1
|
Han MC, Choi SH, Hong CS, Kim YB, Koom WS, Kim JS, Cho J, Wee CW, Kim C, Park JW, Han S, Lee H, Yoon HI, Lee IJ, Keum KC. The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center. Radiat Oncol J 2024; 42:295-307. [PMID: 39748530 DOI: 10.3857/roj.2024.00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 01/04/2025] Open
Abstract
PURPOSE This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world's first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT). MATERIALS AND METHODS Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023. RESULTS This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC's facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC's sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT. CONCLUSION This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC's pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
Collapse
Affiliation(s)
- Min Cheol Han
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Won Park
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soorim Han
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heejeong Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Balakin VE, Belyakova TA, Rozanova OM, Smirnova EN, Strelnikova NS, Kuznetsova EA. Anti-tumor Effect of High Doses of Carbon Ions and X-Rays during Irradiation of Ehrlich Ascites Carcinoma Cells Ex Vivo. DOKL BIOCHEM BIOPHYS 2023; 513:S30-S35. [PMID: 38472666 DOI: 10.1134/s1607672924700765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
The effect of carbon ions (12C) with the energy of 400 MeV/nucleon on the dynamics of induction and growth rate of solid tumors in mice under irradiation of Ehrlich ascites carcinoma cells (EAC) ex vivo at doses of 5-30 Gy relative to the action of equally effective doses of X-ray radiation was studied. The dynamics of tumor induction under the action of 12C and X-rays had a similar character and depended on the dose during 3 months of observation. The value of the latent period, both when irradiating cells with 12C and X-ray, increased with increasing dose, and the interval for tumor induction decreased. The rate of tumor growth after ex vivo irradiation of EAC cells was independent of either dose or type of radiation. The dose at which EAC tumors are not induced within 90 days was 30 Gy for carbon ions and 60 Gy for X-rays. The value of the relative biological effectiveness of carbon ions, calculated from an equally effective dose of 50% probability of tumors, was 2.59.
Collapse
Affiliation(s)
- V E Balakin
- Branch "Physical-Technical Center" of Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Moscow oblast, Russia
| | - T A Belyakova
- Branch "Physical-Technical Center" of Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Moscow oblast, Russia.
| | - O M Rozanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
| | - E N Smirnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
| | - N S Strelnikova
- Branch "Physical-Technical Center" of Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Moscow oblast, Russia
| | - E A Kuznetsova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
| |
Collapse
|
3
|
Buglewicz DJ, Buglewicz JKF, Hirakawa H, Kato TA, Liu C, Fang Y, Kusumoto T, Fujimori A, Sai S. The impact of DNA double-strand break repair pathways throughout the carbon ion spread-out Bragg peak beam. Cancer Sci 2023; 114:4548-4557. [PMID: 37786999 PMCID: PMC10727999 DOI: 10.1111/cas.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
Following carbon ion beam irradiation in mammalian cells, such as used in carbon ion radiotherapy (CIRT), it has been suggested that the balance between whether nonhomologous end joining (NHEJ) or homologous recombination (HR) is utilized depends on the DNA double-strand break (DSB) complexity. Here, we quantified DSB distribution and identified the importance of each DSB repair pathway at increasing depths within the carbon ion spread-out Bragg peak (SOBP) beam range. Chinese hamster ovary (CHO) cell lines were irradiated in a single biological system capable of incorporating the full carbon ion SOBP beam range. Cytotoxicity and DSB distribution/repair kinetics were examined at increasing beam depths using cell survival as an endpoint and γ-H2AX as a surrogate marker for DSBs. We observed that proximal SOBP had the highest number of total foci/cell and lowest survival, while distal SOBP had the most dense tracks. Both NHEJ- and HR-deficient CHO cells portrayed an increase in radiosensitivity throughout the full carbon beam range, although NHEJ-deficient cells were the most radiosensitive cell line from beam entrance up to proximal SOBP and demonstrated a dose-dependent decrease in ability to repair DSBs. In contrast, HR-deficient cells had the greatest ratio of survival fraction at entrance depth to the lowest survival fraction within the SOBP and demonstrated a linear energy transfer (LET)-dependent decrease in ability to repair DSBs. Collectively, our results provide insight into treatment planning and potential targets to inhibit, as HR was a more beneficial pathway to inhibit than NHEJ to enhance the cell killing effect of CIRT in targeted tumor cells within the SOBP while maintaining limited unwanted damage to surrounding healthy cells.
