1
|
Luo Q, Zhang S, Yang Q, Deng Y, Yi H, Li X. Causal factors for osteoarthritis risk revealed by mendelian randomization analysis. Aging Clin Exp Res 2024; 36:176. [PMID: 39172202 PMCID: PMC11341639 DOI: 10.1007/s40520-024-02812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Osteoarthritis (OA), a prevalent chronic disease among the elderly, presents a complex pathogenesis and currently lacks effective treatment. Traditional observational studies are time-consuming, labor-intensive, susceptible to confounding factors, and cannot establish causal relationships. Mendelian randomization (MR) analysis, leveraging genetic variation to assess causal associations between exposures and outcomes, offers a cost-effective and efficient alternative. Over the past decade, large-scale genome-wide association studies have identified numerous genetic variants linked to OA risk factors, facilitating MR study design. In this review, we systematically identified 52 MR studies meeting specific criteria and evaluated their quality, exploring the impact of lifestyle, nutrition, comorbidities, circulating metabolites, plasma proteins, and other health factors on OA risk. We discuss the results and potential mechanisms of MR findings, addressing conflicting evidence based on existing literature and our prior research. With the ongoing expansion of genome-wide association data, we anticipate MR's role in future OA studies to broaden, particularly in drug development research using targeted MR approaches. We thus aim for this paper to offer valuable insights for researchers and clinicians in related fields.
Collapse
Affiliation(s)
- Qingfeng Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shiyong Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qiyuan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuyi Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hengjing Yi
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xingsheng Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Chen YH, Hung YP, Chen CY, Chen YT, Tsai TC, Yang JJ, Wu CC. ELIXCYTE ®, an Allogenic Adipose-Derived Stem Cell Product, Mitigates Osteoarthritis by Reducing Inflammation and Preventing Cartilage Degradation In Vitro. Curr Issues Mol Biol 2024; 46:8395-8406. [PMID: 39194712 DOI: 10.3390/cimb46080495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) comprise a promising therapy for osteoarthritis (OA). The therapeutic potential of ELIXCYTE®, an allogeneic human ADSC (hADSC) product, was demonstrated in a phase I/II OA clinical trial. However, the exact mechanism underlying such effects is not clear. Moreover, studies suggest that interleukin-11 (IL-11) has anti-inflammatory, tissue-regenerative, and immune-regulatory functions. Our aim was to unravel the mechanism associated with the therapeutic effects of ELIXCYTE® on OA and its relationship with IL-11. We cocultured ELIXCYTE® with normal human articular chondrocytes (NHACs) in synovial fluid obtained from individuals with OA (OA-SF) to investigate its effect on chondrocyte matrix synthesis and degradation and inflammation by assessing gene expression and cytokine levels. NHACs exposed to OA-SF exhibited increased MMP13 expression. However, coculturing ELIXCYTE® with chondrocytes in OA-SF reduced MMP13 expression in chondrocytes and downregulated PTGS2 and FGF2 expression in ELIXCYTE®. ELIXCYTE® treatment elevated anti-inflammatory cytokine (IL-1RA, IL-10, and IL-13) levels, and the reduction in MMP13 was positively correlated with IL-11 concentrations in OA-SF. These findings indicate that IL-11 in OA-SF might serve as a predictive biomarker for the ELIXCYTE® treatment response in OA, emphasizing the therapeutic potential of ELIXCYTE® to mitigate OA progression and provide insights into its immunomodulatory effects.
