustaining of the proliferative signaling, evasion of apoptosis, angiogenesis, activation of invasion and metastases, reprogramming of energy metabolism and evasion of immune response.
Collapse
|
22
|
Buicko JL, Finnerty BM, Zhang T, Kim BJ, Fahey TJ, Nancy Du YC. Insights into the biology and treatment strategies of pancreatic neuroendocrine tumors. ACTA ACUST UNITED AC 2019; 2. [PMID: 31535089 DOI: 10.21037/apc.2019.06.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are the second most common primary pancreatic neoplasms after pancreatic ductal adenocarcinoma. PNETs present with widely various clinical manifestation and unfavorable survival rate. The recent advances in next generation sequencing have significantly increased our understanding of the molecular landscape of PNETs and help guide the development of targeted therapies. This review intends to outline a holistic picture of the tumors by discussing current understanding of clinical presentations, up-to-date treatment strategies, novel mouse models, and molecular biology of PNETs. Furthermore, we will provide insight into the future development of more effective targeted therapies that are necessary to manage PNETs.
Collapse
Affiliation(s)
- Jessica L Buicko
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Tiantian Zhang
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bu Jung Kim
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
23
|
Choi S, Wang D, Chen X, Tang LH, Verma A, Chen Z, Kim BJ, Selesner L, Robzyk K, Zhang G, Pang S, Han T, Chan CS, Fahey TJ, Elemento O, Du YCN. Function and clinical relevance of RHAMM isoforms in pancreatic tumor progression. Mol Cancer 2019; 18:92. [PMID: 31072393 PMCID: PMC6506944 DOI: 10.1186/s12943-019-1018-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/10/2019] [Indexed: 11/10/2022] Open
Abstract
The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various cancers. We previously screened genes upregulated in human hepatocellular carcinomas for their metastatic function in a mouse model of pancreatic neuroendocrine tumor (PNET) and identified that human RHAMMB promoted liver metastasis. It was unknown whether RHAMMB is upregulated in pancreatic cancer or contributes to its progression. In this study, we found that RHAMM protein was frequently upregulated in human PNETs. We investigated alternative splicing isoforms, RHAMMA and RHAMMB, by RNA-Seq analysis of primary PNETs and liver metastases. RHAMMB, but not RHAMMA, was significantly upregulated in liver metastases. RHAMMB was crucial for in vivo metastatic capacity of mouse and human PNETs. RHAMMA, carrying an extra 15-amino acid-stretch, did not promote metastasis in spontaneous and experimental metastasis mouse models. Moreover, RHAMMB was substantially higher than RHAMMA in pancreatic ductal adenocarcinoma (PDAC). RHAMMB, but not RHAMMA, correlated with both higher EGFR expression and poorer survival of PDAC patients. Knockdown of EGFR abolished RHAMMB-driven PNET metastasis. Altogether, our findings suggest a clinically relevant function of RHAMMB, but not RHAMMA, in promoting PNET metastasis in part through EGFR signaling. RHAMMB can thus serve as a prognostic factor for pancreatic cancer.
Collapse
Affiliation(s)
- Soyoung Choi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA
| | - Laura H Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Akanksha Verma
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Bu Jung Kim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA
| | - Leigh Selesner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA
| | - Kenneth Robzyk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA
| | - Sharon Pang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA
| | - Teng Han
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
| | - Chang S Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Box 69, New York, NY, 10065, USA. .,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Cho HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00448-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Abu-Halima M, Ayesh BM, Hart M, Alles J, Fischer U, Hammadeh M, Keller A, Huleihel M, Meese E. Differential expression of miR-23a/b-3p and its target genes in male patients with subfertility. Fertil Steril 2019; 112:323-335.e2. [PMID: 31056312 DOI: 10.1016/j.fertnstert.2019.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To elucidate the potential regulatory function of miR-23a/b-3p on spermatogenesis-specific genes. DESIGN Reverse transcription quantitative polymerase chain reaction (RT-qPCR) validation, Northern blot, dual luciferase assay, and Western blot confirmation. SETTING University research and clinical institutes. PATIENT(S) A total of 115 men presenting at an infertility clinic. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Significant higher abundance levels of miR-23a/b-3p and lower abundance levels of PFKFB4, HMMR, SPATA6, and TEX15 in oligoasthenozoospermic men compared with those in normozoospermic men. RESULT(S) In oligoasthenozoospermic men, the abundance levels of miR-23a/b-3p were significantly higher when compared with controls as determined by RT-qPCR. After in silico prediction of potential targets of miR-23a/b-3p, PFKFB4, HMMR, SPATA6, and TEX15 have been identified as direct targets by dual luciferase assays. Mutations in the miR-23a/b-3p binding site within the 3'UTRs resulted in abrogated responsiveness to miR-23a/b-3p. PFKFB4, HMMR, SPATA6, and TEX15 mRNA and HMMR and SPATA6 protein levels were significantly lower in oligoasthenozoospermic men compared with in normozoospermic men. Correlation analysis showed that the sperm count, motility, and morphology were negatively correlated with miR-23a/b-3p and positively correlated with PFKFB4, HMMR, SPATA6, and TEX15 abundance levels (lower ΔCt, the higher abundance levels). CONCLUSION(S) This study establishes a link between up-regulation of miR-23a/b-3p and the coincident down-regulation of four expressed genes in the sperm of men with oligoasthenozoospermia, compared with men with normozoospermia. This study provides a novel insight into some of the mechanisms leading to male subfertility, offering a possible therapeutic target for treatment, or even for male contraception.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany.
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Martin Hart
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Julia Alles
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Mohamad Hammadeh
- Department of Obstetrics and Gynecology, IVF and Andrology Laboratory, Saarland University, Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Mahmoud Huleihel
- Shraga Segal Department of Microbiology, Immunology, and Genetics and the Center of Advanced Research and Education in Reproduction, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
26
|
Li H, Shukla S, Frappart L, Herrlich P, Ploubidou A. cd44 deletion suppresses atypia in the precancerous mouse testis. Mol Carcinog 2018; 58:621-626. [PMID: 30582228 DOI: 10.1002/mc.22961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 11/06/2022]
Abstract
Loss-of-function of RHAMM causes hypofertility and testicular atrophy in young mice, followed by germ cell neoplasia in situ (GCNIS) of the testis, cellular atypia, and development of the testicular germ cell tumor (TGCT) seminoma. These pathologies reflect the risk factors and phenotypes that precede seminoma development in humans and-given the high prevalence of RHAMM downregulation in human seminoma-link RHAMM dysfunction with the aetiology of male hypofertility and GCNIS-related TGCTs. The initiating event underlying these pathologies, in RHAMM mutant testis, is premature displacement of undifferentiated progenitors from the basal compartment. We hypothesized that cd44 (both cancer initiating cell- and oncogenic progression marker) will drive GCNIS development, induced by RHAMM-loss-of-function in the mouse. We report that cd44 is expressed in a specific subset of GCNIS testes. Its genetic deletion has no effect on GCNIS onset, but it ameliorates oncogenic progression. We conclude that cd44 expression, combined with RHAMM dysfunction, promotes oncogenic progression in the testis.
Collapse
Affiliation(s)
- Huaibiao Li
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Shalmali Shukla
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Lucien Frappart
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Peter Herrlich
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | | |
Collapse
|