1
|
Nham TT, Guiho R, Brion R, Amiaud J, Le Royer BB, Gomez-Brouchet A, Rédini F, Bertin H. Zoledronic acid enhances tumor growth and metastatic spread in a mouse model of jaw osteosarcoma. Oral Dis 2024; 30:4209-4219. [PMID: 38376129 DOI: 10.1111/odi.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Investigation of the therapeutic effect of zoledronic acid (ZA) in a preclinical model of jaw osteosarcoma (JO). MATERIALS AND METHODS The effect of 100 μg/kg ZA administered twice a week was assessed in a xenogenic mouse model of JO. The clinical (tumor growth, development of lung metastasis), radiological (bone microarchitecture by micro-CT analysis), and molecular and immunohistochemical (TRAP, RANK/RANKL, VEGF, and CD146) parameters were investigated. RESULTS Animals receiving ZA exhibited an increased tumor volume compared with nontreated animals (71.3 ± 14.3 mm3 vs. 51.9 ± 19.9 mm3 at D14, respectively; p = 0.06) as well as increased numbers of lung metastases (mean 4.88 ± 4.45 vs. 0.50 ± 1.07 metastases, respectively; p = 0.02). ZA protected mandibular bone against tumor osteolysis (mean bone volume of 12.81 ± 0.53 mm3 in the ZA group vs. 11.55 ± 1.18 mm3 in the control group; p = 0.01). ZA induced a nonsignificant decrease in mRNA expression of the osteoclastic marker TRAP and an increase in RANK/RANKL bone remodeling markers. CONCLUSION The use of bisphosphonates in the therapeutic strategy for JO should be further explored, as should the role of bone resorption in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Than-Thuy Nham
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Nantes, France
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Romain Guiho
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes, France
| | - Régis Brion
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Jérôme Amiaud
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | | | - Anne Gomez-Brouchet
- Cancer Biobank of Toulouse, IUCT Oncopole, Toulouse University Hospital, Toulouse Cedex 9, France
- Department of Pathology, IUCT Oncopole, Toulouse University Hospital, Toulouse Cedex 9, France
| | - Françoise Rédini
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Hélios Bertin
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Nantes, France
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
2
|
Sarangi P. Role of indoleamine 2, 3-dioxygenase 1 in immunosuppression of breast cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:246-255. [PMID: 39371092 PMCID: PMC11447360 DOI: 10.1016/j.cpt.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Breast cancer (BC) contributes greatly to global cancer incidence and is the main cause of cancer-related deaths among women globally. It is a complex disease characterized by numerous subtypes with distinct clinical manifestations. Immune checkpoint inhibitors (ICIs) are not effective in all patients and have been associated with tumor resistance and immunosuppression. Because amino acid (AA)-catabolizing enzymes have been shown to regulate immunosuppressive effects, this review investigated the immunosuppressive roles of indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme, which is overexpressed in various metastatic tumors. It promotes immunomodulatory effects by depleting Trp in the regional microenvironment. This leads to a reduction in the number of immunogenic immune cells, such as effector T and natural killer (NK) cells, and an increase in tolerogenic immune cells, such as regulatory T (Treg) cells. The BC tumor microenvironment (TME) establishes a supportive niche where cancer cells can interact with immune cells and neighboring endothelial cells and is thus a feasible target for cancer therapy. In many immunological contexts, IDO1 regulates immune control by causing regional metabolic changes in the TME and tissue environment, which may further affect the maturation of systemic immunological tolerance. In the development of effective treatment targets and approaches, it is essential to understand the immunomodulatory effects exerted by AA-catabolizing enzymes, such as IDO1, on the components of the TME.
Collapse
Affiliation(s)
- Pratyasha Sarangi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
3
|
Vahabi M, Comandatore A, Franczak MA, Smolenski RT, Peters GJ, Morelli L, Giovannetti E. Role of exosomes in transferring chemoresistance through modulation of cancer glycolytic cell metabolism. Cytokine Growth Factor Rev 2023; 73:163-172. [PMID: 37541790 DOI: 10.1016/j.cytogfr.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Chemoresistance constitute a major obstacle in cancer treatment, leading to limited options and decreased patient survival. Recent studies have revealed a novel mechanism of chemoresistance acquisition: the transfer of information via exosomes, small vesicles secreted by various cells. Exosomes play a crucial role in intercellular communication by carrying proteins, nucleic acids, and metabolites, influencing cancer cell behavior and response to treatment. One crucial mechanism of resistance is cancer metabolic reprogramming, which involves alterations in the cellular metabolic pathways to support the survival and proliferation of drug-resistant cancer cells. This metabolic reprogramming often includes increased glycolysis, providing cancer cells with the necessary energy and building blocks to evade the effects of chemotherapy. Notably, exosomes have been found to transport glycolytic enzymes, as identified in proteomic profiling, leading to the reprogramming of metabolic pathways, facilitating altered glucose metabolism and increased lactate production. As a result, they profoundly impact the tumor microenvironment, promoting tumor progression, survival, immune evasion, and drug resistance.Understanding the complexities of such exosome-mediated cell-to-cell communication might open new therapeutic avenues and facilitate biomarker development in managing cancers characterized by aggressive glycolytic features. Moreover, given the intricate nature of metabolic abnormalities combining future exosome-based-targeted therapies with existing treatments like chemotherapy, immunotherapy, and targeted therapies holds promise for achieving synergistic effects to overcome resistance and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marika A Franczak
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy.
| |
Collapse
|
4
|
Fiorilla I, Martinotti S, Todesco AM, Bonsignore G, Cavaletto M, Patrone M, Ranzato E, Audrito V. Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma. Cells 2023; 12:2048. [PMID: 37626858 PMCID: PMC10453755 DOI: 10.3390/cells12162048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.
