1
|
Raptor and rictor expression in patients with human papillomavirus-related oropharyngeal squamous cell carcinoma. BMC Cancer 2021; 21:87. [PMID: 33482765 PMCID: PMC7821513 DOI: 10.1186/s12885-021-07794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Background Despite reports of a link between human papillomavirus (HPV) infection and mechanistic target of rapamycin (mTOR) signaling activation, the role of the mTOR pathway, especially raptor and rictor, in HPV-related head and neck cancer is still unclear. The aim of the present study was to elucidate the role of the mTOR pathway in HPV-related oropharyngeal squamous cell carcinoma (OPSCC). Methods The present study involved two strategies. The first was to investigate the activity of mTOR and mTOR-related complexes in high-risk HPV-positive (UM-SCC47 and CaSki) and HPV-negative (SCC-4 and SAS) cancer cell lines. The second was to elucidate mTOR complex expression in 80 oropharyngeal cancer tissues and to examine the relationship between mTOR complex expression and survival in patients with OPSCC. Results The UM-SCC47 and CaSki cell lines showed high gene and protein expression of raptor. They also exhibited G1/S and G2/M phase cell cycle arrest following 24 h incubation with 6 μM temsirolimus, a rapamycin analog, and temsirolimus administration inhibited their growth. HPV-related OPSCC samples showed high gene and protein expression of raptor and rictor compared with HPV-unrelated OPSCC. In addition, HPV-related OPSCC patients with high raptor and rictor expression tended to have a worse prognosis than those with low or medium expression. Conclusions These results suggest that raptor and rictor have important roles in HPV-related OPSCC and that temsirolimus is a potential therapeutic agent for patients with HPV-related OPSCC. This is the first report to reveal the overexpression of raptor and rictor in HPV-related OPSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07794-9.
Collapse
|
2
|
mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why? Front Med 2020; 15:221-231. [PMID: 33165737 DOI: 10.1007/s11684-020-0812-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.
Collapse
|
3
|
Evangelisti C, Chiarini F, Paganelli F, Marmiroli S, Martelli AM. Crosstalks of GSK3 signaling with the mTOR network and effects on targeted therapy of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118635. [PMID: 31884070 DOI: 10.1016/j.bbamcr.2019.118635] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The introduction of therapeutics targeting specific tumor-promoting oncogenic or non-oncogenic signaling pathways has revolutionized cancer treatment. Mechanistic (previously mammalian) target of rapamycin (mTOR), a highly conserved Ser/Thr kinase, is a central hub of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR network, one of the most frequently deregulated signaling pathways in cancer, that makes it an attractive target for therapy. Numerous mTOR inhibitors have progressed to clinical trials and two of them have been officially approved as anticancer therapeutics. However, mTOR-targeting drugs have met with a very limited success in cancer patients. Frequently, the primary impediment to a successful targeted therapy in cancer is drug-resistance, either from the very beginning of the therapy (innate resistance) or after an initial response and upon repeated drug treatment (evasive or acquired resistance). Drug-resistance leads to treatment failure and relapse/progression of the disease. Resistance to mTOR inhibitors depends, among other reasons, on activation/deactivation of several signaling pathways, included those regulated by glycogen synthase kinase-3 (GSK3), a protein that targets a vast number of substrates in its repertoire, thereby orchestrating many processes that include cell proliferation and survival, metabolism, differentiation, and stemness. A detailed knowledge of the rewiring of signaling pathways triggered by exposure to mTOR inhibitors is critical to our understanding of the consequences such perturbations cause in tumors, including the emergence of drug-resistant cells. Here, we provide the reader with an updated overview of intricate circuitries that connect mTOR and GSK3 and we relate them to the efficacy (or lack of efficacy) of mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolical, and Neurological Sciences, University of Modena and Reggio Emilia, 41124 Modena, MO, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
4
|
Regulation of GSK3 cellular location by FRAT modulates mTORC1-dependent cell growth and sensitivity to rapamycin. Proc Natl Acad Sci U S A 2019; 116:19523-19529. [PMID: 31492813 DOI: 10.1073/pnas.1902397116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mTORC1 pathway regulates cell growth and proliferation by properly coupling critical processes such as gene expression, protein translation, and metabolism to the availability of growth factors and hormones, nutrients, cellular energetics, oxygen status, and cell stress. Although multiple cytoplasmic substrates of mTORC1 have been identified, how mTORC1 signals within the nucleus remains incompletely understood. Here, we report a mechanism by which mTORC1 modulates the phosphorylation of multiple nuclear events. We observed a significant nuclear enrichment of GSK3 when mTORC1 was suppressed, which promotes phosphorylation of several proteins such as GTF2F1 and FOXK1. Importantly, nuclear localization of GSK3 is sufficient to suppress cell proliferation. Additionally, expression of a nuclear exporter of GSK3, FRAT, restricts the nuclear localization of GSK3, represses nuclear protein phosphorylation, and prevents rapamycin-induced cytostasis. Finally, we observe a correlation between rapamycin resistance and FRAT expression in multiple-cancer cell lines. Resistance to Food and Drug Administration (FDA)-approved rapamycin analogs (rapalogs) is observed in many tumor settings, but the underling mechanisms remain incompletely understood. Given that FRAT expression levels are frequently elevated in various cancers, our observations provide a potential biomarker and strategy for overcoming rapamycin resistance.