Collapse
Affiliation(s)
- Yu-Hsiu Chen
- Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Yi-Pei Hung
- UnicoCell Biomed Co., Ltd., Taipei 11494, Taiwan
| | | | - Yi-Ting Chen
- UnicoCell Biomed Co., Ltd., Taipei 11494, Taiwan
| | | | - Jui-Jung Yang
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
3
|
Chen L, Su Y, Li H, Yang Z, Li JJ, Xing D. The role of dietary preferences in osteoarthritis: a Mendelian randomization study using genome-wide association analysis data from the UK Biobank. Front Nutr 2024; 11:1373850. [PMID: 38742020 PMCID: PMC11089188 DOI: 10.3389/fnut.2024.1373850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background To understand the impact of individual preferences for specific dietary items on OA, and to help inform the development of effective and targeted OA prevention and management strategies, we performed a Mendelian randomization analysis between dietary preferences and osteoarthritis. Methods This study utilized genetic data from the UK Biobank to investigate the association between OA and 21 different common dietary items. Instrumental variables representing European populations were carefully selected based on their genetic significance and linkage disequilibrium. In cases where a dietary item had few relevant genetic markers, a more lenient selection threshold was applied. To prevent bias, the analysis excluded single nucleotide polymorphisms (SNPs) associated with factors such as body mass index (BMI) and cholesterol. Using inverse-variance weighting (IVW) and Mendelian randomization, significant associations were detected between certain dietary items and OA. Results Using Mendelian randomization to examine the relationship between 21 different dietary items and OA, significant associations were found for coffee, peas, watercress, and cheese, where the first two had a promoting effect and the last two an inhibiting effect on OA. Due to heterogeneity in the test results for cheese, a random IVW representation was used. The results of sensitivity analysis showed no significant heterogeneity or horizontal pleiotropy in the selected SNPS, demonstrating the reliability of Mendelian randomization analysis. Conclusion This study identified coffee, peas, watercress, and cheese as food items that may have significant dietary effects on osteoarthritis. This information may be useful to consider in the development of OA management strategies.
Collapse
Affiliation(s)
- Long Chen
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yiqi Su
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Zhen Yang
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Dan Xing
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| |
Collapse
|
4
|
Han Y, Gao H, Gan X, Liu J, Bao C, He C. Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne) 2024; 14:1290130. [PMID: 38352248 PMCID: PMC10862480 DOI: 10.3389/fendo.2023.1290130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Bone metabolism is the basis for maintaining the normal physiological state of bone, and imbalance of bone metabolism can lead to a series of metabolic bone diseases. As a member of the IL-6 family, IL-11 acts primarily through the classical signaling pathway IL-11/Receptors, IL-11 (IL-11R)/Glycoprotein 130 (gp130). The regulatory role of IL-11 in bone metabolism has been found earlier, but mainly focuses on the effects on osteogenesis and osteoclasis. In recent years, more studies have focused on IL-11's roles and related mechanisms in different bone metabolism activities. IL-11 regulates osteoblasts, osteoclasts, BM stromal cells, adipose tissue-derived mesenchymal stem cells, and chondrocytes. It's involved in bone homeostasis, including osteogenesis, osteolysis, bone marrow (BM) hematopoiesis, BM adipogenesis, and bone metastasis. This review exams IL-11's role in pathology and bone tissue, the cytokines and pathways that regulate IL-11 expression, and the feedback regulations of these pathways.
Collapse
Affiliation(s)
| | | | - Xinling Gan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Tahermanesh K, Hakimpour S, Govahi A, Rokhgireh S, Mehdizadeh M, Minaeian S, Barati M, Chaichian S, Kashi AM, Nassiri S, Eslahi N, Ajdary M, Ahmadi M. Evaluation of expression of biomarkers of PLAGL1 (ZAC1), microRNA, and their non-coding RNAs in patients with endometriosis. J Gynecol Obstet Hum Reprod 2023; 52:102568. [PMID: 36868502 DOI: 10.1016/j.jogoh.2023.102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Since the PLAGL1 (ZAC1) gene is expressed in the human endometrium. It may be involved in the etiology of endometrial disorders by its abnormal regulation and expression. This study aimed to investigate the Zac1 gene and related microRNA and LncRNA and its alterations in patients with endometriosis. Blood plasma, ectopic (EC) and eutopic (EU) endometrial samples were gathered from 30 patients with endometriosis and 30 healthy fertile women, and the Q-PCR technique was used to determine the expression level of Zac1 mRNA and microRNAs (miR-1271-5p, hsa-miR-490-3pin) and LncRNAs (TONSL-AS1 TONSL, KCNQ1OT1 KCNQ1). According to the results, the Zac1 gene and KCNQ1OT1 KCNQ1, TONSL-AS1 TONSL LncRNA expression were significantly decreased in the endometriosis group versus the control group (P < 0.05). MiR-1271-5p and hsa-miR-490-3pin microRNA expression were significantly raised in the endometriosis group as opposed to the control group (P < 0.05). In summary, this research for the first time revealed that identifying Zac1 expression provides us with new indicators for evaluating endometriosis.
