1
|
Ergun P, Kipcak S, Bor S. Epigenetic Alterations from Barrett's Esophagus to Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24097817. [PMID: 37175524 PMCID: PMC10178512 DOI: 10.3390/ijms24097817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Barrett's esophagus (BE) is a disease entity that is a sequela of chronic gastroesophageal reflux disease that may result in esophageal adenocarcinoma (EAC) due to columnar epithelial dysplasia. The histological degree of dysplasia is the sole biomarker frequently utilized by clinicians. However, the cost of endoscopy and the fact that the degree of dysplasia does not progress in many patients with BE diminish the effectiveness of histological grading as a perfect biomarker. Multiple or more quantitative biomarkers are required by clinicians since early diagnosis is crucial in esophageal adenocancers, which have a high mortality rate. The presence of epigenetic factors in the early stages of this neoplastic transformation holds promise as a predictive biomarker. In this review, current studies on DNA methylations, histone modifications, and noncoding RNAs (miRNAs) that have been discovered during the progression from BE dysplasia to EAC were collated.
Collapse
Affiliation(s)
- Pelin Ergun
- Ege Reflux Study Group, Division of Gastroenterology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| | - Sezgi Kipcak
- Ege Reflux Study Group, Division of Gastroenterology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| | - Serhat Bor
- Ege Reflux Study Group, Division of Gastroenterology, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| |
Collapse
|
2
|
Rodriguez Calleja L, Lavaud M, Tesfaye R, Brounais-Le-Royer B, Baud’huin M, Georges S, Lamoureux F, Verrecchia F, Ory B. The p53 Family Members p63 and p73 Roles in the Metastatic Dissemination: Interactions with microRNAs and TGFβ Pathway. Cancers (Basel) 2022; 14:cancers14235948. [PMID: 36497429 PMCID: PMC9741383 DOI: 10.3390/cancers14235948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73's pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy.
Collapse
|
3
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
4
|
Balinth S, Fisher ML, Hwangbo Y, Wu C, Ballon C, Sun X, Mills AA. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 2022; 41:4130-4144. [PMID: 35864175 PMCID: PMC10132824 DOI: 10.1038/s41388-022-02417-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.
Collapse
Affiliation(s)
- Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | | | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
5
|
Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I, Diefenbacher M. USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells 2021; 10:2652. [PMID: 34685632 PMCID: PMC8534253 DOI: 10.3390/cells10102652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ines Tomašković
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Varun Jayeshkumar Shah
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Markus Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
7
|
Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death Dis 2020; 11:980. [PMID: 33191398 PMCID: PMC7667162 DOI: 10.1038/s41419-020-03192-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
miR-205 plays important roles in the physiology of epithelia by regulating a variety of pathways that govern differentiation and morphogenesis. Its aberrant expression is frequently found in human cancers, where it was reported to act either as tumor-suppressor or oncogene depending on the specific tumor context and target genes. miR-205 expression and function in different cell types or processes are the result of the complex balance among transcription, processing and stability of the microRNA. In this review, we summarize the principal mechanisms that regulate miR-205 expression at the transcriptional and post-transcriptional level, with particular focus on the transcriptional relationship with its host gene. Elucidating the mechanisms and factors regulating miR-205 expression in different biological contexts represents a fundamental step for a better understanding of the contribution of such pivotal microRNA to epithelial cell function in physiology and disease, and for the development of modulation strategies for future application in cancer therapy.