Collapse
|
5
|
Kuo CT, Chen CL, Li CC, Huang GS, Ma WY, Hsu WF, Lin CH, Lu YS, Wo AM. Immunofluorescence can assess the efficacy of mTOR pathway therapeutic agent Everolimus in breast cancer models. Sci Rep 2019; 9:10898. [PMID: 31358767 PMCID: PMC6662705 DOI: 10.1038/s41598-019-45319-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
When breast cancer patients start to exhibit resistance to hormonal therapy or chemotherapy, the mTOR inhibitor everolimus can be considered as an alternative therapeutic agent. Everolimus can deregulate the PI3K/AKT/mTOR pathway and affect a range of cellular functions. In some patients, the agent does not exhibit the desired efficacy and, even worse, not without the associated side effects. This study assessed the use of immunofluorescence (IF) as a modality to fill this unmet need of predicting the efficacy of everolimus prior to administration. Cell viability and MTT assays based on IF intensities of pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 on breast cancer cells (Hs578T, MCF7, BT474, MDA-MB-231) and patient-derived cell culture from metastatic sites (ABC-82T and ABC-16TX1) were interrogated. Results show that independent pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 IF expressions can classify data into different groups: everolimus sensitive and resistant. The combined IF baseline intensity of these proteins is predictive of the efficacy of everolimus, and their intensities change dynamically when cells are resistant to everolimus. Furthermore, mTOR resistance is not only consequence of the AKT/mTOR pathway but also through the LKB1 or MAPK/ERK pathway. The LKB1 and pho-GSK3β may also be potential predictive markers for everolimus.
Collapse
Affiliation(s)
- Chun-Ting Kuo
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Chen-Lin Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Chi Li
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Guan-Syuan Huang
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Yuan Ma
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Fan Hsu
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Andrew M Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
6
|
Deng L, Qian G, Zhang S, Zheng H, Fan S, Lesinski GB, Owonikoko TK, Ramalingam SS, Sun SY. Inhibition of mTOR complex 1/p70 S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhancing protein stabilization accompanied with enhanced β-TrCP degradation. Oncogene 2019; 38:6270-6282. [DOI: 10.1038/s41388-019-0877-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
|
7
|
Zhang S, Qian G, Zhang QQ, Yao Y, Wang D, Chen ZG, Wang LJ, Chen M, Sun SY. mTORC2 Suppresses GSK3-Dependent Snail Degradation to Positively Regulate Cancer Cell Invasion and Metastasis. Cancer Res 2019; 79:3725-3736. [PMID: 31142514 DOI: 10.1158/0008-5472.can-19-0180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/23/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
mTOR complex 1 (mTORC1) positively regulates cell invasion and metastasis by enhancing translation of Snail. A connection between mTOR complex 2 (mTORC2) and cell invasion and metastasis has also been suggested, yet the underlying biology or mechanism is largely unknown and thus is the focus of this study. Inhibition of mTOR with both mTOR inhibitors and knockdown of key components of mTORC, including rictor, Sin1, and raptor, decreased Snail protein levels. Inhibition of mTOR enhanced the rate of Snail degradation, which could be rescued by inhibition of the proteasome. Critically, inhibition of mTORC2 (by knocking down rictor) but not mTORC1 (by knocking down raptor) enhanced Snail degradation. Therefore, only mTORC2 inhibition induces Snail proteasomal degradation, resulting in eventual Snail reduction. Interestingly, inhibition of GSK3 but not SCF/β-TrCP rescued the Snail reduction induced by mTOR inhibitors, suggesting GSK3-dependent, but SCF/β-TrCP-independent proteasomal degradation of Snail. Accordingly, mTOR inhibitors elevated E-cadherin levels and suppressed cancer cell migration and invasion in vitro and metastasis in vivo. Collectively, this study reveals that mTORC2 positively regulates Snail stability to control cell invasion and metastasis. SIGNIFICANCE: These findings delineate a new regulation mechanism of Snail, an important master regulator of epithelial-mesenchymal transition and invasion in cancers.