Collapse
Affiliation(s)
- Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, 13100 Vercelli, Italy;
| | - Mauro Patrone
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| |
Collapse
|
5
|
Kulkarni NS, Gupta V. Repurposing therapeutics for malignant pleural mesothelioma (MPM) - Updates on clinical translations and future outlook. Life Sci 2022; 304:120716. [PMID: 35709894 DOI: 10.1016/j.lfs.2022.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a rare malignancy affecting the mesothelial cells in the pleural lining surrounding the lungs. First approved chemotherapy against MPM was a platinum/antifolate (cisplatin/pemetrexed) (2003). Since then, no USFDA approvals have gone through for small molecules as these molecules have not been proven to be therapeutically able in later stages of clinical studies. An alternative to conventional chemotherapy can be utilization of monoclonal antibodies, which are proven to improve patient survival significantly as compared to conventional chemotherapy (Nivolumab + Ipilimumab, 2020). AREA COVERED Drug repurposing has been instrumental in drug discovery for rare diseases such as MPM and multiple repositioned small molecule therapies and immunotherapies are currently being tested for its applicability in MPM management. This article summarizes essential breakthroughs along the pre-clinical and clinical developmental stages of small molecules and monoclonal antibodies for MPM management. EXPERT OPINION For rare diseases such as malignant pleural mesothelioma, a drug repurposing strategy can be adapted as it eases the financial burden on pharmaceutical companies along with fast-tracking development. With the rise of multiple small molecule repurposed therapies and innovations in localized treatment, MPM therapeutics are bound to be more effective in this decade.
Collapse
Affiliation(s)
- Nishant S Kulkarni
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
6
|
Kopecka J, Riganti C. Overcoming drug resistance in glioblastoma: new options in sight? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:512-516. [PMID: 35582029 PMCID: PMC9019268 DOI: 10.20517/cdr.2021.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, Torino 10126, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino 10126, Italy
| |
Collapse
|
7
|
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021; 59:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth Perez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB) and Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
8
|
Al Dow M, Silveira MAD, Poliquin A, Tribouillard L, Fournier É, Trébaol E, Secco B, Villot R, Tremblay F, Bilodeau S, Laplante M. Control of adipogenic commitment by a STAT3-VSTM2A axis. Am J Physiol Endocrinol Metab 2021; 320:E259-E269. [PMID: 33196296 PMCID: PMC8260376 DOI: 10.1152/ajpendo.00314.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
White adipose tissue (WAT) is a dynamic organ that plays crucial roles in controlling metabolic homeostasis. During development and periods of energy excess, adipose progenitors are recruited and differentiate into adipocytes to promote lipid storage capability. The identity of adipose progenitors and the signals that promote their recruitment are still incompletely characterized. We have recently identified V-set and transmembrane domain-containing protein 2A (VSTM2A) as a novel protein enriched in preadipocytes that amplifies adipogenic commitment. Despite the emerging role of VSTM2A in promoting adipogenesis, the molecular mechanisms regulating Vstm2a expression in preadipocytes are still unknown. To define the molecular mechanisms controlling Vstm2a expression, we have treated preadipocytes with an array of compounds capable of modulating established regulators of adipogenesis. Here, we report that Vstm2a expression is positively regulated by PI3K/mTOR and cAMP-dependent signaling pathways and repressed by the MAPK pathway and the glucocorticoid receptor. By integrating the impact of all the molecules tested, we identified signal transducer and activator of transcription 3 (STAT3) as a novel downstream transcription factor affecting Vstm2a expression. We show that activation of STAT3 increased Vstm2a expression, whereas its inhibition repressed this process. In mice, we found that STAT3 phosphorylation is elevated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression. Our findings identify STAT3 as a key transcription factor regulating Vstm2a expression in preadipocytes.NEW & NOTEWORTHY cAMP-dependent and PI3K-mTOR signaling pathways promote the expression of Vstm2a. STAT3 is a key transcription factor that controls Vstm2a expression in preadipocytes. STAT3 is activated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression.
Collapse
Affiliation(s)
- Manal Al Dow
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Maruhen Amir Datsch Silveira
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Audrée Poliquin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Laura Tribouillard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Éric Fournier
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche en données massives de l'Université Laval, Québec, Canada
| | - Eva Trébaol
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Blandine Secco
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Romain Villot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Félix Tremblay
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Steve Bilodeau
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche en données massives de l'Université Laval, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
9
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
10
|
