1
|
Tafazoli P, Rad HM, Mashayekhi M, Siadat SF, Fathi R. miRNAs in ovarian disorders: Small but strong cast. Pathol Res Pract 2024; 264:155709. [PMID: 39522318 DOI: 10.1016/j.prp.2024.155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This research aimed to analyze alterations in microRNA expression in the diseases POF (Premature Ovarian Failure), PCOS (Polycystic Ovarian Syndrome), and ovarian cancer in order to understand the molecular changes associated with these conditions. The findings could potentially be utilized for diagnostic, therapeutic, predictive, and preventive purposes. Furthermore, the impact and role of microRNAs in each ailment, along with their functional pathways, were elucidated and examined. METHODS In this study, the genes involved in the disease were studied, and then the miRNAs that targeted these genes were evaluated, and finally the signaling and functional pathways of each of the miRNAs were assessed. In this process, genetic databases and previous studies were carefully assessed. RESULTS miRNAs are short nucleotide sequences that belong to the category of non-coding RNAs. They play a crucial role in various physiological activities, including cell division, growth, differentiation, and cell death (necrosis and apoptosis), miRNAs are involved in various physiological processes Such alterations are common in various diseases, including cancer. miRNAs are involved in various physiological processes, such as folliculogenesis and steroidogenesis, as well as in pathological conditions such as POF, PCOS, and ovarian cancer. They have powerful regulatory effects and controlling the most activities of normal and pathological cells. While microRNAs (miRNAs) play a significant role in normal ovarian functions, there are reports of their expression changes in PCOS, ovarian cancer, and POF. CONCLUSIONS miRNAs have been found to exert significant influence on both physiological and pathological cellular processes. Understanding the dynamic patterns of miRNA alterations can provide valuable insights for researchers and therapists, enabling them to utilize these biomarkers effectively in diagnostic, therapeutic, and preventive applications.
Collapse
Affiliation(s)
- Parsa Tafazoli
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hanieh Motahari Rad
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehri Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Li Y, Zhong H, Luo L, Gan M, Liang L, Que L, Zheng S, Zhong J, Liang L. Integrated analysis of the lncRNA-miRNA-mRNA ceRNA network in nasopharyngeal carcinoma. Transl Cancer Res 2024; 13:4372-4388. [PMID: 39262479 PMCID: PMC11384926 DOI: 10.21037/tcr-24-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 09/13/2024]
Abstract
Background Nasopharyngeal carcinoma (NPC) is particularly prevalent in East and Southeast Asia. Competing endogenous RNA (ceRNA) networks are known to play an essential role in the emergence of various diseases, including cancer. Building a network of protein-protein interactions (PPIs) and ceRNAs can facilitate the detection of potential connections between messenger RNAs (mRNAs) and various non-coding RNAs. However, the precise role of ceRNA networks in NPC has not been examined in detail. Therefore, the primary aim of the present study was to characterize a ceRNA network for NPC. Methods Datasets of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA microarrays were downloaded from the Gene Expression Omnibus (GEO) database. Data were standardized and differentially expressed genes (DEGs) were screened using the limma package. The ClusterProfiler software suite was used to perform enrichment analysis of differentially expressed mRNAs using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) techniques. Results A total of 160 lncRNAs, 8 miRNAs, and 147 mRNAs were differentially expressed in NPC samples. A ceRNA network was constructed using four lncRNAs, five miRNAs, and one mRNA that were dysregulated in NPC. Cellular functions of the abnormally expressed mRNAs were mainly associated with tumor cell movement, cell growth and proliferation, cell cycle, invasion, and metastasis. Conclusions The ceRNA network constructed herein clarified the regulatory mechanisms through which lncRNAs act as ceRNAs and participate in NPC development. Notably, lncRNAs, miRNAs, and mRNAs identified in this ceRNA network can serve as therapeutic targets and prognostic biomarkers for NPC.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| | - Hui Zhong
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| | - Lan Luo
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| | - Mei Gan
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| | - Li Liang
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| | - Lilin Que
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| | - Shaojun Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Leifeng Liang
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Yulin, Yulin, China
| |
Collapse
|
3
|
Trojniak J, Sendera A, Banaś-Ząbczyk A, Kopańska M. The MicroRNAs in the Pathophysiology of Osteoporosis. Int J Mol Sci 2024; 25:6240. [PMID: 38892426 PMCID: PMC11172499 DOI: 10.3390/ijms25116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Globally, osteoporosis is the most common systemic skeletal disease. There are many factors that influence osteoporosis' development and progression. During the pathogenesis of this disease, bone turnover is imbalanced between resorption and the formation of bone tissue. A growing interest has been devoted to the role that microRNA (miRNA) plays in osteoporosis regulation. A microRNA (miRNA) is a group of small single-stranded RNA molecules involved in regulating gene expression in eukaryotic organisms. As microRNAs (miRNAs) are key regulators of gene expression and can modulate processes related to bone metabolism, they have become increasingly important for studying osteoporosis pathogenesis. The available research suggests that miRNAs play an important role in regulating processes associated with bone metabolism, especially by influencing bone resorption and synthesis. Furthermore, microRNAs can also serve as potential therapeutic targets for osteoporosis, besides being a rapid and specific biomarker.
Collapse
Affiliation(s)
- Julia Trojniak
- Student Research Club “Reh-Tech”, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Anna Sendera
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (A.S.); (A.B.-Z.)
| | - Agnieszka Banaś-Ząbczyk
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (A.S.); (A.B.-Z.)
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Suryani L, Lee HPY, Teo WK, Chin ZK, Loh KS, Tay JK. Precision Medicine for Nasopharyngeal Cancer-A Review of Current Prognostic Strategies. Cancers (Basel) 2024; 16:918. [PMID: 38473280 DOI: 10.3390/cancers16050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) driven malignancy arising from the nasopharyngeal epithelium. Current treatment strategies depend on the clinical stage of the disease, including the extent of the primary tumour, the extent of nodal disease, and the presence of distant metastasis. With the close association of EBV infection with NPC development, EBV biomarkers have shown promise in predicting treatment outcomes. Among the omic technologies, RNA and miRNA signatures have been widely studied, showing promising results in the research setting to predict treatment response. The transformation of radiology images into measurable features has facilitated the use of radiomics to generate predictive models for better prognostication and treatment selection. Nonetheless, much of this work remains in the research realm, and challenges remain in clinical implementation.
Collapse
Affiliation(s)
- Luvita Suryani
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hazel P Y Lee
- Department of Otolaryngology-Head & Neck Surgery, National University Hospital, Singapore 119228, Singapore
| | - Wei Keat Teo
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Zhi Kang Chin
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joshua K Tay
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
5
|
Su B, Wang X, Ouyang Y, Lin X. DA-SRN: Omics data analysis based on the sample network optimization for complex diseases. Comput Biol Med 2023; 164:107252. [PMID: 37454504 DOI: 10.1016/j.compbiomed.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Effective biomarker identification and accurate sample label prediction are still challenging for complex diseases. Patient similarity network (PSN) analysis is a powerful tool in disease omics data analysis. The topology of PSN can reflect the discriminative ability of the corresponding feature space on which the sample network is built. In this study, a novel omics data analysis method based on the sample reference network (DA-SRN) is proposed to identify the potential biomarkers and predict the sample categories. DA-SRN defines the informative features and the sample reference network in optimizing the network structure by genetic algorithm. It labels the samples based on the graph neural network, the reference network and the selected informative features. DA-SRN was compared with nine efficient omics data analysis methods on the genomics, metabolomics and transcriptomics datasets to show its validation. The comparison results showed that it outperformed the other methods in area under receiver operating characteristic curve (AUROC), sensitivity, specificity and area under precision-recall curve (AUPRC) in most cases. Besides, the important metabolites identified by DA-SRN for the type 2 diabetes (T2D) metabolomics data were further examined. The pathway analysis revealed the close relationships between the identified metabolites and the critical metabolic pathways related to the occurrence and development of T2D. The experimental results illustrate that DA-SRN can extract the valuable information from the complex omics data by analyzing the sample relationship, and is promising in biomarker identification and sample discrimination for complex diseases.
Collapse
Affiliation(s)
- Benzhe Su
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Xiaoxiao Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Yang Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Xiaohui Lin
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
6
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
7
|
Shi W, Fijardo M, Bruce JP, Su J, Xu W, Bell R, Bissey PA, Hui ABY, Waldron J, Pugh TJ, Yip KW, Liu FF. CD8+ Tumor-Infiltrating Lymphocyte Abundance Is a Positive Prognostic Indicator in Nasopharyngeal Cancer. Clin Cancer Res 2022; 28:5202-5210. [PMID: 36129469 DOI: 10.1158/1078-0432.ccr-22-0979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TIL) are immune cell populations found within tumors, critical in the antigen-specific host immune response. In this study, we aimed to elucidate the prognostic significance of CD3+, CD4+, and CD8+ TILs in nasopharyngeal cancer (NPC). EXPERIMENTAL DESIGN Immune cell infiltration was quantified in NPC samples (n = 50) using RNA-sequencing (RNA-seq) data based on rearranged T-cell receptor (TCR) reads and the Estimation of Stromal and Immune cells in malignant tumors using expression data (ESTIMATE) immune score tool. The differential abundances of TIL subset populations were also characterized through IHC staining of formalin-fixed, paraffin-embedded samples from a training cohort (n = 35), which was a subset of the RNA-seq cohort (n = 50). RESULTS In the RNA-seq cohort, patients with higher rearranged TCR reads experienced superior 5- and 10-year overall survival (OS; P < 0.001), and disease-free survival (DFS; P < 0.001). Similarly, patients with higher ESTIMATE immune scores experienced superior 5- and 10-year OS (P = 0.024) and DFS (P = 0.007). In the training cohort, high abundances of CD8+ TILs were significantly associated with improved 5- and 10-year OS (P = 0.003) and DFS (P = 0.005). These findings were corroborated in an independent validation cohort (n = 84), and combined analysis of the training and validation cohorts [n = 119 (35+84)], which further demonstrated improved 5- and 10-year survival in terms of locoregional control (P < 0.001) and distant metastasis (P = 0.03). CONCLUSIONS Taken together, our study highlights the prognostic value of CD8+ TILs in NPC, and the potential of future investigations into cellular-based immunotherapies employing CD8+ lymphocytes.