Collapse
Affiliation(s)
- Shuo Zhang
- First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Yuying Yao
- Vascular Biology Research Institute, School of Basic Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Li-Jing Wang
- Vascular Biology Research Institute, School of Basic Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Mingwei Chen
- First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia.
| |
Collapse
|
8
|
Laks DR, Oses-Prieto JA, Alvarado AG, Nakashima J, Chand S, Azzam DB, Gholkar AA, Sperry J, Ludwig K, Condro MC, Nazarian S, Cardenas A, Shih MYS, Damoiseaux R, France B, Orozco N, Visnyei K, Crisman TJ, Gao F, Torres JZ, Coppola G, Burlingame AL, Kornblum HI. A molecular cascade modulates MAP1B and confers resistance to mTOR inhibition in human glioblastoma. Neuro Oncol 2019; 20:764-775. [PMID: 29136244 DOI: 10.1093/neuonc/nox215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Clinical trials of therapies directed against nodes of the signaling axis of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin (mTOR) in glioblastoma (GBM) have had disappointing results. Resistance to mTOR inhibitors limits their efficacy. Methods To determine mechanisms of resistance to chronic mTOR inhibition, we performed tandem screens on patient-derived GBM cultures. Results An unbiased phosphoproteomic screen quantified phosphorylation changes associated with chronic exposure to the mTOR inhibitor rapamycin, and our analysis implicated a role for glycogen synthase kinase (GSK)3B attenuation in mediating resistance that was confirmed by functional studies. A targeted short hairpin RNA screen and further functional studies both in vitro and in vivo demonstrated that microtubule-associated protein (MAP)1B, previously associated predominantly with neurons, is a downstream effector of GSK3B-mediated resistance. Furthermore, we provide evidence that chronic rapamycin induces microtubule stability in a MAP1B-dependent manner in GBM cells. Additional experiments explicate a signaling pathway wherein combinatorial extracellular signal-regulated kinase (ERK)/mTOR targeting abrogates inhibitory phosphorylation of GSK3B, leads to phosphorylation of MAP1B, and confers sensitization. Conclusions These data portray a compensatory molecular signaling network that imparts resistance to chronic mTOR inhibition in primary, human GBM cell cultures and points toward new therapeutic strategies.