Belisario DC, Kopecka J, Pasino M, Akman M, De Smaele E, Donadelli M, Riganti C. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells 2020; 9:cells9122598. [PMID: 33291643 PMCID: PMC7761956 DOI: 10.3390/cells9122598] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a condition commonly observed in the core of solid tumors. The hypoxia-inducible factors (HIF) act as hypoxia sensors that orchestrate a coordinated response increasing the pro-survival and pro-invasive phenotype of cancer cells, and determine a broad metabolic rewiring. These events favor tumor progression and chemoresistance. The increase in glucose and amino acid uptake, glycolytic flux, and lactate production; the alterations in glutamine metabolism, tricarboxylic acid cycle, and oxidative phosphorylation; the high levels of mitochondrial reactive oxygen species; the modulation of both fatty acid synthesis and oxidation are hallmarks of the metabolic rewiring induced by hypoxia. This review discusses how metabolic-dependent factors (e.g., increased acidification of tumor microenvironment coupled with intracellular alkalinization, and reduced mitochondrial metabolism), and metabolic-independent factors (e.g., increased expression of drug efflux transporters, stemness maintenance, and epithelial-mesenchymal transition) cooperate in determining chemoresistance in hypoxia. Specific metabolic modifiers, however, can reverse the metabolic phenotype of hypoxic tumor areas that are more chemoresistant into the phenotype typical of chemosensitive cells. We propose these metabolic modifiers, able to reverse the hypoxia-induced metabolic rewiring, as potential chemosensitizer agents against hypoxic and refractory tumor cells.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Martina Pasino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, 00185 Roma, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
- Correspondence: ; Tel.: +39-011-670-5857
| |
Collapse
|
11
|
Kopecka J, Godel M, Riganti C. Cholesterol metabolism: At the cross road between cancer cells and immune environment. Int J Biochem Cell Biol 2020; 129:105876. [PMID: 33166677 DOI: 10.1016/j.biocel.2020.105876] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022]
Abstract
Mevalonate pathway is a highly conserved pathway that produces isoprenoids and cholesterol, and it is often increased in cancer cells. Cholesterol, upstream metabolites including isoprenoids and cholesterol derivatives such as oxysterols modulate cell proliferation, motility, stemness and drug resistance. Moreover, when produced by cancer cells or immune infiltrating cells, they modulate the activity of immune populations of the tumor microenvironment. In this review, we will focus on the recent findings demonstrating that cholesterol derivatives may regulate tumor immune recognition or immune escape, playing a critical role in the immune surveillance. Since the mevalonate pathway is druggable, a deeper knowledge of the metabolic cross talks existing between the mevalonate pathway of cancer cells and immune cells may help to identify novel agents targeting cholesterol metabolism, able to boost the anti-tumor activity of the immune populations.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
12
|
Wang L, Fang D, Xu J, Luo R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer 2020; 20:1059. [PMID: 33143662 PMCID: PMC7607850 DOI: 10.1186/s12885-020-07568-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Zoledronic acid (ZA) is one of the most important and effective class of anti-resorptive drug available among bisphosphonate (BP), which could effectively reduce the risk of skeletal-related events, and lead to a treatment paradigm for patients with skeletal involvement from advanced cancers. However, the exact molecular mechanisms of its anticancer effects have only recently been identified. In this review, we elaborate the detail mechanisms of ZA through inhibiting osteoclasts and cancer cells, which include the inhibition of differentiation of osteoclasts via suppressing receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK) pathway, non-canonical Wnt/Ca2+/calmodulin dependent protein kinase II (CaMKII) pathway, and preventing of macrophage differentiation into osteoclasts, in addition, induction of apoptosis of osteoclasts through inhibiting farnesyl pyrophosphate synthase (FPPS)-mediated mevalonate pathway, and activation of reactive oxygen species (ROS)-induced pathway. Furthermore, ZA also inhibits cancer cells proliferation, viability, motility, invasion and angiogenesis; induces cancer cell apoptosis; reverts chemoresistance and stimulates immune response; and acts in synergy with other anti-cancer drugs. In addition, some new ways for delivering ZA against cancer is introduced. We hope this review will provide more information in support of future studies of ZA in the treatment of cancers and bone cancer metastasis.
Collapse
Affiliation(s)
- Lianwei Wang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jinming Xu
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, 408300, China.
| |
Collapse
|
13
|
Belisario DC, Akman M, Godel M, Campani V, Patrizio MP, Scotti L, Hattinger CM, De Rosa G, Donadelli M, Serra M, Kopecka J, Riganti C. ABCA1/ABCB1 Ratio Determines Chemo- and Immune-Sensitivity in Human Osteosarcoma. Cells 2020; 9:cells9030647. [PMID: 32155954 PMCID: PMC7140509 DOI: 10.3390/cells9030647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP Binding Cassette transporter B1 (ABCB1) induces chemoresistance in osteosarcoma, because it effluxes doxorubicin, reducing the intracellular accumulation, toxicity, and immunogenic cell death induced by the drug. The ATP Binding Cassette transporter A1 (ABCA1) effluxes isopentenyl pyrophosphate (IPP), a strong activator of anti-tumor Vγ9Vδ2 T-cells. Recruiting this population may represent an alternative strategy to rescue doxorubicin efficacy in ABCB1-expressing osteosarcoma. In this work, we analyzed how ABCA1 and ABCB1 are regulated in osteosarcoma, and if increasing the ABCA1-dependent activation of Vγ9Vδ2 T-cells could be an effective strategy against ABCB1-expressing osteosarcoma. We used 2D-cultured doxorubicin-sensitive human U-2OS and Saos-2 cells, their doxorubicin-resistant sublines (U-2OS/DX580 and Saos-2/DX580), and 3D cultures of U-2OS and Saos-2 cells. DX580-sublines and 3D cultures had higher levels of ABCB1 and higher resistance to doxorubicin than parental cells. Surprisingly, they had reduced ABCA1 levels, IPP efflux, and Vγ9Vδ2 T-cell-induced killing. In these chemo-immune-resistant cells, the Ras/Akt/mTOR axis inhibits the ABCA1-transcription induced by Liver X Receptor α (LXRα); Ras/ERK1/2/HIF-1α axis up-regulates ABCB1. Targeting the farnesylation of Ras with self-assembling nanoparticles encapsulating zoledronic acid (NZ) simultaneously inhibited both axes. In humanized mice, NZ reduced the growth of chemo-immune-resistant osteosarcomas, increased intratumor necro-apoptosis, and ABCA1/ABCB1 ratio and Vγ9Vδ2 T-cell infiltration. We suggest that the ABCB1highABCA1low phenotype is indicative of chemo-immune-resistance. We propose aminobisphosphonates as new chemo-immune-sensitizing tools against drug-resistant osteosarcomas.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Virginia Campani
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Maria Pia Patrizio
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Lorena Scotti