Collapse
Affiliation(s)
- Kobra Tahermanesh
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sahar Hakimpour
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samaneh Rokhgireh
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Setare Nassiri
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Eslahi
- Air Pollution Research Center, Iran University of Medical Science, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Ahmadi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
6
|
Direct Reprogramming of Mouse Subchondral Bone Osteoblasts into Chondrocyte-like Cells. Biomedicines 2022; 10:biomedicines10102582. [PMID: 36289842 PMCID: PMC9599480 DOI: 10.3390/biomedicines10102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of full-thickness articular cartilage defects with exposure of subchondral bone often seen in osteoarthritic conditions has long been a great challenge, especially with a focus on the feasibility of in situ cartilage regeneration through minimally invasive procedures. Osteoblasts that situate in the subchondral bone plate may be considered a potentially vital endogenous source of cells for cartilage resurfacing through direct reprogramming into chondrocytes. Microarray-based gene expression profiles were generated to compare tissue-specific transcripts between subchondral bone and cartilage of mice and to assess age-dependent differences of chondrocytes as well. On osteoblast cell lines established from mouse proximal tibial subchondral bone, sequential screening by co-transduction of transcription factor (TF) genes that distinguish chondrocytes from osteoblasts reveals a shortlist of potential reprogramming factors exhibiting combined effects in inducing chondrogenesis of subchondral bone osteoblasts. A further combinatorial approach unexpectedly identified two 3-TF combinations containing Sox9 and Sox5 that exhibit differences in reprogramming propensity with the third TF c-Myc or Plagl1, which appeared to direct the converted chondrocytes toward either a superficial or a deeper zone phenotype. Thus, our approach demonstrates the possibility of converting osteoblasts into two major chondrocyte subpopulations with two combinations of three genes (Sox9, Sox5, and c-Myc or Plagl1). The findings may have important implications for developing novel in situ regeneration strategies for the reconstruction of full-thickness cartilage defects.
Collapse
|
7
|
Kawata M, Teramura T, Ordoukhanian P, Head SR, Natarajan P, Sundaresan A, Olmer M, Asahara H, Lotz MK. Krüppel-like factor-4 and Krüppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Ann Rheum Dis 2022; 81:annrheumdis-2021-221867. [PMID: 35534137 PMCID: PMC9643672 DOI: 10.1136/annrheumdis-2021-221867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Analysing expression patterns of Krüppel-like factor (KLF) transcription factors in normal and osteoarthritis (OA) human cartilage, and determining functions and mechanisms of KLF4 and KLF2 in joint homoeostasis and OA pathogenesis. METHODS Experimental approaches included human joint tissues cells, transgenic mice and mouse OA model with viral KLF4 gene delivery to demonstrate therapeutic benefit in structure and pain improvement. Mechanistic studies applied global gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq). RESULTS Several KLF genes were significantly decreased in OA cartilage. Among them, KLF4 and KLF2 were strong inducers of cartilage collagen genes and Proteoglycan-4. Cartilage-specific deletion of Klf2 in mature mice aggravated severity of experimental OA. Transduction of human chondrocytes with Adenovirus (Ad) expressing KLF4 or KLF2 enhanced expression of major cartilage extracellular matrix (ECM) genes and SRY-box transcription factor-9, and suppressed mediators of inflammation and ECM-degrading enzymes. Ad-KLF4 and Ad-KLF2 enhanced similar protective functions in meniscus cells and synoviocytes, and promoted chondrocytic differentiation of human mesenchymal stem cells. Viral KLF4 delivery into mouse knees reduced severity of OA-associated changes in cartilage, meniscus and synovium, and improved pain behaviours. ChIP-seq analysis suggested that KLF4 directly bound cartilage signature genes. Ras-related protein-1 signalling was the most enriched pathway in KLF4-transduced cells, and its signalling axis was involved in upregulating cartilage ECM genes by KLF4 and KLF2. CONCLUSIONS KLF4 and KLF2 may be central transcription factors that increase protective and regenerative functions in joint tissue cells, suggesting that KLF gene transfer or molecules upregulating KLFs are therapeutic candidates for OA.