Collapse
Affiliation(s)
- Wei Shi
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jeff P Bruce
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Jie Su
- Department of Biostatistics, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bell
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - John Waldron
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Jothimani G, Bhatiya M, Pathak S, Paul S, Banerjee A. Tumor Suppressor microRNAs in Gastrointestinal Cancers: A Mini-Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:5-15. [PMID: 35670340 DOI: 10.2174/2772270816666220606112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastrointestinal (GI) cancer is associated with a group of cancers affecting the organs in the GI tract, with a high incidence and mortality rate. This type of cancer development involves a series of molecular events that arise by the dysregulation of gene expressions and microRNAs (miRNAs). OBJECTIVES This mini-review focuses on elucidating the mechanism of tumor suppressor miRNA-mediated oncogenic gene silencing, which may contribute to a better understanding of miRNA-mediated gene expression regulation of cell cycle, proliferation, invasion, and apoptosis in GI cancers. In this review, the biological significance of tumor suppressor miRNAs involved in gastrointestinal cancers is briefly explained. METHODS The articles were searched with the keywords 'miRNA', 'gastrointestinal cancers', 'esophageal cancer', 'gastric cancer', 'colorectal cancer', 'pancreatic cancer', 'liver cancer', and 'gall bladder cancer' from the Google Scholar and PubMed databases. A total of 71 research and review articles have been collected and referred for this study. RESULTS This review summarises recent research enhancing the effectiveness of miRNAs as novel prognostic, diagnostic, and therapeutic markers for GI cancer treatment strategies. The expression pattern of various miRNAs has been dysregulated in GI cancers, which are associated with proliferation, cell cycle regulation, apoptosis, migration, and invasion. CONCLUSION The role of tumor suppressor miRNAs in the negative regulation of oncogenic gene expression was thoroughly explained in this review. Its potential role as a microRNA therapeutic candidate is also discussed. Profiling and regulating tumor suppressor miRNA expression in gastrointestinal cancers using miRNA mimics could be used as a prognostic, diagnostic, and therapeutic marker, as well as an elucidating molecular therapeutic approach to tumor suppression.
Collapse
Affiliation(s)
- Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro CP 76130, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
9
|
Zhou J, Zhang B, Zhang X, Wang C, Xu Y. Identification of a 3-miRNA Signature Associated With the Prediction of Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2022; 11:823603. [PMID: 35155213 PMCID: PMC8828644 DOI: 10.3389/fonc.2021.823603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor caused by an infection of the epithelial cells of the nasopharynx, which is highly metastatic and aggressive. Due to the deep anatomical site and atypical early symptoms, the majority of NPC patients are diagnosed at terminal stages. There is growing evidence that microRNAs offer options for early detection, accurate diagnosis, and prediction of malignancy treatment response. Therefore, the purpose of this article was to identify microRNAs that predict the prognosis of patients with NPC by integrating biological information analysis. In this study, we utilized the GSE36682 dataset rooted in the Gene Expression Omnibus (GEO) data bank, including 62 cases of NPC tissues and six cases of non-cancerous tissues. The miRNAs were subjected to weighted gene co-expression network analysis, and hub miRNAs were screened for differentially upregulated miRNAs from modules highly correlated with tumor progression. We took a lot of time to calculate the risk scores of miRNA markers for 62 NPC patients, and incidentally combined the clinical survival information of patients to finally identify the three key miRNAs, and then divided the patients into low- and high-risk groups. Kaplan-Meier curve analysis revealed that the overall survival of patients in the high-risk group was obviously shorter than that of the low-risk group. Subsequently, the target genes of the three miRNAs were predicted and analyzed for functional enrichment. In summary, a prognostic predictive risk model based on three miRNA profiles may increase prognostic predictive value and provide reference information for the precise treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jinhui Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bo Zhang
- Teaching and Research Section of Otolaryngology, Hubei University of Science and Technology, Xianning, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chengyu Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
10
|
Lin C, Lin K, Zhang B, Su Y, Guo Q, Lu T, Xu Y, Lin S, Zong J, Pan J. OUP accepted manuscript. Oncologist 2022; 27:e340-e349. [PMID: 35380720 PMCID: PMC8982379 DOI: 10.1093/oncolo/oyac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background Nasopharyngeal carcinoma is an Epstein-Barr virus (EBV)-associated tumor that is highly common in southern China. Our previous sequencing data demonstrated that the EBV-encoded microRNA BART8-3p was most upregulated in nasopharyngeal carcinoma (NPC) and was closely associated with the metastasis of NPC. However, the values of plasma BART8-3p in NPC patients have not yet been well characterized. Material and Methods We quantified plasma BART8-3p expression by quantitative real-time PCR in 205 newly diagnosed NPC patients. Kaplan-Meier analysis was used to compare overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) between the groups. Results Plasma pretreatment BART8-3p was highly expressed in NPC patients compared with healthy controls. Pretreatment BART8-3p yielded a 92% predictive value for detecting NPC. Importantly, BART8-3p decreased dramatically after therapy relative to pretreatment levels. High levels of pretreatment or post-treatment BART8-3p were associated with worse OS, DMFS, and LRRFS. Multivariate analysis showed that high pretreatment or post-treatment BART8-3p was an independent unfavorable prognostic marker for OS (HR 3.82, 95% CI 1.77-8.24, P = .001 or HR 2.74, 95% CI 1.27-5.91, P = .010), DMFS (HR 2.82, 95% CI 1.36-5.85, P = .005 or HR 3.27, 95% CI 1.57-6.81, P = .002), and LRRFS (HR 1.94, 95% CI 1.12-3.35, P = .018 or HR 2.03, 95% CI 1.14-3.62, P = .016) in NPC. Subgroup analysis revealed that for patients with locally advanced NPC with high levels of pretreatment BART8-3p (n = 58), more cycles of chemotherapy (≥6 cycles) tended to prolong OS (P = .070). Over 50% (6/11) patients with high levels of post-treatment BART8-3p presented distant metastasis. Conclusion Plasma BART8-3p is a promising biomarker for the detection and prognosis of NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- The School of Clinical Medicine and Fujian Medical University, Fuzhou, People’s Republic of China
| | - Keyu Lin
- Department of Radiation Biology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Su
- Department of Radiation Biology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Tianzhu Lu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- Corresponding author: Jianji Pan and Jingfeng Zong, Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital No. 420 Fuma Road, Fuzhou 350014, People’s Republic of China. ;
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- Corresponding author: Jianji Pan and Jingfeng Zong, Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital No. 420 Fuma Road, Fuzhou 350014, People’s Republic of China. ;
| |
Collapse
|
11
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
12
|
Li XZ, Tu YJ, Zhou T, Zhang JB, Xiao RW, Yang DW, Zhang PF, You PT, Zheng XH. MicroRNA-483-5p Predicts Poor Prognosis and Promotes Cancer Metastasis by Targeting EGR3 in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:720835. [PMID: 34722264 PMCID: PMC8554159 DOI: 10.3389/fonc.2021.720835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/28/2021] [Indexed: 12/08/2022] Open
Abstract
Background MicroRNAs, as small non-coding RNAs, play an important role in tumorigenesis. MiR-483-5p was found to have a significant increase as a diagnostic biomarker of nasopharyngeal carcinoma (NPC), not only in plasma from NPC patients but also in tumor cell lines and biopsy tissues in our previous study. However, its function and mechanism in NPC are still unclear. Methods Tissue microarray including 178 primary NPC and 35 adjacent non-cancerous nasopharyngeal mucosal tissues was used to further validate the overexpression of miR-483-5p. Wound healing and invasion assays were conducted to verify its biological function. RNA sequencing (RNA-seq) and dual-luciferase reporter assay was performed to explore its target, and it was verified in fresh biopsy tissues from 23 NPC patients and 9 patients with chronic nasopharyngitis. Results MiR-483-5p was highly expressed in NPC tissues than in adjacent non-cancerous tissues. It was found to have a significant correlation with poor overall survival (OS) [hazard ratio (HR) = 2.89, 95% confidence interval (CI) = 1.00-8.35, p = 0.041] and progression-free survival (PFS) (HR = 1.95, 95%CI = 1.06-3.60, p = 0.029) of NPC patients. Silencing of its expression inhibited the migratory and invasive capacities of NPC cells in vitro. EGR3 (early growth response 3) was identified as a direct target, and inhibiting miR-483-5p expression markedly enhanced the expression of EGR3 at both the mRNA and protein levels. Besides, a significant decrease of EGR3 expression was found in fresh biopsy tissues from NPC patients, in contrast to miR-483-5p expression. Furthermore, directly decreasing the expression of EGR3 could enhance the migration and invasion of NPC cells. Conclusion The newly identified miR-483-5p/EGR3 pathway provides further insights into the development and metastasis of NPC and may provide a potential therapeutic target for NPC treatment in order to improve survival of NPC patients.