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Claudia Maria Hattinger
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
| | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
- Correspondence: ; Tel.: +39-0116705857
| |
Collapse
|
14
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
15
|
Sayan M, Mamidanna S, Fuat Eren M, Daliparty V, Zoto Mustafayev T, Nelson C, Ohri N, Jabbour SK, Guven Mert A, Atalar B. New horizons from novel therapies in malignant pleural mesothelioma. Adv Respir Med 2020; 88:343-351. [PMID: 32869268 PMCID: PMC10865433 DOI: 10.5603/arm.a2020.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 11/25/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a relatively rare, but highly lethal cancer of the pleural mesothelial cells. Its pathoge-nesis is integrally linked to asbestos exposure. In spite of recent developments providing a more detailed understanding of the pathogenesis, the outcomes continue to be poor. To date, trimodality therapy involving surgery coupled with chemotherapy and/or radiotherapy remains the standard of therapy. The development of resistance of the tumor cells to radiation and several che-motherapeutic agents poses even greater challenges in the management of this cancer. Ionizing radiation damages cancer cell DNA and aids in therapeutic response, but it also activates cell survival signaling pathways that helps the tumor cells to overcome radiation-induced cytotoxicity. A careful evaluation of the biology involved in mesothelioma with an emphasis on the workings of pro-survival signaling pathways might offer some guidance for treatment options. This review focuses on the existing treatment options for MPM, novel treatment approaches based on recent studies combining the use of inhibitors which target different pro-survival pathways, and radiotherapy to optimize treatment.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| | - Swati Mamidanna
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Mehmet Fuat Eren
- Radiation Oncology Clinic, Marmara University Istanbul Pendik Education and Research Hospital, Istanbul, Turkey
| | - Vasudev Daliparty
- Department of Internal Medicine, Raritan Bay Medical Center, Perth Amboy, New Jersey, USA
| | - Teuta Zoto Mustafayev
- Department of Medical Oncology, Mehmet Ali Aydınlar Acıbadem University, School of Medicine, Istanbul, Turkey
| | - Carl Nelson
- Department of Radiation Oncology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Nisha Ohri
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Aslihan Guven Mert
- Department of Radiation Oncology, Acıbadem Maslak Hospital, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acıbadem Maslak Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
Chu GJ, van Zandwijk N, Rasko JEJ. The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy. Front Oncol 2019; 9:1366. [PMID: 31867277 PMCID: PMC6908501 DOI: 10.3389/fonc.2019.01366] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Although mesothelioma is the consequence of a protracted immune response to asbestos fibers and characterized by a clear immune infiltrate, novel immunotherapy approaches show less convincing results as compared to those seen in melanoma and non-small cell lung cancer. The immune suppressive microenvironment in mesothelioma is likely contributing to this therapy resistance. Therefore, it is important to explore the characteristics of the tumor microenvironment for explanations for this recalcitrant behavior. This review describes the stromal, cytokine, metabolic, and cellular milieu of mesothelioma, and attempts to make connection with the outcome of immunotherapy trials.
Collapse
Affiliation(s)
- Gerard J. Chu
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nico van Zandwijk
- Sydney Medical School, Sydney Local Health District (Concord Repatriation General Hospital), University of Sydney, Sydney, NSW, Australia
| | - John E. J. Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
18
|
Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int J Mol Sci 2019; 20:ijms20102505. [PMID: 31117237 PMCID: PMC6566596 DOI: 10.3390/ijms20102505] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
19
|
Salaroglio IC, Kopecka J, Napoli F, Pradotto M, Maletta F, Costardi L, Gagliasso M, Milosevic V, Ananthanarayanan P, Bironzo P, Tabbò F, Cartia CF, Passone E, Comunanza V, Ardissone F, Ruffini E, Bussolino F, Righi L, Novello S, Di Maio M, Papotti M, Scagliotti GV, Riganti C. Potential Diagnostic and Prognostic Role of Microenvironment in Malignant Pleural Mesothelioma. J Thorac Oncol 2019; 14:1458-1471. [PMID: 31078776 DOI: 10.1016/j.jtho.2019.03.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION A comprehensive analysis of the immune cell infiltrate collected from pleural fluid and from biopsy specimens of malignant pleural mesothelioma (MPM) may contribute to understanding the immune-evasion mechanisms related to tumor progression, aiding in differential diagnosis and potential prognostic stratification. Until now such approach has not routinely been verified. METHODS We enrolled 275 patients with an initial clinical diagnosis of pleural effusion. Specimens of pleural fluids and pleural biopsy samples used for the pathologic diagnosis and the immune phenotype analyses were blindly investigated by multiparametric flow cytometry. The results were analyzed using the Kruskal-Wallis test. The Kaplan-Meier and log-rank tests were used to correlate immune phenotype data with patients' outcome. RESULTS The cutoffs of intratumor T-regulatory (>1.1%) cells, M2-macrophages (>36%), granulocytic and monocytic myeloid-derived suppressor cells (MDSC; >5.1% and 4.2%, respectively), CD4 molecule-positive (CD4+) programmed death 1-positive (PD-1+) (>5.2%) and CD8+PD-1+ (6.4%) cells, CD4+ lymphocyte activating 3-positive (LAG-3+) (>2.8% ) and CD8+LAG-3+ (>2.8%) cells, CD4+ T cell immunoglobulin and mucin domain 3-positive (TIM-3+) (>2.5%), and CD8+TIM-3+ (>2.6%) cells discriminated MPM from pleuritis with 100% sensitivity and 89% specificity. The presence of intratumor MDSC contributed to the anergy of tumor-infiltrating lymphocytes. The immune phenotype of pleural fluid cells had no prognostic significance. By contrast, the intratumor T-regulatory and MDSC levels significantly correlated with progression-free and overall survival, the PD-1+/LAG-3+/TIM-3+ CD4+ tumor-infiltrating lymphocytes correlated with overall survival. CONCLUSIONS A clear immune signature of pleural fluids and tissues of MPM patients may contribute to better predict patients' outcome.