Collapse
Affiliation(s)
- Dan R Laks
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | | | - Alvaro G Alvarado
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Jonathan Nakashima
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Shreya Chand
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California
| | - Daniel B Azzam
- Department of Neuroscience, UCLA, Los Angeles, California
| | | | | | - Kirsten Ludwig
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Michael C Condro
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Serli Nazarian
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Anjelica Cardenas
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Michelle Y S Shih
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | | | - Bryan France
- Department of Molecular and Medical Pharmacology, UCLA
| | - Nicholas Orozco
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Koppany Visnyei
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Thomas J Crisman
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | | | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California.,Department of Neurology, UCLA, Los Angeles, California
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California
| | - Harley I Kornblum
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA.,Chemistry, UCLA, Los Angeles, California
| |
Collapse
|
9
|
Song J, Shi W, Wang W, Zhang Y, Zheng S. Grim-19 expressed by recombinant adenovirus for esophageal neoplasm target therapy. Mol Med Rep 2018; 17:6667-6674. [PMID: 29488605 DOI: 10.3892/mmr.2018.8638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/06/2017] [Indexed: 11/05/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) are the two most common types of esophageal cancer, which is the sixth highest cause of cancer‑associated mortality and the eighth most common cancer worldwide. Gene associated with retinoid‑interferon (IFN)‑induced mortality‑19 (Grim‑19) is reported to be a cell death activator that may be used to define mechanisms involved in IFN‑β‑ and retinoic acid‑induced cell death and apoptosis in a number of tumor cell lines. The present study constructed a recombinant adenovirus expressing Grim‑19 (rAd‑Grim‑19) and investigated its therapeutic outcomes in ESCC cells and tumor‑bearing mice. Grim‑19 expression was detected in EC‑109 (ESCC) cells by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Tumor cell death and apoptosis induced by rAd‑Grim‑19 in EC‑109 cells were analyzed by flow cytometry. The inhibitory effects of rAd‑Grim‑19 on EC‑109 growth were determined by MTT assays. Furthermore, the therapeutic effects of rAd‑Grim‑19 were investigated in EC‑109‑bearing mice. The results demonstrated that Grim‑19 mRNA and protein expression was downregulated in EC‑109 esophageal carcinoma cells compared with Het‑1A normal esophageal epithelial cells. In addition, EC‑109 cells exhibited a significant reduction in tumor cell growth in the rAd‑Grim‑19 group compared with the control groups. Furthermore, rAd‑Grim‑19 increased EC‑109 cell apoptosis compared with the control group. These results indicated that rAd-Grim-19 may regulate tumor cell growth and apoptosis. Additionally, the results demonstrated that rAd‑Grim‑19 led to beneficial outcomes and prolonged the survival of esophageal tumor‑bearing mice. In conclusion, the present study demonstrated that rAd‑Grim‑19 may have potential as an antitumor agent for esophageal neoplasms and may therefore be beneficial for patients with esophageal neoplasms.
Collapse
Affiliation(s)
- Jianxiang Song
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Woda Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wencai Wang
- Department of Cardiothoracic Surgery, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Shiying Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
10
|
HDAC inhibition as a treatment concept to combat temsirolimus-resistant bladder cancer cells. Oncotarget 2017; 8:110016-110028. [PMID: 29299126 PMCID: PMC5746361 DOI: 10.18632/oncotarget.22454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Although the mechanistic target of rapamycin (mTOR) might be a promising molecular target to treat advanced bladder cancer, resistance develops under chronic exposure to an mTOR inhibitor (everolimus, temsirolimus). Based on earlier studies, we proposed that histone deacetylase (HDAC) blockade might circumvent resistance and investigated whether HDAC inhibition has an impact on growth of bladder cancer cells with acquired resistance towards temsirolimus. Results The HDAC inhibitor valproic acid (VPA) significantly inhibited growth, proliferation and caused G0/G1 phase arrest in RT112res and UMUC-3res. cdk1, cyclin B, cdk2, cyclin A and Skp1 p19 were down-regulated, p27 was elevated. Akt-mTOR signaling was deactivated, whereas acetylation of histone H3 and H4 in RT112res and UMUC-3res increased in the presence of VPA. Knocking down cdk2 or cyclin A resulted in a significant growth blockade of RT112res and UMUC-3res. Materials And Methods Parental (par) and resistant (res) RT112 and UMUC-3 cells were exposed to the HDAC inhibitor VPA. Tumor cell growth, proliferation, cell cycling and expression of cell cycle regulating proteins were then evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Conclusions HDAC inhibition induced a strong response of temsirolimus-resistant bladder cancer cells. Therefore, the temsirolimus-VPA-combination might be an innovative strategy for bladder cancer treatment.