Collapse
Affiliation(s)
- Dylan J. Buglewicz
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | | | - Hirokazu Hirakawa
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Cuihua Liu
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - YaQun Fang
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Tamon Kusumoto
- Department of Radiation Measurement and Dose Assessment, Institute of Radiological SciencesNational Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Akira Fujimori
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Sei Sai
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| |
Collapse
|
4
|
Fang X, Sun P, Dong Y, Huang Y, Lu JJ, Kong L. In vitro evaluation of photon and carbon ion radiotherapy in combination with cisplatin in head and neck squamous cell carcinoma cell lines. Front Oncol 2023; 13:896142. [PMID: 37081974 PMCID: PMC10110960 DOI: 10.3389/fonc.2023.896142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundHeavy ion radiotherapy, such as carbon ion radiotherapy (CIRT), has multiple advantages over conventional photon therapy. Cisplatin, as a classic anti-tumor drugs, has been tested and discovered as a photon radiosensitizer in several cell lines, including head and neck squamous cell carcinoma (HNSCC). Hence, the aim of our study is to evaluate whether cisplatin can sensitize CIRT towards HNSCC cell lines in vitro.MethodsHuman nasopharyngeal carcinoma cell line CNE-2, human tongue squamous carcinoma cell line TCA 8113 and human hypopharynx squamous carcinoma cell line FADU were all irradiated with photon beam of 2, 4, 6, 8 Gy (physical dose) and carbon ion beam of 1, 2, 3, 4 Gy (physical dose) and treated with cisplatin. Cell survival was assessed by clonogenic survival assay.ResultsCIRT showed significantly stronger cytotoxic effect than standard photon radiotherapy. The relative biological effectiveness (RBE) of carbon ion beam at 10% survival (RBE10) was calculated 3.07 for CNE-2, 2.33 for TCA 8113 and 2.36 for FADU. Chemoradiotherapy (both photon radiotherapy and CIRT) was more effective than radiotherapy alone. In vitro sensitizer enhancement ratios (SERs) of cisplatin in CNE-2, TCA 8113 and FA DU cell lines after photon irradiation were 1.33, 1.14 and 1.21, while after carbon ion irradiation were 1.02, 1.00 and 0.96, showed that cisplatin sensitized photon irradiation but showed no sensitization effect in carbon ion irradiation in all tested cell lines.ConclusionsIn conclusion, high linear energy transfer (LET) CIRT was more effective than photon irradiation to prevent the proliferation of HNSCC cell lines. Additional treatment with cisplatin could sensitize photon irradiation but showed no effect on carbon ion irradiation.