Collapse
Affiliation(s)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Monica Pradotto
- Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Francesca Maletta
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at AOU Città della Salute e della Scienza, Torino, Italy
| | - Lorena Costardi
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Matteo Gagliasso
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | | | | | - Paolo Bironzo
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Carlotta F Cartia
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Erika Passone
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Department of Oncology, University of Torino, Candiolo, Italy
| | - Francesco Ardissone
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Enrico Ruffini
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Department of Oncology, University of Torino, Candiolo, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Torino, Torino, Italy; Medical Oncology Division, Department of Oncology at AOU Ordine Mauriziano di Torino, Torino, Italy
| | - Mauro Papotti
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at AOU Città della Salute e della Scienza, Torino, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy; Interdepartmental Center "G. Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy.
| |
Collapse
|
20
|
Liu H, Wang SH, Chen SC, Chen CY, Lin TM. Zoledronic acid blocks the interaction between breast cancer cells and regulatory T-cells. BMC Cancer 2019; 19:176. [PMID: 30808421 PMCID: PMC6390606 DOI: 10.1186/s12885-019-5379-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/19/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits osteoclastogenesis. Emerging evidence suggests that ZA has anti-tumor and anti-metastatic properties for breast cancer cells. In a mouse model of ZA-related osteonecrosis of the jaw, ZA administration was found to suppress regulatory T-cells (Tregs) function. Our previous reports also demonstrated ZA acted as an immune modulator to block Tregs. Manipulation of Tregs represents a new strategy for cancer treatment. However, the relationship among ZA, Tregs, and cancer cells remains unclear. In this study, we investigated the effects of ZA on the interaction of breast cancer cells and Tregs. METHODS The anti-tumor effect of ZA on triple negative breast cancer cell lines were validated by XTT, wound healing and apoptosis analysis. A flow cytometry-based assay was used to analyze the immunosuppressive effect of Tregs treated with media conditioned by breast cancer cells, and a transwell assay was used to evaluate the chemotactic migration of Tregs. Differential gene expression profile on MDA-MB-231 treated with ZA (25 μM) was analyzed by. microarrays to describe the molecular basis of actions of ZA for possible direct anti-tumor effects. Enzyme-linked immunosorbent assays and quantitative real-time PCR were used to investigate the effect of ZA on the expression of cytokines/factors by breast cancer cells. RESULTS ZA was found to inhibit the proliferation and migration of breast cancer cells. Media conditioned by the MDA-MB-231 cells promoted the expansion, chemotactic migration, and immunosuppressive activity of Tregs, and these effects were attenuated in a dose-dependent manner by ZA treatment, and the attenuation was due to reduced expression of selected breast cancer cell factors (CCL2, CCL5, and IDO). CONCLUSIONS ZA can significantly affect the interaction between breast cancer cells and Tregs. Our findings indicate that ZA is a potential therapeutic agent that can be used to reduce cancer aggressiveness by abolishing the supportive role of Tregs.
Collapse
Affiliation(s)
- Hsien Liu
- Department of Surgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shih-Han Wang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - Shin-Cheh Chen
- Department of Surgery, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ching-Ying Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
| | - Tsun-Mei Lin
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan. .,Departments of Medical Research, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Mungo E, Bergandi L, Salaroglio IC, Doublier S. Pyruvate Treatment Restores the Effectiveness of Chemotherapeutic Agents in Human Colon Adenocarcinoma and Pleural Mesothelioma Cells. Int J Mol Sci 2018; 19:ijms19113550. [PMID: 30423827 PMCID: PMC6274794 DOI: 10.3390/ijms19113550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence supports the idea that a dysfunction in cell metabolism could sustain a resistant phenotype in cancer cells. As the success of chemotherapeutic agents is often questioned by the occurrence of multidrug resistance (MDR), a multiple cross-resistance towards different anti-cancer drugs represent a major obstacle to cancer treatment. The present study has clarified the involvement of the carbon metabolites in a more aggressive tumor colon adenocarcinoma phenotype and in a chemoresistant mesothelioma, and the role of pyruvate treatment in the reversion of the potentially related resistance. For the first time, we have shown that human colon adenocarcinoma cells (HT29) and its chemoresistant counterpart (HT29-dx) displayed different carbon metabolism: HT29-dx cells had a higher glucose consumption compared to HT29 cells, whereas human malignant mesothelioma (HMM) cells showed a lower glucose consumption compared to HT29 cells, accompanied by a lower pyruvate production and, consequently, a higher production of lactate. When treated with pyruvate, both HT29-dx and HMM cells exhibited a re-established accumulation of doxorubicin and a lower survival ability, a decreased activity of multidrug resistance protein 1 (MRP1) and a restored mitochondrial respiratory chain function, improving the effectiveness of the chemotherapeutic agents in these resistant cancer cells.
Collapse
Affiliation(s)
- Eleonora Mungo
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| | | | - Sophie Doublier
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
22
|
Gutting T, Burgermeister E, Härtel N, Ebert MP. Checkpoints and beyond - Immunotherapy in colorectal cancer. Semin Cancer Biol 2018; 55:78-89. [PMID: 29716829 DOI: 10.1016/j.semcancer.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Immunotherapy is the latest revolution in cancer therapy. It continues to show impressive results in malignancies like melanoma and others. At least so far, effects are modest in colorectal cancer (CRC) and only a subset of patients benefits from already approved checkpoint inhibitors. In this review, we discuss major hurdles of immunotherapy like the immunosuppressive niche and low immunogenicity of CRC next to current achievements of checkpoint inhibitors, interleukin treatment and adoptive cell transfer (dendritic cells/cytokine induced killer cells, tumor infiltrating lymphocytes, chimeric antigen receptor cells, T cell receptor transfer) in pre-clinical models and clinical trials. We intensively examine approaches to overcome low immunogenicity by combination of different therapies and address future strategies of therapy as well as the need of predictive factors in this emerging field of precision medicine.