Collapse
|
11
|
Lin Y, Gu Q, Sun Z, Sheng B, Qi C, Liu B, Fu T, Liu C, Zhang Y. Upregulation of miR-3607 promotes lung adenocarcinoma proliferation by suppressing APC expression. Biomed Pharmacother 2017; 95:497-503. [PMID: 28866416 DOI: 10.1016/j.biopha.2017.08.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/02/2023] Open
Abstract
Lung cancer is the leading cause of worldwide cancer-related deaths, although many drugs and new therapeutic approaches have been used, the 5-years survival rate is still low for lung cancer patients. microRNAs have been shown to regulate lung cancer initiation and development, here we studied the role of miR-3607 in lung cancer cell proliferation. We found miR-3607 was upregulated in lung cancer tissues and cells, miR-3607 overexpression promoted lung cancer cell A549 proliferation determined by MTT assay, colony formation assay, anchorage-independent growth ability assay and bromodeoxyuridine incorporation assay, while the opposite phenotypes were shown when miR-3607 was knocked down. Predicted analysis suggested a Wnt signaling pathway regulator adenomatous polyposis coli (APC) was the target of miR-3607, miR-3607 could directly bind to the 3'UTR of APC, and promoted Cyclin D1 and c-Myc expression which can be suppressed by APC. Double knockdown of miR-3607 and APC copied the phenotypes of miR-3607 overexpression, suggesting miR-3607 promoted lung cancer cell A549 proliferation by targeting APC. In conclusion, our study suggested miR-3607 contributes to lung cancer cell proliferation by inhibiting APC.
Collapse
Affiliation(s)
- Yong Lin
- Department of Respiratory Medicine, Jining NO.1 People's Hospital, Jining 272011, China
| | - Qiangye Gu
- Department of tuberculousis, Jining Infectious Disease Hospital, Jining 272031, China
| | - Zongwen Sun
- Department of Oncology, Jining NO.1 People's Hospital, Jining 272011, China
| | - Baowei Sheng
- Department of Respiratory Medicine, Jining NO.1 People's Hospital, Jining 272011, China
| | - Congcong Qi
- Department of Respiratory Medicine, Jining NO.1 People's Hospital, Jining 272011, China
| | - Bing Liu
- Department of Respiratory Medicine, Jining NO.1 People's Hospital, Jining 272011, China
| | - Tian Fu
- Department of Respiratory Medicine, Jining NO.1 People's Hospital, Jining 272011, China
| | - Cun Liu
- Department of Clinical Laboratory, Jining NO.1 People's Hospital, Jining 272011, China
| | - Yan Zhang
- Department of Respiratory Medicine, Jining NO.1 People's Hospital, Jining 272011, China.
| |
Collapse
|
12
|
Cervello M, Augello G, Cusimano A, Emma MR, Balasus D, Azzolina A, McCubrey JA, Montalto G. Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv Biol Regul 2017; 65:59-76. [PMID: 28619606 DOI: 10.1016/j.jbior.2017.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world, and represents the second most frequently cancer and third most common cause of death from cancer worldwide. At advanced stage, HCC is a highly aggressive tumor with a poor prognosis and with very limited response to common therapies. Therefore, there is still the need for new effective and well-tolerated therapeutic strategies. Molecular-targeted therapies hold promise for HCC treatment. One promising molecular target is the multifunctional serine/threonine kinase glycogen synthase kinase 3 (GSK-3). The roles of GSK-3β in HCC remain controversial, several studies suggested a possible role of GSK-3β as a tumor suppressor gene in HCC, whereas, other studies indicate that GSK-3β is a potential therapeutic target for this neoplasia. In this review, we will focus on the different roles that GSK-3 plays in HCC and its interaction with signaling pathways implicated in the pathogenesis of HCC, such as Insulin-like Growth Factor (IGF), Notch, Wnt/β-catenin, Hedgehog (HH), and TGF-β pathways. In addition, the pivotal roles of GSK3 in epithelial-mesenchymal transition (EMT), invasion and metastasis will be also discussed.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.