Collapse
Affiliation(s)
- Manabu Kawata
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Philip Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Steven R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Aishwarya Sundaresan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
8
|
Monibi FA, Pannellini T, Croen B, Otero M, Warren R, Rodeo SA. Targeted transcriptomic analyses of RNA isolated from formalin-fixed and paraffin-embedded human menisci. J Orthop Res 2022; 40:1104-1112. [PMID: 34370349 PMCID: PMC8825887 DOI: 10.1002/jor.25153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) biospecimens are a valuable and widely-available resource for diagnostic and research applications. With biobanks of tissue samples available in many institutions, FFPE tissues could prove to be a valuable resource for translational orthopaedic research. The purpose of this study was to characterize the molecular profiles and degree of histologic degeneration on archival fragments of FFPE human menisci obtained during arthroscopic partial meniscectomy. We used FFPE menisci for multiplexed gene expression analysis using the NanoString nCounter® platform, and for histological assessment using a quantitative scoring system. In total, 17 archival specimens were utilized for integrated histologic and molecular analyses. The median patient age was 22 years (range: 14-62). We found that the genes with the highest normalized counts were those typically expressed in meniscal fibrocartilage. Gene expression differences were identified in patient cohorts based on age (≤40 years), including genes associated with the extracellular matrix and tissue repair. The majority of samples showed mild to moderate histologic degeneration. Based on these data, we conclude that FFPE human menisci can be effectively utilized for molecular evaluation following a storage time as long as 11 years. Statement of Clinical Significance: The integration of histological and transcriptomic analyses described in this study will be useful for future studies investigating the basis for biological classification of meniscus specimens in patients. Further exploration into the genes and pathways uncovered by this study may suggest targets for biomarker discovery and identify patients at greater risk for osteoarthritis once the meniscus is torn.
Collapse
Affiliation(s)
| | | | - Brett Croen
- Hospital for Special Surgery, NY, NY,Drexel University College of Medicine, Philadelphia, PA
| | | | | | | |
Collapse
|
9
|
Bolia IK, Mertz K, Faye E, Sheppard J, Telang S, Bogdanov J, Hasan LK, Haratian A, Evseenko D, Weber AE, Petrigliano FA. Cross-Communication Between Knee Osteoarthritis and Fibrosis: Molecular Pathways and Key Molecules. Open Access J Sports Med 2022; 13:1-15. [PMID: 35261547 PMCID: PMC8898188 DOI: 10.2147/oajsm.s321139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Knee fibrosis is characterized by the presence of excessive connective tissue due to dysregulated fibroblast activation following local or systemic tissue damage. Knee fibrosis constitutes a major clinical problem in orthopaedics due to the severe limitation in the knee range of motion that leads to compromised function and patient disability. Knee osteoarthritis is an extremely common orthopedic condition that is associated with patient disability and major costs to the health-care systems worldwide. Although knee fibrosis and osteoarthritis (OA) have traditionally been perceived as two separate pathologic entities, recent research has shown common ground between the pathophysiologic processes that lead to the development of these two conditions. The purpose of this review was to identify the pathophysiologic pathways as well as key molecules that are implicated in the development of both knee OA and knee fibrosis in order to understand the relationship between the two diagnoses and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Ioanna K Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA,Correspondence: Ioanna K Bolia, 1520 San Pablo Street Suite 2000, Los Angeles, CA, 90033, USA, Tel +1 9703432813, Fax +1 818-658-5925, Email