Collapse
Affiliation(s)
- Tobias Gutting
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nicolai Härtel
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Heilig-Geist Hospital Bensheim, Rodensteinstraße 94, 64625 Bensheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
23
|
Boyer A, Pasquier E, Tomasini P, Ciccolini J, Greillier L, Andre N, Barlesi F, Mascaux C. Drug repurposing in malignant pleural mesothelioma: a breath of fresh air? Eur Respir Rev 2018; 27:170098. [PMID: 29540495 PMCID: PMC9488560 DOI: 10.1183/16000617.0098-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/13/2018] [Indexed: 01/17/2023] Open
Abstract
Drug repurposing is the use of known drugs for new indications. Malignant pleural mesothelioma (MPM) is a rare cancer with a poor prognosis. So far, few treatments have been approved in this disease. However, its incidence is expected to increase significantly, particularly in developing countries. Consequently, drug repurposing appears as an attractive strategy for drug development in MPM, since the known pharmacology and safety profile based on previous approvals of repurposed drugs allows for faster time-to-market for patients and lower treatment cost. This is critical in low- and middle-income countries where access to expensive drugs is limited. This review assesses the published preclinical and clinical data about drug repurposing in MPM.In this review, we identified 11 therapeutic classes that could be repositioned in mesothelioma. Most of these treatments have been evaluated in vitro, half have been evaluated in vivo in animal models of MPM and only three (i.e. valproate, thalidomide and zoledronic acid) have been investigated in clinical trials, with limited benefits so far. Efforts could be coordinated to pursue further investigations and test promising drugs identified in preclinical experiments in appropriately designed clinical trials.
Collapse
Affiliation(s)
- Arnaud Boyer
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Eddy Pasquier
- Aix Marseille University, Assistance Publique des Hôpitaux de Marseille, Dept of Haematology and Paediatric Oncology, Marseille, France
| | - Pascale Tomasini
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Joseph Ciccolini
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Nicolas Andre
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Fabrice Barlesi
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Celine Mascaux
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| |
Collapse
|
24
|
Magkouta S, Pappas A, Moschos C, Vazakidou ME, Psarra K, Kalomenidis I. Icmt inhibition exerts anti-angiogenic and anti-hyperpermeability activities impeding malignant pleural effusion. Oncotarget 2018; 7:20249-59. [PMID: 26959120 PMCID: PMC4991451 DOI: 10.18632/oncotarget.7912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022] Open
Abstract
Small GTPases are pivotal regulators of several aspects of tumor progression. Their implication in angiogenesis, vascular permeability and tumor-associated inflammatory responses is relevant to the pathobiology of Malignant Pleural Effusion (MPE). Inhibition of isoprenylcysteine carboxylmethyltransferase (Icmt) abrogates small GTPase activation. We therefore hypothesized that cysmethynil, an Icmt inhibitor would limit pleural fluid accumulation in two models, a lung-adenocarcinoma and a mesothelioma-induced MPE. Cysmethynil significantly reduced MPE volume in both models and tumor burden in the adenocarcinoma model. It inhibited pleural vascular permeability and tumor angiogenesis in vivo and reduced endothelial cell proliferation, migration and tube formation in vitro. Cysmethynil also promoted M1 anti-tumor macrophage homing in the pleural space in vivo, and inhibited tumor-induced polarization of macrophages towards a M2 phenotype in vitro. In addition, the inhibitor promoted adenocarcinoma cell apoptosis in vivo. Inhibition of small GTPase might thus represent a valuable strategy for pharmacotherapy of MPE.
Collapse
Affiliation(s)
- Sophia Magkouta
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Apostolos Pappas
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Charalampos Moschos
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Maria-Eleni Vazakidou
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Ioannis Kalomenidis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
25
|
Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Pinzòn-Daza ML, Giordano A, Desiderio V, Ghigo D, De Rosa G, Caraglia M, Riganti C. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors. Oncotarget 2018; 7:20753-72. [PMID: 26980746 PMCID: PMC4991490 DOI: 10.18632/oncotarget.8012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking. The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization. NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors. Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Sara Lusa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Elena Gazzano
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppina Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Martha Leonor Pinzòn-Daza
- Department of Oncology, University of Turin, Turin, Italy.,Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Dario Ghigo
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Riganti C, Lingua MF, Salaroglio IC, Falcomatà C, Righi L, Morena D, Picca F, Oddo D, Kopecka J, Pradotto M, Libener R, Orecchia S, Bironzo P, Comunanza V, Bussolino F, Novello S, Scagliotti GV, Di Nicolantonio F, Taulli R. Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology 2017; 7:e1398874. [PMID: 29399399 DOI: 10.1080/2162402x.2017.1398874] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Systemic treatment of malignant pleural mesothelioma (MPM) is moderately active for the intrinsic pharmacological resistance of MPM cell and its ability to induce an immune suppressive environment. Here we showed that the expression of bromodomain (BRD) proteins BRD2, BRD4 and BRD9 was significantly higher in human primary MPM cells compared to normal mesothelial cells (HMC). Nanomolar concentrations of bromodomain inhibitors (BBIs) JQ1 or OTX015 impaired patient-derived MPM cell proliferation and induced cell-cycle arrest without affecting apoptosis. Importantly, BBIs primed MPM cells for immunogenic cell death, by increasing extracellular release of ATP and HMGB1, and by promoting membrane exposure of calreticulin and ERp57. Accordingly, BBIs activated dendritic cell (DC)-mediated phagocytosis and expansion of CD8+ T-lymphocyte clones endorsed with antitumor cytotoxic activity. BBIs reduced the expression of the immune checkpoint ligand PD-L1 in MPM cells; while both CD8+ and CD4+ T-lymphocytes co-cultured with JQ1-treated MPM cells decreased PD-1 expression, suggesting a disruption of the immune-suppressive PD-L1/PD-1 axis. Additionally, BBIs reduced the expansion of myeloid-derived suppressor cells (MDSC) induced by MPM cells. Finally, a preclinical model of MPM confirmed that the anti-tumor efficacy of JQ1 was largely due to its ability to restore an immune-active environment, by increasing intra-tumor DC and CD8+ T-lymphocytes, and decreasing MDSC. Thereby, we propose that, among novel drugs, BBIs should be investigated for MPM treatment for their combined activity on both tumor cells and surrounding immune-environment.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | | | | | - Chiara Falcomatà