Collapse
Affiliation(s)
- Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Tu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng-Tao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, Tao Q, Chan KCA, To KF, King AD, Ma BBY, Chan ATC. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol 2021; 18:679-695. [PMID: 34194007 DOI: 10.1038/s41571-021-00524-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The past three decades have borne witness to many advances in the understanding of the molecular biology and treatment of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer endemic to southern China, southeast Asia and north Africa. In this Review, we provide a comprehensive, interdisciplinary overview of key research findings regarding NPC pathogenesis, treatment, screening and biomarker development. We describe how technological advances have led to the advent of proton therapy and other contemporary radiotherapy approaches, and emphasize the relentless efforts to identify the optimal sequencing of chemotherapy with radiotherapy through decades of clinical trials. Basic research into the pathogenic role of EBV and the genomic, epigenomic and immune landscape of NPC has laid the foundations of translational research. The latter, in turn, has led to the development of new biomarkers and therapeutic targets and of improved approaches for individualizing immunotherapy and targeted therapies for patients with NPC. We provide historical context to illustrate the effect of these advances on treatment outcomes at present. We describe current preclinical and clinical challenges and controversies in the hope of providing insights for future investigation.
Collapse
Affiliation(s)
- Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - David Johnson
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwan Chee Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ann D King
- Department of Diagnostic Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
14
|
Gadwal A, Modi A, Khokhar M, Vishnoi JR, Choudhary R, Elhence P, Banerjee M, Purohit P. Critical appraisal of epigenetic regulation of galectins in cancer. Int J Clin Oncol 2021; 27:35-44. [PMID: 34652614 DOI: 10.1007/s10147-021-02048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
Galectins are defined as the glycan-binding protein containing either one or two carbohydrate-binding domains and participate in various biological functions such as developmental processes, vascularisation programs, cell migration, and immune-regulation and apoptosis. Galectins are also linked to many diseases, including cancer. They are widely spread in extracellular and intracellular spaces, and their altered expression in cancer leads to tumor progression, metastasis, angiogenesis and stemness through different signalling pathways. Promoter methylation, microRNA, and histone modification constitute the epigenetic changes that regulate galectin activity in cancer. Our review discusses the concept of epigenetics in cancer and how the aforementioned factors i.e., promoter methylation, histone modification, change in miRNAs expression affect the glycomic changes in malignancies.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
15
|
Chen Y, Wang Z, Li H, Li Y. Integrative Analysis Identified a 6-miRNA Prognostic Signature in Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:661105. [PMID: 34336826 PMCID: PMC8322954 DOI: 10.3389/fcell.2021.661105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus-associated epithelial malignancy, which is rare in America but endemic in China. The current clinical gold TNM-based standard for prognosis may not be enough. Although some studies have reported that some miRNAs have a prognostic power in NPC, there is a scarcity of independent validation for these miRNAs. Methods In this work, we firstly conducted a literature review of all miRNA profiling datasets with survival information, then integrated miRNA expression data across different profiling platforms and built prognostic models using machine learning methods. The Kaplan–Meier method and log-rank tests were applied to estimate correlations of the miRNA signature with survival, and the area under the time-dependent ROC curve (AUC) and concordance index (C-index) were used to assess the predictive power of prognostic models. We also investigated the biological roles of the prognostic miRNAs through identifying their regulated genes and association with immune infiltration. Results We constructed a prognostic model based on 6-miRNA signature (ebv-miR-BART12, ebv-miR-BART15, miR-29c-3p, miR-30e-5p, hsa-miR-375-3p, has-miR-93-5p) using the elastic net penalized Cox regression model. The AUCs of our model predicting 1-, 3-, and 5-year overall survival rates were 0.90, 0.73, and 0.70 for the external validation dataset and showed better prognostic power than models using previously reported miRNA signatures. The 6-miRNA risk score was an independent prognostic predictor for overall survival (OS), disease-free survival (DFS), and metastasis-free survival (MFS). It could stratify patients into low-risk and high-risk groups; patients in the low-risk group treated with concurrent chemotherapy had a better survival. On the basis that the 6-miRNA risk score improved the current clinical gold standard for prognosis, we built a nomogram integrating both clinical characterizations and the risk score to predict 3-, 5-, and 10-year overall survival. Functional analysis suggested that the six miRNAs mainly play roles in virus infection pathways and oncogenic signaling pathways and associated with B-cell expression. Conclusion We identified a 6-miRNA prognostic signature in nasopharyngeal carcinoma across miRNA profiling platforms and patient geographical difference, which showed good prediction capability in terms of OS, DFS, and MFS. The 6-miRNA risk score might be helpful for clinicians to make treatment strategies and predict patient outcomes.
Collapse
Affiliation(s)
- Yunqin Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol 2020; 72:1732-1749. [PMID: 32783235 DOI: 10.1111/jphp.13351] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are a type of small noncoding RNA employed by the cells for gene regulation. A single miRNA, typically 22 nucleotides in length, can regulate the expression of numerous genes. Over the past decade, the study of miRNA biology in the context of cancer has led to the development of new diagnostic and therapeutic opportunities. KEY FINDINGS MicroRNA dysregulation is commonly associated with cancer, in part because miRNAs are actively involved in the mechanisms like genomic instabilities, aberrant transcriptional control, altered epigenetic regulation and biogenesis machinery defects. MicroRNAs can regulate oncogenes or tumour suppressor genes and thus when altered can lead to tumorigenesis. Expression profiling of miRNAs has boosted the possibilities of application of miRNAs as potential cancer biomarkers and therapeutic targets, although the feasibility of these approaches will require further validation. SUMMARY In this review, we will focus on how miRNAs regulate tumour development and the potential applications of targeting miRNAs for cancer therapy.
Collapse
Affiliation(s)
- Vandit Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
18
|
Bissey PA, Teng M, Law JH, Shi W, Bruce JP, Petit V, Tsao SW, Yip KW, Liu FF. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer 2020; 20:597. [PMID: 32586280 PMCID: PMC7318489 DOI: 10.1186/s12885-020-07081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background A major cause of disease-related death in nasopharyngeal carcinoma (NPC) is the development of distant metastasis (DM) despite combination chemoradiotherapy treatment. We previously identified and validated a four microRNA (miRNA) signature that is prognostic for DM. In this study, characterization of a key component of this signature, miR-34c, revealed its role in chemotherapy resistance. Methods Two hundred forty-six NPC patient biopsy samples were subject to comprehensive miRNA profiling and immunohistochemistry (IHC). Two human normal nasopharyngeal cell lines (immortalized; NP69 and NP460), as well as the NPC cell line C666–1, were used for miR-34c gain-of-function and loss-of-function experiments. Signaling pathways were assessed using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability was measured using the ATPlite assay. Results MiR-34c was downregulated in NPC patient samples, and confirmed in vitro to directly target SOX4, a master regulator of epithelial-to-mesenchymal transition (EMT). MiR-34c downregulation triggered EMT-representative changes in NP69 and NP460 whereby Snail, ZEB1, CDH2, and SOX2 were upregulated, while Claudin-1 and CDH1 were downregulated. Phenotypically, inhibition of miR-34c led to cisplatin resistance, whereas miR-34c over-expression sensitized NPC cells to cisplatin. TGFβ1 decreased miR-34c and increased SOX4 expression in vitro. The TGFβ receptor 1 inhibitor SB431542 reduced SOX4 expression and increased cisplatin sensitivity. Finally, IHC revealed that lower SOX4 expression was associated with improved overall survival in chemotherapy-treated NPC patients. Conclusion miR-34c is downregulated in NPC. Repression of miR-34c was shown to increase SOX4 expression, which leads to cisplatin resistance, while TGFβ1 was found to repress miR-34c expression. Taken together, our study demonstrates that inhibition of the TGFβ1 pathway could be a strategy to restore cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Valentin Petit
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Sai W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Yu Q, Dai J, Shu M. Retraction: Hsa_circ_0003645 shows an oncogenic role by sponging microRNA-1299 in hepatocellular carcinoma cells. J Clin Lab Anal 2020; 34:e23249. [PMID: 32108372 PMCID: PMC7307333 DOI: 10.1002/jcla.23249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Retraction: "Hsa_circ_0003645 shows an oncogenic role by sponging microRNA-1299 in hepatocellular carcinoma cells", by Qiuyun Yu, Jinhua Dai, Ming Shu, Journal of Clinical Laboratory Analysis, 2020, e23249 (https://doi.org/10.1002/jcla.23249). The above article, published online on 28 February 2020 in Early View in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the journal Editor-in-Chief Junming Guo, and John Wiley & Sons Ltd. The retraction has been agreed because the data and figures, including figure 7A, that the authors present in the paper are flawed. The authors' original data are not available. The conclusions drawn from the data and figures are unreliable.