| | - Kevin Mertz
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Ethan Faye
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Justin Sheppard
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Sagar Telang
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Jacob Bogdanov
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Laith K Hasan
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Aryan Haratian
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Denis Evseenko
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Alexander E Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Frank A Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
10
|
Li G, Cheng T, Yu X. The Impact of Trace Elements on Osteoarthritis. Front Med (Lausanne) 2022; 8:771297. [PMID: 35004740 PMCID: PMC8732765 DOI: 10.3389/fmed.2021.771297] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation, synovial inflammation, subchondral sclerosis and osteophyte formation. It has a multifactorial etiology with potential contributions from heredity, endocrine function, abnormal mechanical load and nutrition. Of particular considerations are trace element status. Several trace elements, such as boron and magnesium are essential for normal development of the bone and joint in human. While cadmium correlates with the severity of OA. The present review focuses on the roles of trace elements (boron, cadmium, copper, iron, magnesium, manganese, selenium, zinc) in OA and explores the mechanisms by which they act.
Collapse
Affiliation(s)
- Guoyong Li
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Zhang Y, Fan J, Chen L, Xiong Y, Wu T, Shen S, Wang X, Meng X, Lu Y, Lei X. Causal Association of Coffee Consumption and Total, Knee, Hip and Self-Reported Osteoarthritis: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2021; 12:768529. [PMID: 34858340 PMCID: PMC8631393 DOI: 10.3389/fendo.2021.768529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The causal association between coffee consumption and the risk of OA is limited. This study was conducted to identify the potential causal effects of coffee consumption on total, knee, hip, and self-reported OA. METHODS Genome-wide association studies (GWAS) of OA were derived from the UK Biobank, comprising 50,508 participants of European ancestry (10,083 with cases and 40,425 controls), and genetic data for specific diagnosed knee OA (4462 cases and 17,885 controls), hip OA (12,625 cases and 50,898 controls), and self-reported OA (12,658 cases and 50,898 controls). Primary and secondary genetic instruments (11 SNPs and 8 SNPs) were selected as instrumental variants from GWAS among 375,833 and 91,462 participants. Two-sample Mendelian randomization (MR) analyses were performed to test the effects of the selected single nucleotide polymorphisms (SNPs) and the OA risk. The causal effects were primarily estimated using weighted median and inverse-variance weighted method with several sensitivity analyses. RESULTS The MR analyses suggested that genetically predicted 1% increase of coffee consumption was associated with an increased risk of overall OA (OR:1.009, 95% CI:1.003-1.016), knee OA (OR:1.023, 95% CI:1.009-1.038), self-reported OA (OR:1.007, 95% CI:1.003-1.011), but not hip OA (OR: 1.012, 95%CI:0.999-1.024) using primary genetic instruments. Similar results were found when using secondary genetic instruments that genetically predicted coffee consumption (cups/day). Additionally, the sensitivity analyses for leave-one-out methods supported a robust association between exposure traits and OA. CONCLUSION Our findings indicate that genetically predicted coffee consumption exerts a causal effect on total, knee, and self-reported OA risk, but not at the hip. Further research is required to unravel the role of coffee consumption in OA prevention.