Collapse
|
8
|
Lawson KS, Prasad A, Groopman JE. Methamphetamine Enhances HIV-1 Replication in CD4 + T-Cells via a Novel IL-1β Auto-Regulatory Loop. Front Immunol 2020; 11:136. [PMID: 32117283 PMCID: PMC7025468 DOI: 10.3389/fimmu.2020.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (Meth) abuse is a worldwide public health problem and contributes to HIV-1 pathobiology and poor adherence to anti-retroviral therapies. Specifically, Meth is posited to alter molecular mechanisms to provide a more conducive environment for HIV-1 replication and spread. Enhanced expression of inflammatory cytokines, such as Interleukin-1β (IL-1β), has been shown to be important for HIV-1 pathobiology. In addition, microRNAs (miRNAs) play integral roles in fine-tuning the innate immune response. Notably, the effects of Meth abuse on miRNA expression are largely unknown. We studied the effects of Meth on IL-1β and miR-146a, a well-characterized member of the innate immune signaling network. We found that Meth induces miR-146a and triggers an IL-1β auto-regulatory loop to modulate innate immune signaling in CD4+ T-cells. We also found that Meth enhances HIV-1 replication via IL-1 signaling. Our results indicate that Meth activates an IL-1β feedback loop to alter innate immune pathways and favor HIV-1 replication. These observations offer a framework for designing targeted therapies in HIV-infected, Meth using hosts.
Collapse
Affiliation(s)
- Kaycie S Lawson
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Yang ZY, Wang Y, Liu Q, Wu M. microRNA cluster MC-let-7a-1~let-7d promotes autophagy and apoptosis of glioma cells by down-regulating STAT3. CNS Neurosci Ther 2019; 26:319-331. [PMID: 31868319 PMCID: PMC7052808 DOI: 10.1111/cns.13273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence has highlighted the correlation between microRNAs (miRNAs) and the progression of glioma. However, the role of miR cluster MC‐let‐7a‐1 ~ let‐7d in glioma remains elusive. Thus, the current study aimed to investigate the effect of miR cluster MC‐let‐7a‐1 ~ let‐7d on glioma progression. Methods and Results Microarray data analysis provided data indicating the involvement of miR cluster MC‐let‐7a‐1 ~ let‐7d in glioma via STAT3. The expression of let‐7a‐1, let‐7d, let‐7f‐1, and miR cluster MC‐let‐7a‐1 ~ let‐7d was diminished in the glioma tissues and the cell lines. Additionally, our results revealed that STAT3 was a target gene of let‐7d, let‐7a‐1, and let‐7f‐1, which was further verified by the dual‐luciferase reporter gene assay. Moreover, STAT3 expression was negatively mediated by let‐7a‐1, let‐7d, and let‐7f‐1. Up‐regulated miR cluster MC‐let‐7a‐1 ~ let‐7d or silenced STAT3 suppressed cell proliferation but accelerated cell apoptosis and autophagy. Moreover, restrained tumor growth was identified in the nude mice treated with miR cluster MC‐let‐7a‐1 ~ let‐7d mimics or STAT3 siRNA. Conclusion Taken together, the miR cluster MC‐let‐7a‐1 ~ let‐7d promotes glioma cell autophagy and apoptosis by repressing STAT3. The current study highlights the potential of the miR cluster MC‐let‐7a‐1 ~ let‐7d as biomarkers and promising treatment strategies for glioma.
Collapse
Affiliation(s)
- Zhuan-Yi Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Medical School of Central South University & Xiangya Hospital Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
10
|
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20143590. [PMID: 31340447 PMCID: PMC6678256 DOI: 10.3390/ijms20143590] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
Collapse
|
11
|
Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol 2019; 13:981-1001. [PMID: 30845357 PMCID: PMC6487733 DOI: 10.1002/1878-0261.12473] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a treatment‐refractory tumour which arises from the epithelium of diverse anatomical sites such as oesophagus, head and neck, lung and skin. Accumulating evidence has revealed a number of genomic, clinical and molecular features commonly observed in SCC of distinct origins. Some of these genetic events culminate in fostering the activity of ΔNp63, a potent oncogene which exerts its pro‐tumourigenic effects by regulating specific transcriptional programmes to sustain malignant cell proliferation and survival. In this review, we will describe the genetic and epigenetic determinants underlying ΔNp63 oncogenic activities in SCC, and discuss some relevant transcriptional effectors of ΔNp63, emphasizing their impact in modulating the crosstalk between tumour cells and tumour microenvironment (TME).