Collapse
Affiliation(s)
- Xumeng Fang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Pian Sun
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- *Correspondence: Jiade Jay Lu, ; Lin Kong,
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- *Correspondence: Jiade Jay Lu, ; Lin Kong,
| |
Collapse
|
5
|
Sai S, Koto M, Yamada S. Basic and translational research on carbon-ion radiobiology. Am J Cancer Res 2023; 13:1-24. [PMID: 36777517 PMCID: PMC9906076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 02/14/2023] Open
Abstract
Carbon-ion beam irradiation (IR) has evident advantages over the conventional photon beams in treating tumors. It releases enormous amount of energy in a well-defined range with insignificant scatter in surrounding tissues based on well-localized energy deposition. Over the past 28 years, more than 14,000 patients with various types of cancer have been treated by carbon ion radiotherapy (CIRT) with promising results at QST. I have provided an overview of the basic and translational research on carbon-ion radiobiology including mechanisms underlying high linear energy transfer (LET) carbon-ion IR-induced cell death (apoptosis, autophagy, senescence, mitotic catastrophe etc.) and high radiocurability produced by carbon-ion beams in combination with DNA damaging drugs or with molecular-targeted drugs, micro-RNA therapeutics and immunotherapy. Additionally, I have focused on the application of these treatment in human cancer cells, especially cancer stem cells (CSCs). Finally, I have summarized the current studies on the application of basic carbon-ion beam IR according to the cancer types and clinical outcomes.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| | - Masashi Koto
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST)Chiba, Japan,QST Hospital, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| |
Collapse
|
6
|
Wang Q, Liu R, Zhang Q, Luo H, Wu X, Du T, Chen Y, Tan M, Liu Z, Sun S, Yang K, Tian J, Wang X. Biological effects of cancer stem cells irradiated by charged particle: a systematic review of in vitro studies. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04561-6. [PMID: 36611110 DOI: 10.1007/s00432-022-04561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE The existence of cancer stem cells (CSCs) is closely related to tumor recurrence, metastasis, and resistance to chemoradiotherapy. In addition, given the unique physical and biological advantages of charged particle, we hypothesized that charged particle irradiation would produce strong killing effects on CSCs. The purpose of our systematic review is to evaluate the biological effects of CSCs irradiated by charged particle, including proliferation, invasion, migration, and changes in the molecular level. METHODS We searched PubMed, EMBASE, and Web of Science until 17 march 2022 according to the key words. Included studies have to be vitro studies of CSCs irradiated by charged particle. Outcomes included one or more of radiation sensitivity, proliferation, metastasis, invasion, and molecular level changes, like DNA damage after been irradiated. RESULTS Eighteen studies were included in the final analysis. The 18 articles include 12-carbon ion irradiation, 4-proton irradiation, 1 α-particle irradiation, 1-carbon ion combine proton irradiation. CONCLUSION Through the extraction and analysis of data, we came to this conclusion: CSCs have obvious radio-resistance compared with non-CSCs, and charged particle irradiation or in combination with drugs could overcome this resistance, specifically manifested in inhibiting CSCs' proliferation, invasion, migration, and causing more and harder to repair DNA double-stranded breaks (DSB) of CSCs.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China. .,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China. .,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Chaudhary A, Raza SS, Haque R. Transcriptional factors targeting in cancer stem cells for tumor modulation. Semin Cancer Biol 2023; 88:123-137. [PMID: 36603792 DOI: 10.1016/j.semcancer.2022.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cancer Stem Cells (CSCs) are now considered the primary "seeds" for the onset, development, metastasis, and recurrence of tumors. Despite therapeutic breakthroughs, cancer remains the leading cause of death worldwide. This is because the tumor microenvironment contains a key population of cells known as CSCs, which promote tumor aggression. CSCs are self-renewing cells that aid tumor recurrence by promoting tumor growth and persisting in patients after many traditional cancer treatments. According to reports, numerous transcription factors (TF) play a key role in maintaining CSC pluripotency and its self-renewal property. The understanding of the functions, structures, and interactional dynamics of these transcription factors with DNA has modified the hypothesis, paving the way for novel transcription factor-targeted therapies. These TFs, which are crucial and are required by cancer cells, play a vital function in the etiology of human cancer. Such CSC TFs will help with gene expression profiling, which provides crucial data for predicting the prognosis of patients. To overcome anti-cancer medication resistance and completely eradicate cancer, a potent therapy combining TFs-based CSC targets with traditional chemotherapy may be developed. In order to develop therapies that could eliminate CSCs, we here concentrated on the effect of TFs and other components of signalling pathways on cancer stemness.