Collapse
Affiliation(s)
- Qiuyun Yu
- Department of Clinical LaboratoryHwa Mei HospitalUniversity of Chinese Academy of Science (Ningbo No.2 Hospital)NingboChina
| | - Jinhua Dai
- Department of Clinical LaboratoryHwa Mei HospitalUniversity of Chinese Academy of Science (Ningbo No.2 Hospital)NingboChina
| | - Ming Shu
- Department of Hepatobiliary SurgeryHwa Mei HospitalUniversity of Chinese Academy of Science (Ningbo No.2 Hospital)NingboChina
| |
Collapse
|
20
|
Chen J, Ma C, Zhang Y, Pei S, Du M, Zhang Y, Qian L, Wang J, Yin L, He X. MiR-154-5p Suppresses Cell Invasion and Migration Through Inhibiting KIF14 in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:2235-2246. [PMID: 32214824 PMCID: PMC7078655 DOI: 10.2147/ott.s242939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Background Mounting evidence has reported that microRNA-154-5p (miR-154-5p) is involved in the development of multiple cancers, but its function in nasopharyngeal carcinoma (NPC) remains not well investigated. Methods Real-time quantitative PCR (qRT-PCR) was used to detect miR-154-5p expression in NPC tissues and cells. CCK8, colony formation, wound healing and transwell assays were performed to assess cell proliferation, migration and invasion. Dual-luciferase reporter assays and Western blots were performed to confirm the target gene of miR-154-5p. Rescue experiments were conducted to explore the influence of target gene KIF14 on the functions of miR-154-5p. Xenograft tumor model was conducted to detect the effect of miR-154-5p in vivo. Results qRT-PCR results revealed that the expression of miR-154-5p was down-regulated in NPC tissues and cell lines compared to normal nasopharyngeal tissues and cell line. Overexpression of miR-154-5p inhibited cell migration and invasion. However, miR-154-5p had no influence on the proliferation of NPC cells. MiR-154-5p overexpression suppressed xenograft tumor metastasis in vivo. Dual-luciferase reporter analysis identified KIF14 as a target gene of miR-154-5p. Rescue experiments showed that knockdown of KIF14 reversed the effect of inhibiting miR-154-5p expression on NPC cell migration and invasion. Conclusion Taken together, miR-154-5p suppresses tumor migration and invasion by targeting KIF14 in NPC. The newly identified miR-154-5p/KIF14 interaction offers further insights into the progression of NPC, which may represent a novel target for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Chengxian Ma
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yufeng Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Pei
- Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Mingyu Du
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yujie Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Luxi Qian
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Jianlin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Li Yin
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Xia He
- Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Peng LH, Zhou LQ, Chen X, Piao X. A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression. Front Bioeng Biotechnol 2020; 8:40. [PMID: 32117922 PMCID: PMC7015868 DOI: 10.3389/fbioe.2020.00040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
As increasing experimental studies have shown that microRNAs (miRNAs) are closely related to multiple biological processes and the prevention, diagnosis and treatment of human diseases, a growing number of researchers are focusing on the identification of associations between miRNAs and diseases. Identifying such associations purely via experiments is costly and demanding, which prompts researchers to develop computational methods to complement the experiments. In this paper, a novel prediction model named Ensemble of Kernel Ridge Regression based MiRNA-Disease Association prediction (EKRRMDA) was developed. EKRRMDA obtained features of miRNAs and diseases by integrating the disease semantic similarity, the miRNA functional similarity and the Gaussian interaction profile kernel similarity for diseases and miRNAs. Under the computational framework that utilized ensemble learning and feature dimensionality reduction, multiple base classifiers that combined two Kernel Ridge Regression classifiers from the miRNA side and disease side, respectively, were obtained based on random selection of features. Then average strategy for these base classifiers was adopted to obtain final association scores of miRNA-disease pairs. In the global and local leave-one-out cross validation, EKRRMDA attained the AUCs of 0.9314 and 0.8618, respectively. Moreover, the model’s average AUC with standard deviation in 5-fold cross validation was 0.9275 ± 0.0008. In addition, we implemented three different types of case studies on predicting miRNAs associated with five important diseases. As a result, there were 90% (Esophageal Neoplasms), 86% (Kidney Neoplasms), 86% (Lymphoma), 98% (Lung Neoplasms), and 96% (Breast Neoplasms) of the top 50 predicted miRNAs verified to have associations with these diseases.
Collapse
Affiliation(s)
- Li-Hong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Li-Qian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
MicroRNA expression profiling analysis in serum for nasopharyngeal carcinoma diagnosis. Gene 2019; 727:144243. [PMID: 31743768 DOI: 10.1016/j.gene.2019.144243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circulating microRNAs have become reliable sources of non-invasive biomarkers for cancer diagnosis. miRNA expression analysis in blood circulation for the identification of novel signatures might assist the early detection of nasopharyngeal carcinoma (NPC) patients. METHODS In the screening stage, the Exiqon miRNA qPCR panel was applied for the selection of candidate miRNAs. Serum samples taken from 208 NPC patients and 238 healthy donors (as normal controls (NCs)) were assigned to into the following three stages (training (30 NPC VS. 30 NCs), testing (138 NPC VS. 166 NCs) and external validation stage (40 NPC VS. 42 NCs)) for further confirmation of differently expressed miRNAs using qRT-PCR. The identified miRNA signatures were further explored in tissue specimens (48 NPC VS. 32 NCs) and serum-derived exosomes samples (32 NPC VS. 32 NCs). RESULTS Five miRNAs in serum including let-7b-5p, miR-140-3p, miR-192-5p, miR-223-3p and miR-24-3p were found to be significantly up-regulated in NPC patients compared to NCs. The five identified miRNAs were further combined into one panel and the areas under the receiver operating characteristic curve (AUCs) for three independent stages were 0.910 (training), 0.916 (testing) and 0.968 (external validation), respectively. miR-192-5p and miR-24-3p were consistently up-regulated in NPC tissues while let-7b-5p and miR-140-3p were conversely down-regulated. In serum-derived exosomes samples, no expression difference was observed between NPC patients and NCs. CONCLUSION A five-miRNA signature was identified in serum to be potential biomarkers for NPC detection.
Collapse
|
23
|
Tan GW, Sivanesan VM, Abdul Rahman FI, Hassan F, Hasbullah HH, Ng C, Khoo AS, Tan LP. A novel and non-invasive approach utilising nasal washings for the detection of nasopharyngeal carcinoma. Int J Cancer 2019; 145:2260-2266. [PMID: 30698824 PMCID: PMC6767762 DOI: 10.1002/ijc.32173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/01/2019] [Accepted: 01/22/2019] [Indexed: 11/11/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial cancer of the nasopharynx which is highly associated with Epstein-Barr virus (EBV). Worldwide, most of the top 20 countries with the highest incidence and mortality rates of NPC are low- and middle-income countries. Many studies had demonstrated that EBV could be detected in the tissue, serum and plasma of NPC patients. In this study, we explored the potential of assays based on non-invasive nasal washings (NW) as a diagnostic and prognostic tool for NPC. A total of 128 patients were evaluated for NW EBV DNA loads and a subset of these samples were also tested for 27 EBV and human miRNAs shortlisted from literature. EBV DNA and seven miRNAs showed area under the receiver operating characteristic curve (AUC) values of more than 0.7, suggestive of their potential utility to detect NPC. Logistic regression analyses suggested that combination of two NW assays that test for EBNA-1 and hsa-miR-21 had the best performance in detecting NPC. The trend of NW EBV DNA load matched with clinical outcome of 71.4% (10 out of 14) NPC patients being followed-up. In summary, the non-invasive NW testing panel may be particularly useful for NPC screening in remote areas where healthcare facilities and otolaryngologists are lacking, and may encourage frequent testing of individuals in the high risk groups who are reluctant to have their blood tested. However, further validation in an independent cohort is required to strengthen the utility of this testing panel as a non-invasive detection tool for NPC.