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Daniele Oddo
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Monica Pradotto
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Roberta Libener
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Sara Orecchia
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio Vittorio Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | | |
Collapse
|
27
|
Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 2016; 7:6506-20. [PMID: 26646699 PMCID: PMC4872729 DOI: 10.18632/oncotarget.6467] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer related death in women. While current diagnostic modalities provide opportunities for early medical intervention, significant proportions of breast tumours escape treatment and metastasize. Gaining increasing recognition as a factor in tumour metastasis is the local immuno-surveillance environment. Following identification of the role played by the enzyme indoleamine dioxygenase 1 (IDO1) in mediating maternal foetal tolerance, the kynurenine pathway (KP) of tryptophan metabolism has emerged as a key metabolic pathway contributing to immune escape. In inflammatory conditions activation of the KP leads to the production of several immune-modulating metabolites including kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, picolinic acid and quinolinic acid. KP over-activation was first described in BrCa patients in the early 1960s. More evidence has since emerged to suggest that the IDO1 is elevated in advanced BrCa patients and is associated with poor prognosis. Further, IDO1 positive breast tumours have a positive correlation with the density of immune suppressive Foxp3+ T regulatory cells and lymph node metastasis. The analysis of clinical microarray data in invasive BrCa compared to normal tissue showed, using two microarray databank (cBioportal and TCGA), that 86.3% and 91.4% BrCa patients have altered KP enzyme expression respectively. Collectively, these data highlight the key roles played by KP activation in BrCa, particularly in basal BrCa subtypes where expression of most KP enzymes was altered. Accordingly, the use of KP enzyme inhibitors in addition to standard chemotherapy regimens may present a viable therapeutic approach.
Collapse
|
28
|
Liu H, Wang SH, Chen SC, Chen CY, Lo JL, Lin TM. Immune modulation of CD4 +CD25 + regulatory T cells by zoledronic acid. BMC Immunol 2016; 17:45. [PMID: 27887569 PMCID: PMC5124310 DOI: 10.1186/s12865-016-0183-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
Background CD4+CD25+ regulatory T (Treg) cells suppress tumor immunity by inhibiting immune cells. Manipulation of Treg cells represents a new strategy for cancer treatment. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts to inhibit osteoclastogenesis. In a mouse model of bisphosphonate-related osteonecrosis of the jaw, administration of ZA suppressed Treg-cell activity and activated inflammatory Th17 cells. However, the interaction between ZA and Treg cells remained unclear. This study investigated the immune modulation of Treg cells by ZA. Methods Flow cytometry was used to analyze the phenotypic and immunosuppressive characteristics of Treg cells treated with ZA. Chemotactic migration was evaluated using transwell assays. Quantitative real-time PCR (qRT-PCR) was used to investigate the effect of ZA on the expression of suppressive molecules by Treg cells. Results Proliferation of isolated Treg cells in culture was inhibited by ZA, although ZA did not induce apoptosis. qRT-PCR and flow cytometry showed that ZA significantly downregulated the expression of CCR4, CTLA4, PD-1 and RANKL on Treg cells. Chemotactic migration and immunosuppressive functions were also significantly attenuated in Treg cells pretreated with ZA, and these effects were dose-dependent. Co-culture with Treg cells significantly increased the migration rate of breast cancer cells, while pretreatment of Treg cells with ZA attenuated this effect. Conclusions Our findings demonstrated that ZA acted as an immune modulator by significantly inhibiting the expansion, migration, immunosuppressive function and pro-metastatic ability of Treg cells. Immunomodulation of Treg cells by ZA represents a new strategy for cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0183-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsien Liu
- Department of Surgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shih-Han Wang
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| | - Shin-Cheh Chen
- Department of Surgery, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ching-Ying Chen
- Department of Medical Research, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan
| | - Jo-Lin Lo
- Department of Internal Medicine, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan
| | - Tsun-Mei Lin
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan. .,Department of Medical Research, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan. .,Department of Laboratory Medicine, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Giordano A, Desiderio V, Ghigo D, Caraglia M, De Rosa G, Riganti C. Self-assembling nanoparticles encapsulating zoledronic acid revert multidrug resistance in cancer cells. Oncotarget 2016; 6:31461-78. [PMID: 26372812 PMCID: PMC4741618 DOI: 10.18632/oncotarget.5058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