Collapse
Affiliation(s)
- Veronica Gatti
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, UK
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| |
Collapse
|
12
|
Luo W, Ren X, Chen J, Li L, Lu S, Chen T, Nie Q, Zhang X. TP63 Transcripts Play Opposite Roles in Chicken Skeletal Muscle Differentiation. Front Physiol 2018; 9:1298. [PMID: 30283353 PMCID: PMC6157316 DOI: 10.3389/fphys.2018.01298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
Tumor protein 63 (TP63) comprises multiple isoforms and plays an important role during embryonic development. It has been shown that TP63 knockdown inhibits myogenic differentiation, but which isoform is involved in the underlying myogenic regulation remains uncertain. Here, we found that two transcripts of TP63, namely, TAp63α and ΔNp63α, are expressed in chicken skeletal muscle. These two transcripts have distinct expression patterns and opposite functions in skeletal muscle development. TAp63 has higher expression in skeletal muscle than in other tissues, and its expression is gradually upregulated during chicken primary myoblast differentiation. ΔNp63 can be expressed in multiple tissues and exhibits stable expression during myoblast differentiation. TAp63α overexpression inhibits myoblast proliferation, induces cell cycle arrest, and enhances myoblast differentiation. However, although ΔNp63α has no significant effect on cell proliferation, the overexpression of ΔNp63α inhibits myoblast differentiation. Using isoform-specific overexpression assays following RNA-sequencing, we identified potential downstream genes of TAp63α and ΔNp63α in myoblast. Bioinformatics analyses and experimental verification results showed that the differentially expressed genes (DEGs) between the TAp63α and control groups were enriched in the cell cycle pathway, whereas the DEGs between the ΔNp63α and control groups were enriched in muscle system process, muscle contraction, and myopathy. These findings provide new insights into the function and expression of TP63 during skeletal muscle development, and indicate that one gene may play two opposite roles during a single cellular process.
Collapse
Affiliation(s)
- Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xueyi Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Limin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shiyi Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tian Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Niazi S, Purohit M, Niazi JH. Role of p53 circuitry in tumorigenesis: A brief review. Eur J Med Chem 2018; 158:7-24. [PMID: 30199707 DOI: 10.1016/j.ejmech.2018.08.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
Maintenance of genome integrity under the stressed condition is paramount for normal functioning of cells in the multicellular organisms. Cells are programmed to protect their genome through specialized adaptive mechanisms which will help decide their fate under stressed conditions. These mechanisms are the outcome of activation of the intricate circuitries that are regulated by the p53 master protein. In this paper, we provided a comprehensive review on p53, p53 homologues and their isoforms, including a description about the ubiquitin-proteasome system emphasizing its role in p53 regulation. p53 induced E3(Ub)-ligases are an integral part of the ubiquitin-proteasome system. This review outlines the roles of important E3(Ub)-ligases and their splice variants in maintaining cellular p53 protein homeostasis. It also covers up-to-date and relevant information on small molecule Mdm2 inhibitors originated from different organizations. The review ends with a discussion on future prospects and investigation directives for the development of next-generation modulators as p53 therapeutics.
Collapse
Affiliation(s)
- Sarfaraj Niazi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Madhusudan Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Javed H Niazi
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956, Istanbul, Turkey
| |
Collapse
|
14
|
Sakaram S, Craig MP, Hill NT, Aljagthmi A, Garrido C, Paliy O, Bottomley M, Raymer M, Kadakia MP. Identification of novel ΔNp63α-regulated miRNAs using an optimized small RNA-Seq analysis pipeline. Sci Rep 2018; 8:10069. [PMID: 29968742 PMCID: PMC6030203 DOI: 10.1038/s41598-018-28168-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Advances in high-throughput sequencing have enabled profiling of microRNAs (miRNAs), however, a consensus pipeline for sequencing of small RNAs has not been established. We built and optimized an analysis pipeline using Partek Flow, circumventing the need for analyzing data via scripting languages. Our analysis assessed the effect of alignment reference, normalization method, and statistical model choice on biological data. The pipeline was evaluated using sequencing data from HaCaT cells transfected with either a non-silencing control or siRNA against ΔNp63α, a p53 family member protein which is highly expressed in non-melanoma skin cancer and shown to regulate a number of miRNAs. We posit that 1) alignment and quantification to the miRBase reference provides the most robust quantitation of miRNAs, 2) normalizing sample reads via Trimmed Mean of M-values is the most robust method for accurate downstream analyses, and 3) use of the lognormal with shrinkage statistical model effectively identifies differentially expressed miRNAs. Using our pipeline, we identified previously unrecognized regulation of miRs-149-5p, 18a-5p, 19b-1-5p, 20a-5p, 590-5p, 744-5p and 93-5p by ΔNp63α. Regulation of these miRNAs was validated by RT-qPCR, substantiating our small RNA-Seq pipeline. Further analysis of these miRNAs may provide insight into ΔNp63α's role in cancer progression. By defining the optimal alignment reference, normalization method, and statistical model for analysis of miRNA sequencing data, we have established an analysis pipeline that may be carried out in Partek Flow or at the command line. In this manner, our pipeline circumvents some of the major hurdles encountered during small RNA-Seq analysis.