Collapse
Affiliation(s)
- Geok Wee Tan
- Molecular Pathology Unit, Cancer Research CentreInstitute for Medical Research, Ministry of Health MalaysiaKuala LumpurMalaysia
- Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Vijaya Mohan Sivanesan
- Molecular Pathology Unit, Cancer Research CentreInstitute for Medical Research, Ministry of Health MalaysiaKuala LumpurMalaysia
- Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Farah Ida Abdul Rahman
- Molecular Pathology Unit, Cancer Research CentreInstitute for Medical Research, Ministry of Health MalaysiaKuala LumpurMalaysia
| | - Faridah Hassan
- Department of OtorhinolaryngologySelayang Hospital, Ministry of Health Malaysia, Batu CavesSelangorMalaysia
| | - Harissa Husainy Hasbullah
- Department of Oncology and RadiotherapyKuala Lumpur Hospital, Ministry of Health MalaysiaKuala LumpurMalaysia
- Department of Internal Medicine, Faculty of MedicineUiTM SelangorShah AlamSelangorMalaysia
| | - Ching‐Ching Ng
- Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Alan Soo‐Beng Khoo
- Molecular Pathology Unit, Cancer Research CentreInstitute for Medical Research, Ministry of Health MalaysiaKuala LumpurMalaysia
| | - Lu Ping Tan
- Molecular Pathology Unit, Cancer Research CentreInstitute for Medical Research, Ministry of Health MalaysiaKuala LumpurMalaysia
- Department of Medical SciencesSchool of Healthcare and Medical Sciences, Sunway UniversitySubang JayaSelangorMalaysia
| |
Collapse
|
24
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Canouil M, Bouland GA, Bonnefond A, Froguel P, ’t Hart LM, Slieker RC. NACHO: an R package for quality control of NanoString nCounter data. Bioinformatics 2019; 36:970-971. [PMID: 31504159 PMCID: PMC9883715 DOI: 10.1093/bioinformatics/btz647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 02/02/2023] Open
Abstract
SUMMARY The NanoStringTM nCounter® is a platform for the targeted quantification of expression data in biofluids and tissues. While software by the manufacturer is available in addition to third parties packages, they do not provide a complete quality control (QC) pipeline. Here, we present NACHO ('NAnostring quality Control dasHbOard'), a comprehensive QC R-package. The package consists of three subsequent steps: summarize, visualize and normalize. The summarize function collects all the relevant data and stores it in a tidy format, the visualize function initiates a dashboard with plots of the relevant QC outcomes. It contains QC metrics that are measured by default by the manufacturer, but also calculates other insightful measures, including the scaling factors that are needed in the normalization step. In this normalization step, different normalization methods can be chosen to optimally preprocess data. Together, NACHO is a comprehensive method that optimizes insight and preprocessing of nCounter® data. AVAILABILITY AND IMPLEMENTATION NACHO is available as an R-package on CRAN and the development version on GitHub https://github.com/mcanouil/NACHO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Amélie Bonnefond
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France,Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London SW7 2AZ, UK
| | - Philippe Froguel
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France,Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London SW7 2AZ, UK
| | - Leen M ’t Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands,Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands,Molecular Epidemiology Section, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | | |
Collapse
|
26
|
Guo Q, Lu T, Hui Huang S, O'Sullivan B, Zong J, Xiao Y, Xu W, Chen C, Qiu S, Xu L, Zheng W, Chen Y, Lin S, Pan J. Depicting distant metastatic risk by refined subgroups derived from the 8th edition nasopharyngeal carcinoma TNM. Oral Oncol 2019; 91:113-120. [PMID: 30926056 DOI: 10.1016/j.oraloncology.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Tumor-nodal-metastasis (TNM) is the most important survival predictor in nasopharyngeal carcinoma (NPC). Distant metastasis (DM) is the predominant failure pattern of NPC in the intensity-modulated radiotherapy (IMRT) era. The DM risk appears to be different for T-N subsets within the same clinical stage. Appropriately depicting DM risk has emerged as an important issue in tailoring individualized treatment and underpins the reason for this study. METHODS A total of 1616 non-metastatic (M0) NPC patients treated with IMRT were included. All were re-staged according to the 8th edition AJCC/UICC TNM (TNM-8). DM-free survival (DMFS) was calculated and compared among T-N subsets within each stage and DM risk groups were derived by Recursive-partitioning analysis (RPA) based on ordinal T and N categories. RESULTS Significant heterogeneity in DM risk was evident among T-N subsets within cTNM-8 stages II-IV. The RPA algorithm classified patients into four DM risk groups: RPA-I (T1N0-1 and T2-3N0), RPA-II (T2-3N1), RPA-III (T4N0-1 and T1-3N2) and RPA-IV (T4N2 and T1-4N3), with 5-year DMFS of 93.4% (95% CI: 91.3-96.1), 84.3% (80.8-87.8), 78.9% (75.4-82.4) and 63.6% (56.3-70.9), respectively (p < 0.001). Compared to cTNM-8 stage grouping, RPA grouping had a lower Akaike information criterion (AIC) and higher Harrell's concordance index (c-index) for DMFS. CONCLUSIONS Significant heterogeneity in DM risk exists among T-N subsets within cTNM-8 stages. The RPA groups demonstrated improved intra-group hazard consistency compared to cTNM-8 stage groups. While further validation is warranted, these RPA prognostic groupings provide a strong anatomic foundation to augment DM prediction for optimal targeting in future clinical trials.
Collapse
Affiliation(s)
- Qiaojuan Guo
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianzhu Lu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Canada
| | - Brian O'Sullivan
- Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Canada
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Youping Xiao
- Department of Radiology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Chuanben Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Luying Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Wei Zheng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Yunbin Chen
- Department of Radiation Oncology, Princess Margaret Cancer Centre/University of Toronto, Toronto, Canada
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
27
|
Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: A retrospective cohort study. EBioMedicine 2019; 40:327-335. [PMID: 30642750 PMCID: PMC6413336 DOI: 10.1016/j.ebiom.2019.01.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background We aimed to identify a magnetic resonance imaging (MRI)-based model for assessment of the risk of individual distant metastasis (DM) before initial treatment of nasopharyngeal carcinoma (NPC). Methods This retrospective cohort analysis included 176 patients with NPC. Using the PyRadiomics platform, we extracted the imaging features of primary tumors in all patients who did not exhibit DM before treatment. Subsequently, we used minimum redundancy-maximum relevance and least absolute shrinkage and selection operator algorithms to select the strongest features and build a logistic model for DM prediction. The independent statistical significance of multiple clinical variables was tested using multivariate logistic regression analysis. Findings In total, 2780 radiomic features were extracted. A DM MRI-based model (DMMM) comprising seven features was constructed for the classification of patients into high- and low-risk groups in a training cohort and validated in an independent cohort. Overall survival was significantly shorter in the high-risk group than in the low-risk group (P < 0·001). A radiomics nomogram based on radiomic features and clinical variables was developed for DM risk assessment in each patient, and it showed a significant predictive ability in the training [area under the curve (AUC), 0·827; 95% confidence interval (CI), 0.754–0.900] and validation (AUC, 0.792; 95% CI, 0.633–0.952) cohorts. Interpretation DMMM can serve as a visual prognostic tool for DM prediction in NPC, and it can improve treatment decisions by aiding in the differentiation of patients with high and low risks of DM. Fund This research received financial support from the National Natural Science Foundation of China (81571664, 81871323, 81801665, 81771924, 81501616, 81671851, and 81527805); the National Natural Science Foundation of Guangdong Province (2018B030311024); the Science and Technology Planning Project of Guangdong Province (2016A020216020); the Scientific Research General Project of Guangzhou Science Technology and Innovation Commission (201707010328); the China Postdoctoral Science Foundation (2016M600145); and the National Key R&D Program of China (2017YFA0205200, 2017YFC1308700, and 2017YFC1309100).
Collapse
|
28
|
Peng X, Guan L, Gao B. miRNA-19 promotes non-small-cell lung cancer cell proliferation via inhibiting CBX7 expression. Onco Targets Ther 2018; 11:8865-8874. [PMID: 30584339 PMCID: PMC6290863 DOI: 10.2147/ott.s181433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background miR-19 is a critical carcinogenic miRNA that participates in important biological processes of human malignancies. CBX7 plays a key role in lung cancer development and progression. In the present study, for the first time, we investigated the correlation between miR-19 and CBX7 in non-small-cell lung cancer (NSCLC). Methods miR-19 expression in NSCLC tissues and lung cancer cell lines was detected using quantitative reverse transcriptase PCR (qRT-PCR). Luciferase reporter assay, qRT-PCR, Western blot, and immunohistochemical assay were conducted to identify the target reaction of miR-19 and CBX7. Moreover, the influence of miR-19 on lung cancer cell proliferation, migration, and invasion was studied including cell counting kit-8 assay, scratch assay, transwell assay, flow cytometry assay, and staining assays. Results miR-19 was overexpressed in NSCLC tissues and lung cancer cell lines. Luciferase reporter assay demonstrated that miR-19 could inhibit CBX7 expression via binding to the 3′-UTR of CBX7. Furthermore, miR-19 remarkably decreased CBX7 protein and mRNA expression. Additionally, overexpression of miR-19 could significantly enhance lung cancer cell proliferation and migration. Conclusion miR-19 functions as a tumor accelerator promoting lung cancer cell proliferation through targeting CBX7 and inhibiting its expression.