Collapse
Affiliation(s)
- Yangchang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Jun Fan
- Financial Department Chongqing Medical University, Chongqing, China
| | - Li Chen
- School of Public Health & Institute of Child and Adolescent Health, Peking University, Beijing, China
| | - Yang Xiong
- The West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Shisi Shen
- The First School of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Xu Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xuchen Meng
- The First School of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Yanjun Lu
- The First School of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Xun Lei
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- *Correspondence: Xun Lei,
| |
Collapse
|
12
|
Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis. Sci Rep 2020; 10:11837. [PMID: 32678267 PMCID: PMC7367306 DOI: 10.1038/s41598-020-68835-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
The zinc-finger protein which regulates apoptosis and cell cycle arrest 1 (Zac1), encoded by Plagl1 gene, is a seven-zinc-finger containing transcription factor belonging to the imprinted genome and is expressed in diverse types of embryonic and adult human tissues. Zac1 is postulated to be a tumor suppressor by inducing cell cycle arrest and apoptosis through interacting and modulating transcriptional activity of p53 as it was named. Correspondingly, the reduction or loss of Zac1 expression is associated with the incidence and progression of several human tumors, including cervical cancer, breast cancer, ovarian cancer, pituitary tumors, and basal cell carcinoma, implying the rationality of utilizing Zac1 expression as novel a biomarker for the evaluation of cervical cancer prognosis. However, to date, it has not been elucidated whether Zac1 expression is related to the prognosis of patients in clinical cervical cancer tumor samples. To address the questions outlined above, we report here a comprehensive investigation of Zac1 expression in biopsies of clinical cervical carcinoma. By analyzing Zac1 expression in various gene expression profiling of cervical cancer databases, we show the association between high Zac1 expression and poor prognosis of cervical cancer. Functional enrichment analysis showed that high Zac1 expression was associated with epithelial-mesenchymal transition (EMT), which was further observed in clinical characteristics and metastatic carcinoma samples using immunohistochemical staining. Correspondingly, hypomethylation of CpG island on Zac1 promoter was observed in samples with high Zac1 expression in cervical carcinoma. Finally, overexpression of Zac1 in a variety of cervical cancer cell lines increase their mesenchymal biomarker expression and migration, strengthening the correlation between cervical cancers with high Zac1 expression and metastasis in clinical. In summary, this research firstly revealed that identifying Zac1 expression or the methylation status of CpG site on Zac1 promoter may provide us with novel indicators for the evaluation of cervical cancer metastasis.
Collapse
|
13
|
Guillán-Fresco M, Franco-Trepat E, Alonso-Pérez A, Jorge-Mora A, López-Fagúndez M, Pazos-Pérez A, Gualillo O, Gómez R. Caffeine, a Risk Factor for Osteoarthritis and Longitudinal Bone Growth Inhibition. J Clin Med 2020; 9:E1163. [PMID: 32325753 PMCID: PMC7230935 DOI: 10.3390/jcm9041163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA), the most common chronic rheumatic disease, is mainly characterized by a progressive degradation of the hyaline articular cartilage, which is essential for correct joint function, lubrication, and resistance. Articular cartilage disturbances lead to joint failure, pain, and disability. Hyaline cartilage is also present in the growth plate and plays a key role in longitudinal bone growth. Alterations of this cartilage by diverse pathologies have been related to longitudinal bone growth inhibition (LBGI), which leads to growth retardation. Diet can play a crucial role in processes involved in the OA and LBGI's onset and evolution. Specifically, there is ample evidence pointing to the negative impacts of caffeine consumption on hyaline cartilage. However, its effects on these tissues have not been reviewed. Accordingly, in this review, we summarize all current knowledge in the PubMed database about caffeine catabolic effects on articular and growth plate cartilage. Specifically, we focus on the correlation between OA and LBGI with caffeine prenatal or direct exposure. Overall, there is ample evidence indicating that caffeine intake negatively affects the physiology of both articular and growth plate cartilage, increasing consumers predisposition to suffer OA and LBGI. As a result, caffeine consumption should be avoided for these pathologies.
Collapse
Affiliation(s)
- María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| | - Oreste Gualillo
- Research Laboratory 9, Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (M.G.-F.); (E.F.-T.); (A.A.-P.); (A.J.-M.); (M.L.-F.); (A.P.-P.)
| |
Collapse
|
14
|
Abstract
Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.
Collapse
Affiliation(s)
- Paul M Nguyen
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Suad M Abdirahman
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Tracy L Putoczki
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| |
Collapse
|