Collapse
Affiliation(s)
- Suraj Sakaram
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael P Craig
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Natasha T Hill
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Amjad Aljagthmi
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Christian Garrido
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Oleg Paliy
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Bottomley
- Math and Microbiology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Raymer
- Computer Science and Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
15
|
Liu K, Yao H, Lei S, Xiong L, Qi H, Qian K, Liu J, Wang P, Zhao H. The miR-124-p63 feedback loop modulates colorectal cancer growth. Oncotarget 2018; 8:29101-29115. [PMID: 28418858 PMCID: PMC5438716 DOI: 10.18632/oncotarget.16248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Among the diverse co-regulatory relationships between transcription factors (TFs) and microRNAs (miRNAs), feedback loops have received the most extensive research attention. The co-regulation of TFs and miRNAs plays an important role in colorectal cancer (CRC) growth. Here, we show that miR-124 can regulate two isoforms of p63, TAp63 and ΔNp63, via iASPP, while p63 modulates signal transducers and activators of transcription 1 (STAT1) expression by targeting miR-155. Moreover, STAT1 acts as a regulator of CRC growth by targeting miR-124. Taken together, these results reveal a feedback loop between miRNAs and TFs. This feedback loop comprises miR-124, iASPP, STAT1, miR-155, TAp63 and ΔNp63, which are essential for CRC growth. Moreover, this feedback loop is perturbed in human colon carcinomas, which suggests that the manipulation of this microRNA-TF feedback loop has therapeutic potential for CRC.
Collapse
Affiliation(s)
- Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Sanlin Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haizhi Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Qian
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jiqiang Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Peng Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zhao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
16
|
Cabibi D, Caruso S, Bazan V, Castiglia M, Bronte G, Ingrao S, Fanale D, Cangemi A, Calò V, Listì A, Incorvaia L, Galvano A, Pantuso G, Fiorentino E, Castorina S, Russo A. Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus. Oncotarget 2018; 7:47821-47830. [PMID: 27374102 PMCID: PMC5216981 DOI: 10.18632/oncotarget.10291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic changes involved in the metaplastic progression from squamous esophageal mucosa toward Barrett's metaplasia and adenocarcinoma are almost unknown. Several evidences suggest that some miRNAs are differentially expressed in Barrett's esophagus (BE) and esophageal adenocarcinoma. Among these, miR-143, miR-145, miR-194, miR-203, miR-205, miR-215 appear to have a key role in metaplasia and neoplastic progression. The aim of this study was to analyze deregulated miRNAs in serum and esophageal mucosal tissue biopsies to identify new biomarkers that could be associated with different stages of esophageal disease. Esophageal mucosal tissue biopsies and blood samples were collected and analyzed for BE diagnosis. Quantitative Real-time PCR was used to compare miRNA expression levels in serum and 60 disease/normal-paired tissues from 30 patients diagnosed with esophagitis, columnar-lined oesophagus (CLO) or BE. MiRNA expression analysis showed that miR-143, miR-145, miR-194 and miR-215 levels were significantly higher, while miR-203 and miR-205 were lower in BE tissues compared with their corresponding normal tissues. Esophageal mucosa analysis of patients with CLO and esophagitis showed that these miRNAs were similarly deregulated but to a lesser extent keeping the same trend and CLO appeared as intermediate step between esophagitis and BE. Analysis on circulating miRNA levels confirmed that miR-194 and miR-215 were significantly upregulated in both BE and CLO compared to esophagitis, while miR-143 was significantly upregulated only in the Barrett group. These findings suggest that miRNAs may be involved in neoplastic/metaplastic progression and miRNA analysis might be useful for progression risk prediction as well as for monitoring of BE/CLO patients.