Collapse
Affiliation(s)
- Xiaogang Peng
- Department of Respiratory, China Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, China,
| | - Li Guan
- Department of Respiratory, China Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, China,
| | - Baoan Gao
- Department of Respiratory, China Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, China,
| |
Collapse
|
29
|
Li Y, He Q, Wen X, Hong X, Yang X, Tang X, Zhang P, Lei Y, Sun Y, Zhang J, Wang Y, Ma J, Liu N. EZH2-DNMT1-mediated epigenetic silencing of miR-142-3p promotes metastasis through targeting ZEB2 in nasopharyngeal carcinoma. Cell Death Differ 2018; 26:1089-1106. [PMID: 30353102 DOI: 10.1038/s41418-018-0208-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
Human nasopharyngeal carcinoma (NPC) has the highest metastatic rate in head and neck. However, the mechanisms underlying NPC metastasis remain unclear. Here using propensity-score-matched miRNA microarray analysis, miR-142-3p is identified to be the most correlated with distant-metastasis-free survival and downregulated in paraffin-embedded NPC with distant metastasis, which is validated in both internal cohort and external GEO dataset from Canada. miR-142 locus hypermethylation was observed and found to be associated with miR-142-3p downregulation in metastatic NPC. Furthermore, miR-142-3p was epigenetically silenced by EZH2-recruited DNMT1 and suppressed NPC cell metastasis and EMT. Intersecting PCR array gene profiling with bioinformatic prediction, we identify ZEB2 as a direct and functional target of miR-142-3p in NPC. Reversal of miR-142-3p silencing efficiently suppresses NPC cell invasion and metastasis. Moreover, epigenetic miR-142 hypermethylation is correlated with unfavorable prognosis in both training and validation cohorts. This study identifies miR-142-3p as a key suppressive regulator in NPC metastasis and reveals a DNMT1-mediated epigenetic mechanism for miR-142-3p silencing, providing a potential prognostic marker and therapeutic target to combat NPC metastasis.
Collapse
Affiliation(s)
- Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Xiaohong Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Panpan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Yuan Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Ying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Jian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Yaqin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China.
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Lian Y, Xiong F, Yang L, Bo H, Gong Z, Wang Y, Wei F, Tang Y, Li X, Liao Q, Wang H, Zhou M, Xiang B, Wu X, Li Y, Li X, Chen X, Li G, Guo C, Zeng Z, Xiong W. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:253. [PMID: 30326930 PMCID: PMC6191894 DOI: 10.1186/s13046-018-0918-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long noncoding RNA, is significantly highly expressed and associated with metastasis and poor prognosis in many cancers, including nasopharyngeal carcinoma (NPC). In this study, we aim to identify the role of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC metastasis. METHODS The role of AFAP1-AS1, miR-423-5p, and FOSL2 in NPC metastasis was investigated in vitro and in vivo. Bioinformatics analysis and luciferase activity assays were used to identify the interaction between AFAP1-AS1, miR-423-5p, and FOSL2. Additionally, real-time PCR and western blotting were used to assess the function of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC progression by regulating miR-423-5p and the downstream Rho/Rac pathway. RESULTS In this study, we determined that AFAP1-AS1 functions as a competing endogenous RNA in NPC to regulate the Rho/Rac pathway through miR-423-5p. These interactions can mediate the expression of RAB11B, LASP1, and FOSL2 and accelerate cell migration and invasion via the Rho/Rac signaling pathway or FOSL2. AFAP1-AS1 and FOSL2 could competitively bind with miR-423-5p to regulate several molecules, including RAB11B and LASP1 of the Rho/Rac signaling pathway. AFAP1-AS1 can also regulate the expression of LASP1, which was transcriptionally regulated by FOSL2, resulting in increased migration and invasion of NPC cells via the Rho/Rac signaling pathway. CONCLUSIONS The observations in this study identify an important role for AFAP1-AS1 as a competing endogenous RNA (ceRNA) in NPC pathogenesis and indicate that it may serve as a potential target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yong Li
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Su B, Xu T, Bruce JP, Yip KW, Zhang N, Huang Z, Zhang G, Liu FF, Liang J, Yang H, Claret FX. hsa‑miR‑24 suppresses metastasis in nasopharyngeal carcinoma by regulating the c‑Myc/epithelial‑mesenchymal transition axis. Oncol Rep 2018; 40:2536-2546. [PMID: 30226609 PMCID: PMC6151896 DOI: 10.3892/or.2018.6690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/19/2018] [Indexed: 01/06/2023] Open
Abstract
Distant metastasis is the major contributor to treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). The lack of effective treatment strategies for metastatic NPC is the major cause for the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying NPC metastasis and to identify potential biomarkers for targeted therapy. MicroRNA (miRNAs or miRs) have been shown to play an important role in tumorigenesis and metastasis. In the present study, we aimed to evaluate the significance of hsa-miR-24 in NPC metastasis. Significantly lower hsa-miR-24 levels were observed in NPC metastatic tumors and higher hsa-miR-24 levels were associated with longer progression-free and metastasis-free survival durations. hsa-miR-24 overexpression inhibited cell proliferation, invasion and migration. Using bioinformatics approaches together with functional luciferase reporter assays, we demonstrated that the c-Myc 3′-UTR was a direct target of hsa-miR-24 in regulating NPC metastasis. Protein profiling analysis revealed that a high c-Myc expression was inversely associated with metastasis-free overall survival and with epithelial-mesenchymal transition (EMT). Furthermore, the overexpression of hsa-miR-24 decreased NPC cell invasive ability induced by the overexpression of c-Myc, associated with EMT epithelial marker (E-cadherin) restoration. Thus, on the whole, the findings of this study demonstrate that hsa-miR-24 suppresses metastasis in NPC by regulating the c-Myc/EMT axis, suggesting that hsa-miR-24 may be used as a prognostic factor and as a novel target for the prevention of NPC metastasis.
Collapse
Affiliation(s)
- Bojin Su
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Xu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jeff P Bruce
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kenneth W Yip
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ning Zhang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Zeli Huang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Guoyi Zhang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Fei-Fei Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiling Yang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - François X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Mo X, Yin W, Huang Y, Guo W, Zhou M, Ye H. Expression of miR-3182 and EBV-miR-BART8-3p in nasopharyngeal carcinoma is correlated with distant metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3134-3140. [PMID: 31938442 PMCID: PMC6958091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/11/2018] [Indexed: 06/10/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an EBV associated carcinoma showing prevalence in southeast China. Distant metastasis is the major cause of death. Herein, we investigated the expressions of microRNA-3182 (miR-3182) and EBV-miR-BART8-3p in 89 cases of NPC and evaluated their correlation with clinical outcomes. Fifty-one percent of NPC showed high level expression of miR-3182. Its expression was significantly correlated with distant metastasis (P=0.005). Fifty-two percent of NPC demonstrated high level expression of EBV-miR-BART8-3p and its expression was significantly correlated with distant metastasis (P=0.006). The overall survival was influenced by the expression of miR-3182 and EBV-miR-BART8-3p. The patients with a high-level expression of miR-3182 and EBV-miR-BART8-3p had worse overall survival (P=0.005 and P=0.007). Multivariable analysis demonstrated that EBV-miR-BART8-3p was an independent prognostic factor for overall survival (P=0.018). The expression of miR-3182 was significantly correlated with EBV-miR-BART8-3p (P=0.045). In conclusion, this is the first study examining the potential clinical utility of miR-3182 and EBV-miR-BART8-3p as prognostic biomarkers in NPC. EBV infection may promote NPC progression by disrupting the expression of miR-3182.
Collapse
Affiliation(s)
- Xianglan Mo
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Wu Yin
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Yongta Huang
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Wenwen Guo
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Minyan Zhou
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
| | - Hongtao Ye
- Department of Pathology, People’s Hospital of Guangxi ProvinceNanning, Guangxi, P. R. China
- Department of Histopathology, Royal National Orthopaedic Hospital NHS TrustBrockley Hill, Stanmore, Middlesex, HA7 4LP, United Kingdom
| |
Collapse
|
33
|
Bissey PA, Law JH, Bruce JP, Shi W, Renoult A, Chua MLK, Yip KW, Liu FF. Dysregulation of the MiR-449b target TGFBI alters the TGFβ pathway to induce cisplatin resistance in nasopharyngeal carcinoma. Oncogenesis 2018; 7:40. [PMID: 29795279 PMCID: PMC5966388 DOI: 10.1038/s41389-018-0050-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/26/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
Despite the improvement in locoregional control of nasopharyngeal carcinoma (NPC), distant metastasis (DM), and chemoresistance persist as major causes of mortality. This study identified a novel role for miR-449b, an overexpressed gene in a validated four-miRNA signature for NPC DM, leading to chemoresistance via the direct targeting of transforming growth factor beta-induced (TGFBI). In vitro shRNA-mediated downregulation of TGFBI induced phosphorylation of PTEN and AKT, increasing cisplatin resistance. Conversely, the overexpression of TGFBI sensitized the NPC cells to cisplatin. In NPC patients treated with concurrent chemoradiotherapy (CRT), the overall survival (OS) was significantly inversely correlated with miR-449b, and directly correlated with both TGFBI mRNA and protein expression, as assessed by RNA sequencing and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation demonstrated that TGFBI competes with pro-TGFβ1 for integrin receptor binding. Decreased TGFBI led to increased pro-TGFβ1 activation and TGFβ1 canonical/noncanonical pathway-induced cisplatin resistance. Thus, overexpression of miR-449b decreases TGFBI, thereby altering the balance between TGFBI and pro-TGFβ1, revealing a novel mechanism of chemoresistance in NPC.