Collapse
Affiliation(s)
- Archana Chaudhary
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Rizwanul Haque
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
8
|
Sai S, Yamada T, Ito K, Kanematsu N, Suzuki M, Hayashi M, Koto M. Carbon-ion beam irradiation in combination with cisplatin effectively suppresses xenografted malignant pleural mesothelioma. Am J Cancer Res 2022; 12:5657-5667. [PMID: 36628287 PMCID: PMC9827089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer. This study investigated the growth-inhibitory effects of the combination of carbon ion beam irradiation (IR) and cisplatin (CDDP) on MPM xenografts. Carbon-ion beam IR at 15 Gy effectively inhibited tumor growth and decreased the tumor volume more than 90% after 9 weeks. However, tumor regrowth was observed after 17 weeks. The combination of carbon-ion beam IR (15 Gy) and CDDP significantly suppressed tumor growth after 9 weeks, with tumor regression being observed for more than 18 weeks. In contrast, X-ray IR (30 Gy) alone or in combination with CDDP effectively suppressed tumor growth and decreased the tumor volume after 11 weeks, but tumor growth was observed after 15 weeks. Carbon-ion beam IR at 25 Gy resulted in complete tumor regression without tumor regrowth in the 20-week follow-up period. Histopathological analysis revealed that combination of carbon-ion beam IR and CDDP exerted effective cytotoxic effects on MPM xenograft tumor cells and significantly promoted tumor cell necrosis, cavitation, and fibrosis when compared with individual treatment with carbon-ion beam, X-ray IR, or CDDP. Immunohistochemical analysis revealed that the expression levels of tumor cell migration and invasion-related proteins such as CXCL12, MMP2 and MMP9 were not significantly affected upon low dose (15 Gy) carbon-ion beam IR alone or in combination with CDDP but were markedly upregulated upon treatment with CDDP alone relative to control. However, IR with a high dose (25 Gy) carbon-ion beam inhibited tumor growth without upregulating these proteins. In conclusion, the combination of IR with a low dose (15 Gy) carbon ion beam and CDDP effectively suppressed MPM tumor in vivo without significantly upregulating CXCL12, MMP2 and MMP9, suggesting that combination therapy of carbon ion beam IR and chemotherapy is a promising therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Taiju Yamada
- QST Hospital, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Keiko Ito
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Masao Suzuki
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Mitsuhiro Hayashi
- Syneos Health Clinical K.K.1-2-70 Konan, Minato-ku, Tokyo 108-0075, Japan
| | - Masashi Koto
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan,QST Hospital, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| |
Collapse
|
9
|
Wang D, Liu R, Zhang Q, Luo H, Chen J, Dong M, Wang Y, Ou Y, Liu Z, Sun S, Yang K, Tian J, Li Z, Wang X. Charged Particle Irradiation for Pancreatic Cancer: A Systematic Review of In Vitro Studies. Front Oncol 2022; 11:775597. [PMID: 35059313 PMCID: PMC8764177 DOI: 10.3389/fonc.2021.775597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose Given the higher precision accompanied by optimized sparing of normal tissue, charged particle therapy was thought of as a promising treatment for pancreatic cancer. However, systematic preclinical studies were scarce. We aimed to investigate the radiobiological effects of charged particle irradiation on pancreatic cancer cell lines. Methods A systematic literature search was performed in EMBASE (OVID), Medline (OVID), and Web of Science databases. Included studies were in vitro English publications that reported the radiobiological effects of charged particle irradiation on pancreatic cancer cells. Results Thirteen carbon ion irradiation and seven proton irradiation in vitro studies were included finally. Relative biological effectiveness (RBE) values of carbon ion irradiation and proton irradiation in different human pancreatic cancer cell lines ranged from 1.29 to 4.5, and 0.6 to 2.1, respectively. The mean of the surviving fraction of 2 Gy (SF2) of carbon ion, proton, and photon irradiation was 0.18 ± 0.11, 0.48 ± 0.11, and 0.57 ± 0.13, respectively. Carbon ion irradiation induced more G2/M arrest and a longer-lasting expression of γH2AX than photon irradiation. Combination therapies enhanced the therapeutic effects of pancreatic cell lines with a