Collapse
Affiliation(s)
- Daniela Cabibi
- Department of Science for Promotion of Health and Mother and Child Care, Section of Human Pathology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sabrina Ingrao
- Department of Science for Promotion of Health and Mother and Child Care, Section of Human Pathology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonina Cangemi
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, Section of Surgical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Eugenio Fiorentino
- Department of Surgical, Oncological and Oral Sciences, Section of Surgical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sergio Castorina
- Fondazione Mediterranea, "G.B. Morgagni", Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
17
|
Hou LK, Yu Y, Xie YG, Wang J, Mao JF, Zhang B, Wang X, Cao XC. miR-340 and ZEB1 negative feedback loop regulates TGF-β- mediated breast cancer progression. Oncotarget 2018; 7:26016-26. [PMID: 27036021 PMCID: PMC5041961 DOI: 10.18632/oncotarget.8421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/06/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs act as key regulators in carcinogenesis and progression in various cancers. In present study, we explored the role of miR-340 in the breast cancer progression. Our results showed that overexpression of miR-340 inhibits breast cancer cell proliferation and invasion, whereas depletion of miR-340 promotes breast cancer progression. Molecularly, ZEB1 was identified as a target gene of miR-340 and miR-340 suppressed the expression of ZEB1 by directly binding to the 3′-UTR of ZEB1. Furthermore, ZEB1 transcriptionally suppresses miR-340 expression. The negative feedback loop regulated TGF-β-mediated breast cancer progression. In conclusion, our data suggested that miR-340 acted as a tumor suppressor in breast cancer progression.
Collapse
Affiliation(s)
- Li-Kun Hou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ye-Gong Xie
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jie Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jie-Fei Mao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Bin Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
18
|
Negative feedback between TAp63 and Mir-133b mediates colorectal cancer suppression. Oncotarget 2018; 7:87147-87160. [PMID: 27894087 PMCID: PMC5349978 DOI: 10.18632/oncotarget.13515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/16/2016] [Indexed: 12/15/2022] Open
Abstract
Background TAp63 is known as the most potent transcription activator and tumor suppressor. microRNAs (miRNAs) are increasingly recognized as essential components of the p63 pathway, mediating downstream post-transcriptional gene repression. The aim of present study was to investigate a negative feedback loop between TAp63 and miR-133b. Results Overexpression of TAp63 inhibited HCT-116 cell proliferation, apoptosis and invasion via miR-133b. Accordingly, miR-133b inhibited TAp63 expression through RhoA and its downstream pathways. Moreover, we demonstrated that TAp63/miR-133b could inhibit colorectal cancer proliferation and metastasis in vivo and vitro. Materials and Methods We evaluated the correlation between TAp63 and miR-133b in HCT-116 cells and investigated the roles of the TAp63/miR-133b feedback loop in cell proliferation, apoptosis and metastasis via MTT, flow cytometry, Transwell, and nude mouse xenograft experiments. The expression of TAp63, miR-133b, RhoA, α-tubulin and Akt was assessed via qRT-PCR, western blot and immunofluorescence analyses. miR-133b target genes were identified through luciferase reporter assays. Conclusions miR-133b plays an important role in the anti-tumor effects of TAp63 in colorectal cancer. miR-133b may represent a tiemolecule between TAp63 and RhoA, forming a TAp63/miR-133b/RhoA negative feedback loop, which could significantly inhibit proliferation, apoptosis and metastasis.