The overexpression of ATP binding cassette (ABC) transporters makes tumor cells simultaneously resistant to several cytotoxic drugs. Impairing the energy metabolism of multidrug resistant (MDR) cells is a promising chemosensitizing strategy, but many metabolic modifiers are too toxic in vivo. We previously observed that the aminobisphosphonate zoledronic acid inhibits the activity of hypoxia inducible factor-1α (HIF-1α), a master regulator of cancer cell metabolism. Free zoledronic acid, however, reaches low intratumor concentration. We synthesized nanoparticle formulations of the aminobisphosphonate that allow a higher intratumor delivery of the drug. We investigated whether they are effective metabolic modifiers and chemosensitizing agents against human MDR cancer cells in vitro and in vivo. At not toxic dosage, nanoparticles carrying zoledronic acid chemosensitized MDR cells to a broad spectrum of cytotoxic drugs, independently of the type of ABC transporters expressed. The nanoparticles inhibited the isoprenoid synthesis and the Ras/ERK1/2-driven activation of HIF-1α, decreased the transcription and activity of glycolytic enzymes, the glucose flux through the glycolysis and tricarboxylic acid cycle, the electron flux through the mitochondrial respiratory chain, the synthesis of ATP. So doing, they lowered the ATP-dependent activity of ABC transporters, increasing the chemotherapy efficacy in vitro and in vivo. These effects were more pronounced in MDR cells than in chemosensitive ones and were due to the inhibition of farnesyl pyrophosphate synthase (FPPS), as demonstrated in FPPS-silenced tumors. Our work proposes nanoparticle formulations of zoledronic acid as the first not toxic metabolic modifiers, effective against MDR tumors.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Sara Lusa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Giuseppina Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Dario Ghigo
- Department of Oncology, University of Torino, Torino, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Giuseppe De Rosa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
30
|
Inoue T, Adachi K, Kawana K, Taguchi A, Nagamatsu T, Fujimoto A, Tomio K, Yamashita A, Eguchi S, Nishida H, Nakamura H, Sato M, Yoshida M, Arimoto T, Wada-Hiraike O, Oda K, Osuga Y, Fujii T. Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. Int J Oncol 2016. [PMID: 27499237 DOI: 10.3892/ijo.2016.3631.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in cancer expansion and progression in tumor microenvironment (TME), via both direct and indirect interactions. Natural killer (NK) cells play a crucial role in anticancer immunity. We investigated the inhibitory effects of CAFs on NK cell activity. CAFs were isolated from endometrial cancer tissue, while normal endometrial fibroblasts (NEFs) were obtained from normal endometrium with no pathological abnormality. NK cells were obtained from allogenic healthy volunteers. CAFs or NEFs were co-cultured at an NK/fibroblast ratio of 1:1 with or without inserted membrane. For NK cell activity, K562 cells were cultured as target cells. NK cell-killing activity was determined by calculating the ratio of PI-positive K562 cells in the presence of NK cells co-cultured with fibroblasts versus NK cells alone. To examine whether NK cell activity was suppressed by IDO pathway, we inhibited IDO activity using the IDO inhibitor 1-MT. We demonstrated that CAFs derived from endometrial cancer induced greater suppression of the killing activity of allogenic NK cells compared with normal endometrial fibroblasts (NEFs). The suppression of NK cell activity by CAFs was inhibited when a membrane was inserted between the CAFs and NK cells, but not by 1-MT, an inhibitor of IDO. We focused on receptor-ligand interactions between CAFs and NK cell and found that cell-surface poliovirus receptor (PVR/CD155), a ligand of activating NK receptor DNAM-1, was downregulated in the CAFs compared with NEFs. To confirm whether PVR downregulation results in the decrease of NK cell-killing activity, PVR expression in NEFs was knocked down using siRNA against PVR (PVRsi). NK cell activity was suppressed by co-culture with PVR-knockdown NEFs, to a similar extent than CAF-induced suppression. CAFs showed increased suppression of NK cell-killing activity compared with NEFs, due to decreased PVR cell surface expression, a ligand of an NK activating receptor. This study demonstrated a novel mechanism of suppression of NK cell activity by CAFs in the TME.
Collapse
Affiliation(s)
- Tomoko Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
31
|
Inoue T, Adachi K, Kawana K, Taguchi A, Nagamatsu T, Fujimoto A, Tomio K, Yamashita A, Eguchi S, Nishida H, Nakamura H, Sato M, Yoshida M, Arimoto T, Wada-Hiraike O, Oda K, Osuga Y, Fujii T. Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. Int J Oncol 2016; 49:1297-304. [PMID: 27499237 PMCID: PMC5021244 DOI: 10.3892/ijo.2016.3631] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in cancer expansion and progression in tumor microenvironment (TME), via both direct and indirect interactions. Natural killer (NK) cells play a crucial role in anticancer immunity. We investigated the inhibitory effects of CAFs on NK cell activity. CAFs were isolated from endometrial cancer tissue, while normal endometrial fibroblasts (NEFs) were obtained from normal endometrium with no pathological abnormality. NK cells were obtained from allogenic healthy volunteers. CAFs or NEFs were co-cultured at an NK/fibroblast ratio of 1:1 with or without inserted membrane. For NK cell activity, K562 cells were cultured as target cells. NK cell-killing activity was determined by calculating the ratio of PI-positive K562 cells in the presence of NK cells co-cultured with fibroblasts versus NK cells alone. To examine whether NK cell activity was suppressed by IDO pathway, we inhibited IDO activity using the IDO inhibitor 1-MT. We demonstrated that CAFs derived from endometrial cancer induced greater suppression of the killing activity of allogenic NK cells compared with normal endometrial fibroblasts (NEFs). The suppression of NK cell activity by CAFs was inhibited when a membrane was inserted between the CAFs and NK cells, but not by 1-MT, an inhibitor of IDO. We focused on receptor-ligand interactions between CAFs and NK cell and found that cell-surface poliovirus receptor (PVR/CD155), a ligand of activating NK receptor DNAM-1, was downregulated in the CAFs compared with NEFs. To confirm whether PVR downregulation results in the decrease of NK cell-killing activity, PVR expression in NEFs was knocked down using siRNA against PVR (PVRsi). NK cell activity was suppressed by co-culture with PVR-knockdown NEFs, to a similar extent than CAF-induced suppression. CAFs showed increased suppression of NK cell-killing activity compared with NEFs, due to decreased PVR cell surface expression, a ligand of an NK activating receptor. This study demonstrated a novel mechanism of suppression of NK cell activity by CAFs in the TME.
Collapse
Affiliation(s)
- Tomoko Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
32
|
Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 2016; 5:e1214790. [PMID: 27757313 DOI: 10.1080/2162402x.2016.1214790] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College , New York, NY, USA
| | | | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, U970, Paris, France; Paris-Cardiovascular Research Center (PARCC), Paris, France; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT1428, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|