mean standard enhancement ratio (SER) of 1.66 ± 0.63 for carbon ion irradiation, 1.55 ± 0.27 for proton irradiation, and 1.52 ± 0.30 for photon irradiation. Carbon ion irradiation was more effective in suppressing the migration and invasion than photon irradiation, except for the PANC-1 cells. Conclusions Current in vitro evidence demonstrates that, compared with photon irradiation, carbon ion irradiation offers superior radiobiological effects in the treatment of pancreatic cancer. Mechanistically, high-LET irradiation may induce complex DNA damage and ultimately promote genomic instability and cell death. Both carbon ion irradiation and proton irradiation confer similar sensitization effects in comparison with photon irradiation when combined with chemotherapy or targeted therapy.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Junru Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Meng Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yuhang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yuhong Ou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zheng Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| |
Collapse
|
10
|
D S P, Chaturvedi PK, Shimokawa T, Kim KH, Park WY. Silencing of Fused Toes Homolog (FTS) Increases Radiosensitivity to Carbon-Ion Through Downregulation of Notch Signaling in Cervical Cancer Cells. Front Oncol 2021; 11:730607. [PMID: 34765546 PMCID: PMC8576531 DOI: 10.3389/fonc.2021.730607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of Carbon ion radiation (C-ion) alone or in combination with fused toes homolog (FTS) silencing on Notch signaling were investigated in uterine cervical cancer cell lines (ME180 and CaSki). In both cell lines, upon irradiation with C-ion, the expression of Notch signaling molecules (Notch1, 2, 3 and cleaved Notch1), γ-secretase complex molecules and FTS was upregulated dose-dependently (1, 2 and 4 Gy) except Notch1 in ME180 cells where the change in expression was not significant. However, overexpression of these molecules was attenuated upon silencing of FTS. The spheroid formation, expression of stem cell markers (OCT4A, Sox2 and Nanog) and clonogenic cell survival were reduced by the combination as compared to FTS silencing or C-ion irradiation alone. Additionally, immunoprecipitation and immunofluorescence assay revealed interaction and co-localization of FTS with Notch signaling molecules. In conclusion, FTS silencing enhances the radio-sensitivity of the cervical cancer cells to C-ion by downregulating Notch signaling molecules and decreasing the survival of cancer stem cells.
Collapse
Affiliation(s)
- Prabakaran D S
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Pankaj Kumar Chaturvedi
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba, Japan
| | - Ki-Hwan Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, South Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
11
|
Sai S, Kim EH, Koom WS, Vares G, Suzuki M, Yamada S, Hayashi M. Carbon-Ion Beam Irradiation and the miR-200c Mimic Effectively Eradicate Pancreatic Cancer Stem Cells Under in vitro and in vivo Conditions. Onco Targets Ther 2021; 14:4749-4760. [PMID: 34556996 PMCID: PMC8453446 DOI: 10.2147/ott.s311567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The study investigated the molecular mechanisms that killed pancreatic cancer cells, including cancer stem cells (CSCs), by carbon ion beam irradiation alone or in combination with miRNA-200c under in vitro and in vivo conditions. Methods Human pancreatic cancer (PC) cells, PANC1 and PK45, were treated with carbon-ion beam irradiation alone or in combination with microRNA-200c (miR-200c) mimic. Cell viability assay, colony and spheroid formation assay, quantitative real-time PCR analysis of apoptosis-, autophagy-, and angiogenesis-related gene expression, xenograft tumor control and histopathological analyses were performed. Results The cell viability assay showed that transfection of the miRNA-200c (10 nM) mimic into pancreatic CSC (CD44+/ESA+) and non-CSC (CD44-/ESA-) significantly suppressed proliferation of both types of cell populations described above. Combining carbon-ion beam irradiation with the miRNA-200c mimic significantly reduced the colony as well as spheroid formation abilities compared to that observed with the treatment of carbon-ion beam alone or X-ray irradiation combined with the miRNA-200c mimic. Moreover, the combination of carbon ion beam irradiation and miRNA-200c mimic increased the expression of apoptosis-related gene BAX, autophagy-related genes Beclin-1 and p62, addition of gemcitabine (GEM) further enhanced the expression of these genes. In vivo data showed that carbon-ion beam irradiation in combination with the miRNA-200c mimic effectively suppressed xenograft tumor growth and significantly induced tumor necrosis and cavitation. Conclusion The combination of miRNA-200c mimic and carbon ion beam irradiation may be powerful radiotherapy that significantly kills pancreatic cancer cells containing CSCs and enhances the effect of carbon-ion beam irradiation compared to carbon-ion beam irradiation alone.