| | - Giuseppa Augello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Maria Rita Emma
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Daniele Balasus
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy; Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Oudart JB, Doué M, Vautrin A, Brassart B, Sellier C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Brassart-Pasco S, Ramont L. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget 2016; 7:1516-28. [PMID: 26621838 PMCID: PMC4811477 DOI: 10.18632/oncotarget.6399] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/14/2015] [Indexed: 11/25/2022] Open
Abstract
Type XIX collagen is a minor collagen associated with basement membranes. It was isolated for the first time in a human cDNA library from rhabdomyosarcoma and belongs to the FACITs family (Fibril Associated Collagens with Interrupted Triple Helices). Previously, we demonstrated that the NC1 domain of collagen XIX (NC1(XIX)) exerts anti-tumor properties on melanoma cells by inhibiting their migration and invasion. In the present work, we identified for the first time the integrin αvβ3 as a receptor of NC1(XIX). Moreover, we demonstrated that NC1(XIX) inhibits the FAK/PI3K/Akt/mTOR pathway, by decreasing the phosphorylation and activity of the major proteins involved in this pathway. On the other hand, NC1(XIX) induced an increase of GSK3β activity by decreasing its degree of phosphorylation. Treatments targeting this central signaling pathway in the development of melanoma are promising and new molecules should be developed. NC1(XIX) seems to have the potential for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Manon Doué
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Alexia Vautrin
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christèle Sellier
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Aurelie Dupont-Deshorgue
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| |
Collapse
|
14
|
Mukhopadhyay S, Frias MA, Chatterjee A, Yellen P, Foster DA. The Enigma of Rapamycin Dosage. Mol Cancer Ther 2016; 15:347-53. [PMID: 26916116 DOI: 10.1158/1535-7163.mct-15-0720] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
The mTOR pathway is a critical regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling has been observed in most cancers and, thus, the mTOR pathway has been extensively studied for therapeutic intervention. Rapamycin is a natural product that inhibits mTOR with high specificity. However, its efficacy varies by dose in several contexts. First, different doses of rapamycin are needed to suppress mTOR in different cell lines; second, different doses of rapamycin are needed to suppress the phosphorylation of different mTOR substrates; and third, there is a differential sensitivity of the two mTOR complexes mTORC1 and mTORC2 to rapamycin. Intriguingly, the enigmatic properties of rapamycin dosage can be explained in large part by the competition between rapamycin and phosphatidic acid (PA) for mTOR. Rapamycin and PA have opposite effects on mTOR whereby rapamycin destabilizes and PA stabilizes both mTOR complexes. In this review, we discuss the properties of rapamycin dosage in the context of anticancer therapeutics.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York
| | - Maria A Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York
| | - Amrita Chatterjee
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York
| | - Paige Yellen
- Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York. Department of Pharmacology, Weill-Cornell Medical College, New York, New York.
| |
Collapse
|
15
|
Li S, Oh YT, Yue P, Khuri FR, Sun SY. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene 2015; 35:642-50. [PMID: 25893295 PMCID: PMC4615269 DOI: 10.1038/onc.2015.123] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/05/2015] [Accepted: 03/20/2015] [Indexed: 01/01/2023]
Abstract
Cancer cells feature increased de novo lipogenesis. Sterol regulatory element-binding protein 1 (SREBP1), when presented in its mature form (mSREBP1), enhances lipogenesis through increasing transcription of several of its target genes. Mammalian target of rapamycin (mTOR) complexes, mTORC1 and mTORC2, are master regulators of cellular survival, growth and metabolism. A role for mTORC1 in the regulation of SREBP1 activity has been suggested; however the connection between mTORC2 and SREBP1 has not been clearly established and hence is the focus of this study. mTOR kinase inhibitors (e.g., INK128), which inhibit both mTORC1 and mTORC2, decreased mSREBP1 levels in various cancer cell lines. Knockdown of rictor, but not raptor, also decreased mSREBP1. Consistently, reduced mSREBP1 levels were detected in cells deficient in rictor or Sin1 compared to parent or rictor-deficient cells with re-expression of ectopic rictor. Hence it is mTORC2 inhibition that causes mSREBP1 reduction. As a result, expression of the mSREBP1 target genes acetyl-CoA carboxylase and fatty acid synthase was suppressed, accompanied with suppressed lipogenesis in cells exposed to INK128. Moreover, mSREBP1 stability was reduced in cells treated with INK128 or rictor knockdown. Inhibition of proteasome, GSK3 or the E3 ubiquitin ligase, FBXW7, prevented mSREBP1 reduction induced by mTORC2 inhibition. Thus mTORC2 inhibition clearly facilitates GSK3-dependent, FBXW7-mediated mSREBP1 degradation, leading to mSREBP1 reduction. Accordingly, we conclude that mTORC2 positively regulates mSREBP1 stability and lipogenesis. Our findings reveal a novel biological function of mTORC2 in the regulation of lipogenesis and warrant further study in this direction.
Collapse
Affiliation(s)
- S Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.,Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Y-T Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - P Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - F R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - S-Y Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|