Collapse
|
19
|
Will cardiac surgeons even turn pumpkins into carriages? J Thorac Cardiovasc Surg 2018; 155:1647-1649. [PMID: 29397155 DOI: 10.1016/j.jtcvs.2017.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
|
20
|
Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C, Pearson GW. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion. Oncotarget 2017; 7:28592-611. [PMID: 27081041 PMCID: PMC5053748 DOI: 10.18632/oncotarget.8696] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/29/2023] Open
Abstract
Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome.
Collapse
Affiliation(s)
- Tuyen T Dang
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Jill M Westcott
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Erin A Maine
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Disease, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Chao Xing
- McDermott Center for Human Growth and Disease, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Gray W Pearson
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA.,Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| |
Collapse
|
21
|
Zhuang Z, Xie N, Hu J, Yu P, Wang C, Hu X, Han X, Hou J, Huang H, Liu X. Interplay between ΔNp63 and miR-138-5p regulates growth, metastasis and stemness of oral squamous cell carcinoma. Oncotarget 2017; 8:21954-21973. [PMID: 28423539 PMCID: PMC5400637 DOI: 10.18632/oncotarget.15752] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
TP63 acts as a master regulator in epithelia development and in the progression of various cancers, but its role in oral cancer pathogenesis remains unknown. This study aimed to explore the role of TP63 in the progression of oral squamous cell carcinoma (OSCC). This study shows that ΔNp63, the predominant isoform of TP63, is significantly upregulated in OSCC tissues and cell lines compared with their normal counterparts, and its expression is closely correlated with pathological differentiation, lymph node metastasis and clinical stage in patients with OSCC. The overexpression of ΔNp63 promotes growth, metastasis and stem-like properties in OSCC cells, and ΔNp63 depletion significantly represses OSCC cellular phenotypes in vitro and in vivo. The ΔNp63 isoform transcriptionally suppresses miR-138-5p expression; restoration of miR-138-5p expression partially abolishes the effect of upregulating ΔNp63. This study also demonstrates that miR-138-5p directly targets ΔNp63, resulting in crosstalk with ΔNp63. The correlation between ΔNp63 and miR-138-5p was further validated in OSCC tissues and was found to be significantly associated with the prognosis of patients with OSCC. Therefore, our data reveal that the interplay between ΔNp63 and miR-138-5p promotes OSCC progression by regulating cell growth, metastasis and stemness.
Collapse
Affiliation(s)
- Zehang Zhuang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Nan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Pathology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jing Hu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Pei Yu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xingxue Hu
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, USA.,Division of General Practice and Materials Science, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, USA
| | - Jinsong Hou
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Hongzhang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiang Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Deng J, Wang Y, Lei J, Lei W, Xiong JP. Insights into the involvement of noncoding RNAs in 5-fluorouracil drug resistance. Tumour Biol 2017; 39:1010428317697553. [PMID: 28381160 DOI: 10.1177/1010428317697553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil is a classic chemotherapeutic drug that is widely used to treat various cancers. However, patients often exhibit primary or acquired drug resistance during treatment with 5-fluorouracil chemotherapy. 5-Fluorouracil resistance is a multifactorial event that involves abnormal enzyme metabolism, transport deregulation, cell cycle disorders, apoptosis resistance, and mismatch repair deficiency. Despite advancements in bioresearch technologies in the past several decades, the molecular mechanisms of 5-fluorouracil resistance have not been completely clarified. Recently, microarray analyses have shown that noncoding RNAs (i.e. microRNAs and long noncoding RNAs) play a vital role in 5-fluorouracil resistance in multiple cancer cell lines. These noncoding RNAs can function as oncogenes or tumor suppressors, contributing to 5-fluorouracil drug resistance. In this review, we discuss the effects of microRNAs on 5-fluorouracil sensitivity via targeting of metabolic enzymes, the cell cycle, apoptosis, autophagy, the epithelial–mesenchymal transition, and cancer stem cells. In particular, we focus on summarizing current knowledge on the molecular mechanisms through which long noncoding RNAs mediate 5-fluorouracil drug resistance. Moreover, we describe the specific microRNAs that may function as markers for prediction of chemotherapeutic response to 5-fluorouracil. This review will help to improve the current understanding of how to reverse 5-fluorouracil resistance and may facilitate the establishment of new strategies for alleviating drug resistance in the future.