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu, 42472, South Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Guillaume Vares
- Institute of Radioprotection and Nuclear Safety (IRSN), Fontenay-aux-Roses Cedex, France
| | - Masao Suzuki
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Mitsuhiro Hayashi
- Breast Center, Dokkyo Medical University Hospital, Tochigi, 321-0293, Japan
| |
Collapse
|
12
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
13
|
Koom WS, Sai S, Suzuki M, Fujimori A, Yamada S, Tsujii H. Superior Effect of the Combination of Carbon-Ion Beam Irradiation and 5-Fluorouracil on Colorectal Cancer Stem Cells in vitro and in vivo. Onco Targets Ther 2020; 13:12625-12635. [PMID: 33335403 PMCID: PMC7737548 DOI: 10.2147/ott.s276035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to investigate whether carbon-ion beam irradiation in combination with 5-fluorouracil (5-FU) is superior to carbon-ion beam irradiation alone in targeting colorectal cancer stem-like cells (CSCs). Materials and Methods Human colorectal cancer (CRC) cells, HCT116 and HT29, were treated with carbon-ion beam irradiation alone or in combination with 5-FU. Cell viability assay, colony and spheroid formation assay, apoptotic assay, and quantitative real-time PCR analysis of apoptosis- and autophagy-related gene expression were performed. Results Carbon-ion beam irradiation dose-dependently decreased CRC cell viability and showed significantly enhanced cell killing effect when combined with 5-FU. Carbon-ion beam irradiation in combination with 5-FU significantly increased the percentage of apoptotic cells. The expression of some apoptotic and autophagy-related genes such as Bax, Bcl2, Beclin1 and ATG7 was significantly induced by carbon-ion beam irradiation alone and was further enhanced when the beam was combined with 5-FU. The spheroid forming capacity of CD133+ cell subpopulations was significantly inhibited by carbon-ion beam in combination with 5-FU. Histopathologically, the combination of carbon-ion beam irradiation and 5-FU destroyed more xenograft tumor cells, and resulted in increased necrosis, cavitation, and fibrosis, compared to carbon-ion beam irradiation alone. Conclusion In conclusion, carbon-ion beam treatment combined with 5-FU has the potential to kill CRC cells including CSCs by inducing increased apoptosis and autophagy.
Collapse
Affiliation(s)
- Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University, College of Medicine, Seoul, South Korea.,QST Hospital, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Hirohiko Tsujii
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
14
|
Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Sci Rep 2020; 10:21357. [PMID: 33288855 PMCID: PMC7721800 DOI: 10.1038/s41598-020-78354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance. The DSBs signaling and the contribution of the canonical non-homologous end-joining (NHEJ-c) and homologous-recombination (HR) repair pathways were assessed by immunostaining in two cancer-stem-cell (CSCs) and non-CSCs HNSCC cell lines. Detection and signaling of DSBs were lower in response to C-ions than photons. Hypoxia increased the decay-rate of the detected DSBs (γH2AX) in CSCs after photons and the initiation of DSB repair signaling (P-ATM) in CSCs and non-CSCs after both radiations, but not the choice of DSB repair pathway (53BP1). Additionally, hypoxia increased the NHEJ-c (DNA-PK) and the HR pathway (RAD51) activation only after photons. Furthermore, the involvement of the HR seemed to be higher in CSCs after photons and in non-CSCs after C-ions. Taken together, our results show that C-ions may overcome the radioresistance of HNSCC associated with DNA repair, particularly in CSCs, and independently of a hypoxic microenvironment.