Collapse
Affiliation(s)
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aline Renoult
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Melvin L K Chua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.,Division of Radiation Oncology, National Cancer Centre, Singapore, Singapore.,Duke-NUS Graduate School, Singapore, Singapore
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Zhao L, Fong AHW, Liu N, Cho WCS. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J Biomed Sci 2018; 25:16. [PMID: 29455649 PMCID: PMC5817810 DOI: 10.1186/s12929-018-0417-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer, with diverse molecular characteristics and clinical outcomes. This study aims to dissect the molecular heterogeneity of NPC, followed by the construction of a microRNA (miRNA)-based prognostic model for prediction of distant metastasis. METHODS We retrieved two NPC datasets: GSE32960 and GSE70970 as training and validation cohorts, respectively. Consensus clustering was employed for cluster discovery, and support vector machine was used to build a classifier. Finally, Cox regression analysis was applied to constructing a prognostic model for predicting risk of distant metastasis. RESULTS Three NPC subtypes (immunogenic, classical and mesenchymal) were identified that are molecularly distinct and clinically relevant, of which mesenchymal subtype (~ 36%) is associated with poor prognosis, characterized by suppressing tumor suppressor miRNAs and the activation of epithelial--mesenchymal transition. Out of the 25 most differentially expressed miRNAs in mesenchymal subtype, miR-142, miR-26a, miR-141 and let-7i have significant prognostic power (P < 0.05). CONCLUSIONS We proposed for the first time that NPC can be stratified into three subtypes. Using a panel of 4 miRNAs, we established a prognostic model that can robustly stratify NPC patients into high- and low- risk groups of distant metastasis.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.
| | - Alvin H W Fong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
35
|
Asiaf A, Ahmad ST, Arjumand W, Zargar MA. MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential. Methods Mol Biol 2018; 1699:23-43. [PMID: 29086366 DOI: 10.1007/978-1-4939-7435-1_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of small, approximately 20-22 nucleotide, noncoding RNAs that regulate the expression of target genes, at the post-transcriptional level. miRNAs are involved in virtually diverse biological processes and play crucial roles in cellular processes, such as cell differentiation, proliferation, and apoptosis. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. It is possible that the diverse roles that miRNAs play, have potential to provide valuable information in a clinical setting, demonstrating the potential to act as both screening tools for the stratification of high-risk patients, while informing the treatment decision-making process. Increasing evidence suggests that some miRNAs may even provide assistance in the diagnosis of patients with breast cancer. In addition, miRNAs may themselves be considered therapeutic targets, with inhibition or reintroduction of a particular miRNA capable of inducing a response in-vivo. This chapter discusses the role of miRNAs as oncogenes and tumor suppressors in breast cancer development and metastasis . It focuses on miRNAs that have prognostic, diagnostic, or predictive potential in breast cancer as well as the possible challenges in the translation of such observations to the clinic.
Collapse
Affiliation(s)
- Asia Asiaf
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India
| | - Shiekh Tanveer Ahmad
- Clarke H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A25 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wani Arjumand
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A32 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohammad Afzal Zargar
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India.
| |
Collapse
|
36
|
Zhang Y, Hu Y, Fang JY, Xu J. Gain-of-function miRNA signature by mutant p53 associates with poor cancer outcome. Oncotarget 2017; 7:11056-66. [PMID: 26840456 PMCID: PMC4905457 DOI: 10.18632/oncotarget.7090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
Missense mutation of p53 not only impairs its tumor suppression function, but also causes oncogenic gain of function (GOF). The molecular underpinning of mutant p53 (mutp53) GOF is not fully understood, especially for the potential roles of non-coding genes. Here we identify the microRNA expression profile (microRNAome) of mutp53 on Arg282 by controlled microarray experiments, and clarify the prognostic significance of mutp53-regulated miRNAs in cancers. A predominant repression effect on miRNA expression was found for mutant p53, with 183 significantly downregulated and only 12 upregulated miRNAs. Mutp53 and wild-type (wtp53) commonly upregulate let-7i, and other two miRNAs were upregulated by wtp53 but repressed by mutp53 (miR-610 and miR-3065–3p). Based the mutp53-regulated miRNA signature, a non-negative matrix factorization (NMF) model classified gastric cancer (GC) cases into subgroups with significantly different Disease-free survival (Kaplan-Meier test, P = 0.013). In contrast, the NMF model based on all miRNAs did not associate with cancer outcome. The mutp53 miRNA signature associated with the outcomes of breast cancer (P = 0.024) and hepatocellular cancer (P = 0.012). The miRPath analysis revealed that mutp53-suppressed miRNAs associate with Hippo, TGF-β and stem cell signaling pathways. Taken together, our results highlight a miRNA-mediated GOF mechanism of mutant p53 on Arg282, and suggest the prognostic potential of mutp53-associated miRNA signature.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Ye Hu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China.,Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
37
|
Grisard E, Nicoloso MS. Following MicroRNAs Through the Cancer Metastatic Cascade. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:173-228. [PMID: 28729025 DOI: 10.1016/bs.ircmb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately a decade ago the first MicroRNAs (MiRNAs) participating in cancer metastasis were identified and metastmiRs were initially only a handful. Since those first reports, MiRNA research has explosively thrived, mainly due to their revolutionary mechanism of action and the hope of having at hand a novel tool to control cancer aggressiveness. This has ultimately led to delineate an almost impenetrable regulatory network: hundreds of MiRNAs transversally dominating every aspect of normal and cancer biology, each MiRNA having hundreds of targets and context-dependent activity. Providing a comprehensive description of MiRNA roles in cancer metastasis is a daunting task; nevertheless, we still believe that grasping the big picture of MiRNAs in cancer metastasis can give a different perspective on the potential insights and approaches that MiRNAs can offer to understand cancer complexity (e.g., as predictive and prognostic markers) and to tackle cancer metastasis (e.g., as therapeutic targets or tools). This chapter presents a schematic overview of the role of MiRNAs in governing cancer metastasis, describing step by step the cellular and molecular processes whereby cancer cells conquer distant organs and can grow as secondary tumors at different distant sites, and for each step, we will introduce how MiRNAs impinge on each one of them. We deeply apologize with our colleagues for any of their research work that, for clarity, for our effort to streamline and due to space limitations, we did not cite.
Collapse
|
38
|
Qu C, Zhao Y, Feng G, Chen C, Tao Y, Zhou S, Liu S, Chang H, Zeng M, Xia Y. RPA3 is a potential marker of prognosis and radioresistance for nasopharyngeal carcinoma. J Cell Mol Med 2017; 21:2872-2883. [PMID: 28557284 PMCID: PMC5661258 DOI: 10.1111/jcmm.13200] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Radioresistance-induced residual and recurrent tumours are the main cause of treatment failure in nasopharyngeal carcinoma (NPC). Thus, the mechanisms of NPC radioresistance and predictive markers of NPC prognosis and radioresistance need to be investigated and identified. In this study, we identified RPA3 as a candidate radioresistance marker using RNA-seq of NPC samples. In vitro studies further confirmed that RPA3 affected the radiosensitivity of NPC cells. Specifically, the overexpression of RPA3 enhanced radioresistance and the capacity for DNA repair of NPC cells, whereas inhibiting RPA3 expression sensitized NPC cells to irradiation and decreased the DNA repair capacity. Furthermore, the overexpression of RPA3 enhanced RAD51 foci formation in NPC cells after irradiation. Immunohistochemical assays in 104 NPC specimens and 21 normal epithelium specimens indicated that RPA3 was significantly up-regulated in NPC tissues, and a log-rank test suggested that in patients with NPC, high RPA3 expression was associated with shorter overall survival (OS) and a higher recurrence rate compared with low expression (5-year OS rates: 67.2% versus 86.2%; 5-year recurrence rates: 14.8% versus 2.3%). Moreover, TCGA data also indicated that high RPA3 expression correlated with poor OS and a high recurrence rate in patients with head and neck squamous cell carcinoma (HNSC) after radiotherapy. Taken together, the results of our study demonstrated that RPA3 regulated the radiosensitivity and DNA repair capacity of NPC cells. Thus, RPA3 may serve as a new predictive biomarker for NPC prognosis and radioresistance to help guide the diagnosis and individualized treatment of patients with NPC.
Collapse
Affiliation(s)
- Chen Qu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yiying Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Shu Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Songran Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yunfei Xia
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| |
Collapse
|
39
|
Wang JG, Tang WP, Liao MC, Liu YP, Ai XH. MiR-99a suppresses cell invasion and metastasis in nasopharyngeal carcinoma through targeting HOXA1. Onco Targets Ther 2017; 10:753-761. [PMID: 28228659 PMCID: PMC5312690 DOI: 10.2147/ott.s126781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Recent studies reported that miRNAs play important roles in the carcinogenesis and progression of nasopharyngeal carcinoma (NPC). Therefore, further studies are warranted to better elucidate the function and mechanism of miRNAs in NPC. Methods Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the miR-99a expression in NPC cell lines and tissue samples. Wound healing, transwell migration and invasion, and lung metastatic colonization assays were performed to determine NPC cell migratory, invasive and metastatic abilities of NPC cells. Luciferase reporter assays, quantitative RT-PCR and Western blotting were used to validate the target of miR-99a. Results We found that miR-99a was significantly downregulated in NPC cell lines and tissue samples. Ectopic overexpression of miR-99a significantly inhibited NPC cell migration and invasion in vitro, and suppressed lung macroscopic and microscopic metastatic colonization in vivo. Conversely, silencing of miR-99a significantly promoted the migratory and invasive abilities of NPC cells. Furthermore, HOXA1 was validated as a direct target of miR-99a, and ectopic expression of HOXA1 could rescue the suppressive effect of miR-99a overexpression on NPC cell migration and invasion. Conclusion Together, these results indicated that miR-99a could inhibit NPC invasion and metastasis by targeting HOXA1, thus providing a novel potential target for miRNA-based treatment for NPC patients in the future.