Collapse
Affiliation(s)
- Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Lei
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wan Lei
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Ping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Bienk Dias K, Pereira Costa Flores A, Gaiger Oliveira M, Varvaki Rados P, Sant'ana Filho M. Predictive value of p63, ki-67, and survivin expression in oral leukoplakia: A tissue microarray study. Microsc Res Tech 2017; 80:845-850. [PMID: 28346726 DOI: 10.1002/jemt.22872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/02/2023]
Abstract
The aim of this study was to analyze the immunohistochemical expression of survivin, ki-67, and p63 in oral leukoplakic lesions, histopathologically differentiated into dysplastic and nondysplastic. A tissue microarray containing 57 samples of biopsies from clinically classified lesions, such as leukoplakia, was immunolabeled for survivin, ki-67, and p63. Samples were scored for percentage of positively stained. Scores were designated as follows: low = less than 25% of positive cells; and high = more than 25% of positive cells. On performing histopathological diagnosis, 20 dysplastic lesions and 37 nondysplastic lesions were seen, in which female patients (56.1%) were predominant with an average age of 58.27 years. The study showed a high expression of 37.5% for survivin, 43.7% for ki-67, and 88.2% for p63 in dysplastic lesions. However, there was a high expression of 16.7% for survivin, 16.7% for ki-67, and 92% for p63 in nondysplastic lesions. There is a positive correlation of expression among the three antibodies. In the association of immunoreactivity, in both dysplastic and nondysplastic lesions, increased expression of survivin reflects on the increased expression of ki-67, and there is an overexpression of p63. In leukoplakia, the expression of survivin associated with that of ki-67 reinforces the assumption that all these lesions are potentially malignant, regardless of histopathology; and the overexpression of p63 may indicate carcinogenic potential. These findings may help in the treatment of patients with this type of lesion.
Collapse
Affiliation(s)
- Kelly Bienk Dias
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | - Manoel Sant'ana Filho
- Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Qiu MT, Fan Q, Zhu Z, Kwan SY, Chen L, Chen JH, Ying ZL, Zhou Y, Gu W, Wang LH, Cheng WW, Zeng J, Wan XP, Mok SC, Wong KK, Bao W. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget 2016; 6:31702-20. [PMID: 26397136 PMCID: PMC4741634 DOI: 10.18632/oncotarget.5165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity.
Collapse
Affiliation(s)
- Mei-Ting Qiu
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Fan
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Zhu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suet-Ying Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Hong Chen
- Departments of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, China
| | - Zuo-Lin Ying
- Department of Dermatology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zhou
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Gu
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Hua Wang
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Cheng
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Zeng
- Department of Laboratory Medicine and the Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao-Ping Wan
- Departments of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, China
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Bao
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Gallo Cantafio ME, Nielsen BS, Mignogna C, Arbitrio M, Botta C, Frandsen NM, Rolfo C, Tagliaferri P, Tassone P, Di Martino MT. Pharmacokinetics and Pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in Mice and Non-human Primates. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:S2162-2531(17)30051-3. [PMID: 27327137 PMCID: PMC5022129 DOI: 10.1038/mtna.2016.36] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
Locked nucleic acid (LNA) oligonucleotides have been successfully used to efficiently inhibit endogenous small noncoding RNAs in vitro and in vivo. We previously demonstrated that the direct miR-221 inhibition by the novel 13-mer LNA-i-miR-221 induces significant antimyeloma activity and upregulates canonical miR-221 targets in vitro and in vivo. To evaluate the LNA-i-miR-221 pharmacokinetics and pharmacodynamics, novel assays for oligonucleotides quantification in NOD.SCID mice and Cynomolgus monkeys (Macaca fascicularis) plasma, urine and tissues were developed. To this aim, a liquid chromatography/mass spectrometry method, after solid-phase extraction, was used for the detection of LNA-i-miR-221 in plasma and urine, while a specific in situ hybridization assay for tissue uptake analysis was designed. Our analysis revealed short half-life, optimal tissue biovailability and minimal urine excretion of LNA-i-miR-221 in mice and monkeys. Up to 3 weeks, LNA-i-miR-221 was still detectable in mice vital organs and in xenografted tumors, together with p27 target upregulation. Importantly, no toxicity in the pilot monkey study was observed. Overall, our findings indicate the suitability of LNA-i-miR-221 for clinical use and we provide here pilot data for safety analysis and further development of LNA-miRNA-based therapeutics for human cancer.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Chiara Mignogna