Collapse
|
15
|
Kim EH, Kim JY, Kim MS, Vares G, Ohno T, Takahashi A, Uzawa A, Seo SJ, Sai S. Molecular mechanisms underlying the enhancement of carbon ion beam radiosensitivity of osteosarcoma cells by miR-29b. Am J Cancer Res 2020; 10:4357-4371. [PMID: 33415004 PMCID: PMC7783744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023] Open
Abstract
Carbon ion radiotherapy (CIRT) is more effective than conventional photon beam radiotherapy in treating osteosarcoma (OSA); however, the outcomes of CIRT alone are still unsatisfactory. In this study, we aimed to investigate whether miR-29b acts as a radiosensitizer for CIRT. The OSA cell lines U2OS and KHOS were treated with carbon ion beam alone, γ-ray irradiation alone, or in combination with an miR-29b mimic. OSA cell death as well as invasive and migratory abilities were analyzed through viability, colony formation, Transwell, and apoptosis assays. miR-29 expression was downregulated in OSA tissues compared to that in normal tissues and was associated with metastasis and relapse in patients with OSA. Further, miR-29b was found to directly target the transcription factor Sp1 and suppress the activation of the phosphatase and tensin homolog (PTEN)-AKT pathway. Conversely, Sp1 was found to attenuate the inhibitory effects of miR-29b in OSA cells. When used in combination with miR-29b mimic, carbon ion beam markedly inhibited invasion, migration, and proliferation of OSA cells and promoted apoptosis by inhibiting AKT phosphorylation in a Sp1/PTEN-mediated manner. Taken together, miR-29b mimic improved the radiosensitivity of OSA cells via the PTEN-AKT-Sp1 signaling pathway, presenting a novel strategy for the development of carbon ion beam combination therapy.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Jeong Yub Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical SciencesSeoul 139-706, South Korea
| | - Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST)Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Akiko Uzawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Seung-Jun Seo
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| |
Collapse
|
16
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
17
|
Sai S, Kim EH, Vares G, Suzuki M, Yu D, Horimoto Y, Hayashi M. Combination of carbon-ion beam and dual tyrosine kinase inhibitor, lapatinib, effectively destroys HER2 positive breast cancer stem-like cells. Am J Cancer Res 2020; 10:2371-2386. [PMID: 32905515 PMCID: PMC7471364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023] Open
Abstract
To investigate whether carbon-ion beam alone, or in combination with lapatinib, has a beneficial effect in targeting HER2-positive breast cancer stem-like cells (CSCs) compared to that of X-rays, human breast CSCs derived from BT474 and SKBR3 cell lines were treated with a carbon-ion beam or X-rays irradiation alone or in combination with lapatinib, and then cell viability, spheroid formation assays, apoptotic analyses, gene expression analysis of related genes, and immunofluorescent γ-H2AX foci assays were performed. Spheroid formation assays confirmed that ESA+/CD24- cells have CSC properties compared to ESA-/CD24+ cells. CSCs were more highly enriched after X-ray irradiation combined with lapatinib, whereas carbon-ion beam combined with lapatinib significantly decreased the proportion of CSCs. Carbon-ion beam combined with lapatinib significantly suppressed spheroid formation compared to X-rays combined with lapatinib or carbon ion beam alone. Cell cycle analysis showed that carbon ion beam combined with lapatinib predominantly enhanced sub-G1 and G2/M arrested population compared to that of carbon-ion beam, X-ray treatments alone. Carbon-ion beam combined with lapatinib significantly enhanced apoptosis and carbon-ion beam alone dose-dependently increased autophagy-related expression of Beclin1 and in combination with lapatinib greatly enhanced ATG7 expression at protein levels. In addition, a large-sized γH2AX foci in CSCs were induced by carbon ion beam combined with lapatinib treatment in CSCs compared to cells receiving X-rays or carbon-ion beam alone. Altogether, combination of carbon-ion beam irradiation and lapatinib has a high potential to kill HER2-positive breast CSCs, causing severe irreparable DNA damage, enhanced autophagy, and apoptosis.