Collapse
Affiliation(s)
- Jian-Gang Wang
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang; Department of Oncology, Shaoyang Hospital of TCM, Shaoyang, People's Republic of China
| | - Wu-Ping Tang
- Department of Oncology, Shaoyang Hospital of TCM, Shaoyang, People's Republic of China
| | - Ming-Chu Liao
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang
| | - Yan-Ping Liu
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang
| | - Xiao-Hong Ai
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang
| |
Collapse
|
40
|
Xu T, Su B, Huang P, Wei W, Deng Y, Sehgal V, Wang D, Jiang J, Zhang G, Li A, Yang H, Claret FX. Novel biomarkers of nasopharyngeal carcinoma metastasis risk identified by reverse phase protein array based tumor profiling with consideration of plasma Epstein-Barr virus DNA load. Proteomics Clin Appl 2016; 11. [PMID: 27883284 DOI: 10.1002/prca.201600090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE In patients with Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC), intertumor heterogeneity causes interpatient heterogeneity in the risk of distant metastasis. We aimed to identify novel biomarkers of metastasis risk using reverse phase protein array (RPPA) profiling of NPC patients at risk for metastasis and considering plasma EBV DNA load. EXPERIMENTAL DESIGN A total of 98 patients with NPC with and without metastasis after treatment, matched with respect to clinical parameters, are enrolled. Total protein expression is measured by RPPA, and protein functions are analyzed by pathway bioinformatics. RESULTS The RPPA analysis revealed a profile of 70 proteins that are differentially expressed in metastatic and nonmetastatic tumors. Plasma EBV DNA load after treatment correlated with protein expression level better than plasma EBV DNA load before treatment did. The biomarkers of NPC metastasis identified by proteomics regulate signaling pathways involved in cell cycle progression, apoptosis, and epithelial-mesenchymal transition. The authors identified 26 biomarkers associated with 5-year distant failure-free survival in univariate analysis; five biomarkers remained significant in multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE A comprehensive RPPA profiling study is warranted to identify novel metastasis-related biomarkers and further examine the activation state of signaling proteins to improve estimation of metastasis risk for patients with EBV-associated NPC.
Collapse
Affiliation(s)
- Tao Xu
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, P. R., China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R., China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bojin Su
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R., China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiyu Huang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, P. R., China
| | - Weihong Wei
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, P. R., China
| | - Yanming Deng
- Department of Medical Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, P. R., China
| | - Vasudha Sehgal
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghui Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R., China
| | - Jun Jiang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, P. R., China
| | - Guoyi Zhang
- Department of Radiation Oncology, Cancer Center, First People's Hospital of Foshan, Foshan, P. R., China
| | - Anfei Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R., China
| | - Huiling Yang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R., China
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Experimental Therapeutics Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
41
|
Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch JM, Baum T, Oberbauer E, Lobach I, Burghardt AJ, Schwartz AV, Grillari J, Link TM. Serum miRNA Signatures Are Indicative of Skeletal Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. J Bone Miner Res 2016; 31:2173-2192. [PMID: 27345526 DOI: 10.1002/jbmr.2897] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022]
Abstract
Standard DXA measurements, including Fracture Risk Assessment Tool (FRAX) scores, have shown limitations in assessing fracture risk in Type 2 Diabetes (T2D), underscoring the need for novel biomarkers and suggesting that other pathomechanisms may drive diabetic bone fragility. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity and were recently found to be crucial to bone homeostasis and T2D. Here, we studied, if and which circulating miRNAs or combinations of miRNAs can discriminate best fracture status in a well-characterized study of diabetic bone disease and postmenopausal osteoporosis (n = 80 postmenopausal women). We then tested the most discriminative and most frequent miRNAs in vitro. Using miRNA-qPCR-arrays, we showed that 48 miRNAs can differentiate fracture status in T2D women and that several combinations of four miRNAs can discriminate diabetes-related fractures with high specificity and sensitivity (area under the receiver-operating characteristic curve values [AUCs], 0.92 to 0.96; 95% CI, 0.88 to 0.98). For the osteoporotic study arm, 23 miRNAs were fracture-indicative and potential combinations of four miRNAs showed AUCs from 0.97 to 1.00 (95% CI, 0.93 to 1.00). Because a role in bone homeostasis for those miRNAs that were most discriminative and most present among all miRNA combinations had not been described, we performed in vitro functional studies in human adipose tissue-derived mesenchymal stem cells to investigate the effect of miR-550a-5p, miR-188-3p, and miR-382-3p on osteogenesis, adipogenesis, and cell proliferation. We found that miR-382-3p significantly enhanced osteogenic differentiation (p < 0.001), whereas miR-550a-5p inhibited this process (p < 0.001). Both miRNAs, miR-382-3p and miR-550a-5p, impaired adipogenic differentiation, whereas miR-188-3p did not exert an effect on adipogenesis. None of the miRNAs affected significantly cell proliferation. Our data suggest for the first time that miRNAs are linked to fragility fractures in T2D postmenopausal women and should be further investigated for their diagnostic potential and their detailed function in diabetic bone. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Fabian Schroeder
- Department of Molecular Diagnostics, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Klemens Vierlinger
- Department of Molecular Diagnostics, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Janina M Patsch
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Thomas Baum
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Eleni Oberbauer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Forschungszentrum für Traumatologie der Allgemeinen Unfallversicherungsanstalt (AUVA) Research Center, Linz/Vienna, Austria
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Kwan JYY, Psarianos P, Bruce JP, Yip KW, Liu FF. The complexity of microRNAs in human cancer. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i106-i111. [PMID: 26983984 PMCID: PMC4990105 DOI: 10.1093/jrr/rrw009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/04/2016] [Accepted: 01/15/2016] [Indexed: 05/29/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that have key regulatory roles in cancer, acting as both oncogenes and tumor suppressors. Due to the potential roles of miRNAs in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. MiRNAs harbor attractive features allowing for translation to the clinical world, such as relatively simple extraction methods, resistance to molecular degradation, and ability to be quantified. Numerous prognostic, predictive and diagnostic miRNA signatures have been developed. To date however, miRNA analysis has not been adopted for routine clinical use. The objectives of this article are to provide an overview of miRNA research and review a selection of miRNA studies in breast cancer, cervical cancer, sarcoma, and nasopharyngeal carcinoma to highlight advances and challenges in miRNA cancer research.
Collapse
Affiliation(s)
- Jennifer Y Y Kwan
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada Department of Radiation Oncology, Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada
| | - Pamela Psarianos
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Jeff P Bruce
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Kenneth W Yip
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Fei-Fei Liu
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada Department of Radiation Oncology, Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada Department of Medical Biophysics, University of Toronto, 101 College Street, Room 15-701, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
43
|
Bruce JP, Yip K, Bratman SV, Ito E, Liu FF. Nasopharyngeal Cancer: Molecular Landscape. J Clin Oncol 2015; 33:3346-55. [DOI: 10.1200/jco.2015.60.7846] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique epithelial malignancy arising from the superior aspect of the pharyngeal mucosal space, associated with latent Epstein-Barr virus infection in most cases. The capacity to characterize cancer genomes in unprecedented detail is now providing insights into the genesis and molecular underpinnings of this disease. Herein, we provide an overview of the molecular aberrations that likely drive nasopharyngeal tumor development and progression. The contributions of major Epstein-Barr virus–encoded factors, including proteins, small RNAs, and microRNAs, along with their interactions with pathways regulating cell proliferation and survival are highlighted. We review recent analyses that clearly define the role of genetic and epigenetic variations affecting the human genome in NPC. These findings point to the impact of DNA methylation and histone modifications on gene expression programs that promote this malignancy. The molecular interactions that allow NPC cells to evade immune recognition and elimination, which is crucial for the survival of cells expressing potentially immunogenic viral proteins, are also described. Finally, the potential utility of detecting host and viral factors for the diagnosis and prognosis of NPC is discussed. Altogether, the studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC, yet much remains to be uncovered. Emerging techniques for using and analyzing well-annotated biospecimens from patients with NPC will ultimately lead to a greater level of understanding, and enable improvements in precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Jeff P. Bruce
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Yip
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Scott V. Bratman
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Emma Ito
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Abstract
In recent years, there has been a tremendous and growing interest among researchers to investigate the role of mircoRNA (miRNA) in normal cellular as well as in disease processes. miRNAs are a family of small non-coding RNAs which were reported to regulate the expression of various oncogenes or tumor suppressor genes. The expression profiling of miRNAs has already entered into cancer clinics as diagnostic and prognostic biomarkers to assess tumor initiation, progression and response to treatment in cancer patients. This review summarizes: (i) the current understanding of interactions between miRNAs and their target genes, (ii) recent advances in the regulatory mechanisms that control the expression of genes related to carcinogenesis, and (iii) the role of miRNAs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Kaladhar B Reddy
- Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield Anvenue, Detroit, MI 48201 USA ; Karmanos Cancer Institute, Wayne State University, Detroit, MI USA
| |
Collapse
|