- Department of Health Sciences, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Christian Rolfo
- Department of Oncology, University Hospital of Antwerp, Edegem, Belgium
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
26
|
Zhao W, Wang H, Han X, Ma J, Zhou Y, Chen Z, Zhou H, Xu H, Sun Z, Kong B, Fang H. ΔNp63α attenuates tumor aggressiveness by suppressing miR-205/ZEB1-mediated epithelial-mesenchymal transition in cervical squamous cell carcinoma. Tumour Biol 2016; 37:10621-32. [PMID: 26864590 DOI: 10.1007/s13277-016-4921-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is one of the most common female cancers worldwide. Although the therapeutic outcomes of patients with early-stage cervical cancer have been significantly improved in the past decades, tumor metastasis and recurrence remain the major causes of cervical cancer-related deaths. In cervical squamous cell carcinoma (SCC), the aberrant activation of epithelial-mesenchymal transition (EMT), a crucial process in invasion and metastasis of epithelial cancer, could promote lymph nodal metastasis and recurrence, and predicts poor prognosis. In this study, we show that the expression levels of EMT markers, β-catenin and Vimentin, are associated with the p63 isoform ΔNp63α in SCC by using immunohistochemistry staining and analysis. Compared to the control SiHa cells (SiHa-NC), the expression of E-cadherin and β-catenin are upregulated, while Vimentin and ZEB1 are downregulated in the constructed SiHa cell line with stable ΔNp63α overexpression (SiHa-ΔNp63α). Besides, the migration and invasion abilities are also suppressed in SiHa-ΔNp63α cells with a typical epithelial morphology with cobblestone-like shape, suggesting that ΔNp63α is a vital EMT repressor in SCC cells. In addition, the involvement of miR-205/ZEB1 axis in the inhibition effect of ΔNp63α on EMT program is revealed by a miRNA array and confirmed by the subsequent transfection of the miR-205 mimic and antagomir. Moreover, SCC patients with low ΔNp63α expression and high EMT level show more frequent metastasis and recurrence as well as reduced overall survival. Therefore, EMT program and its vital repressor ΔNp63α could be used as biomarkers for tumor metastasis and recurrence in cervical cancer.
Collapse
Affiliation(s)
- Weidong Zhao
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China. .,Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, Hefei, China. .,Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| | - Huiyan Wang
- Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Xiaohui Han
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Jie Ma
- Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Yuanyuan Zhou
- Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Zhengzheng Chen
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Hu Zhou
- Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Hanjie Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Zhengwei Sun
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Huiying Fang
- Department of Nursing, Anhui Vocational Institute of Population, Chizhou, China
| |
Collapse
|
27
|
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2015; 44:D239-47. [PMID: 26590260 PMCID: PMC4702890 DOI: 10.1093/nar/gkv1258] [Citation(s) in RCA: 798] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
Collapse
Affiliation(s)
- Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Nai-Wen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Sirjana Shrestha
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Sheng-Da Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Ling Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wei-Hsiang Lee
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Clinical Research Center, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chi-Dung Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsiao-Chin Hong
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Siang-Jyun Tu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tzi-Ren Tsai
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shu-Yi Ho
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ting-Yan Jian
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsin-Yi Wu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Pin-Rong Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Nai-Chieh Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsin-Tzu Huang
- Degree Program of Applied Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tzu-Ling Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chung-Yuan Pai
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chun-San Tai
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Liang Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chia-Yen Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, 106, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, 300, Taiwan Mackay Medicine, Nursing and Management College, Taipei, 112, Taiwan Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 300, Taiwan Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|