Collapse
Affiliation(s)
- Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Guillaume Vares
- Okinawa Institute of Science and Technology (OIST), Advanced Medical Instrumentation UnitTancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow UniversitySuzhou 215006, China
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiro Hayashi
- Breast Center, Dokkyo Medical University Hospital880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| |
Collapse
|
18
|
Vares G, Ahire V, Sunada S, Ho Kim E, Sai S, Chevalier F, Romeo PH, Yamamoto T, Nakajima T, Saintigny Y. A multimodal treatment of carbon ions irradiation, miRNA-34 and mTOR inhibitor specifically control high-grade chondrosarcoma cancer stem cells. Radiother Oncol 2020; 150:253-261. [PMID: 32717360 DOI: 10.1016/j.radonc.2020.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE High-grade chondrosarcomas are chemo- and radio-resistant cartilage-forming tumors of bone that often relapse and metastase. Thus, new therapeutic strategies are urgently needed. MATERIAL AND METHODS Chondrosarcoma cells (CH-2879) were exposed to carbon-ion irradiation, combined with miR-34 mimic and/or rapamycin administration. The effects of treatment on cancer stem cells, stemness-associated phenotype, radioresistance and tumor-initiating properties were evaluated. RESULTS We show that high-grade chondrosarcoma cells contain a population of radioresistant cancer stem cells that can be targeted by a combination of carbon-ion therapy, miR-34 mimic administration and/or rapamycin treatment that triggers FOXO3 and miR-34 over-expression. mTOR inhibition by rapamycin triggered FOXO3 and miR-34, leading to KLF4 repression. CONCLUSION Our results show that particle therapy combined with molecular treatments effectively controls cancer stem cells and may overcome treatment resistance of high-grade chondrosarcoma.
Collapse
Affiliation(s)
- Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan.
| | - Vidhula Ahire
- Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France; Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
| | - Shigeaki Sunada
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Department of Molecular Genetics, Tokyo Medical and Dental University (TMDU), Japan
| | - Eun Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Sei Sai
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - François Chevalier
- Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France; Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
| | - Paul-Henri Romeo
- Research Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS), François Jacob Institute of Biology, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yannick Saintigny
- Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France; Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France.
| |
Collapse
|
19
|
Zhang J, Si J, Gan L, Zhou R, Guo M, Zhang H. Harnessing the targeting potential of differential radiobiological effects of photon versus particle radiation for cancer treatment. J Cell Physiol 2020; 236:1695-1711. [PMID: 32691425 DOI: 10.1002/jcp.29960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023]
Abstract
Radiotherapy is one of the major modalities for malignancy treatment. High linear energy transfer (LET) charged-particle beams, like proton and carbon ions, exhibit favourable depth-dose distributions and radiobiological enhancement over conventional low-LET photon irradiation, thereby marking a new era in high precision medicine. Tumour cells have developed multicomponent signal transduction networks known as DNA damage responses (DDRs), which initiate cell-cycle checkpoints and induce double-strand break (DSB) repairs in the nucleus by nonhomologous end joining or homologous recombination pathways, to manage ionising radiation (IR)-induced DNA lesions. DNA damage induction and DSB repair pathways are reportedly dependent on the quality of radiation delivered. In this review, we summarise various types of DNA lesion and DSB repair mechanisms, upon irradiation with low and high-LET radiation, respectively. We also analyse factors influencing DNA repair efficiency. Inhibition of DNA damage repair pathways and dysfunctional cell-cycle checkpoint sensitises tumour cells to IR. Radio-sensitising agents, including DNA-PK inhibitors, Rad51 inhibitors, PARP inhibitors, ATM/ATR inhibitors, chk1 inhibitors, wee1 kinase inhibitors, Hsp90 inhibitors, and PI3K/AKT/mTOR inhibitors have been found to enhance cell killing by IR through interference with DDRs, cell-cycle arrest, or other cellular processes. The cotreatment of these inhibitors with IR may represent a promising therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhou
- Research Center for Ecological Impacts and Environmental Health Effects of Toxic and Hazardous Chemicals, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020; 9:cells9071651. [PMID: 32660072 PMCID: PMC7407195 DOI: 10.3390/cells9071651] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| |
Collapse
|
21
|
Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer? Int J Mol Sci 2020; 21:ijms21134767. [PMID: 32635552 PMCID: PMC7369903 DOI: 10.3390/ijms21134767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.
Collapse
|
22
|
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related morality worldwide, and the prognosis remains poor despite aggressive therapy. Carbon ion radiotherapy has favorable radiobiological and physical characteristics in the treatment, including a higher linear energy transfer and higher relative biological effectiveness, which increase the cell kill while potentially reducing toxicities to nearby normal tissues. Although small, early clinical studies have shown promise in both the resectable and unresectable settings to improve local control and overall survival while minimizing toxicities. Currently, there are several trials, including 2 sponsored by institutions in the United States, investigating the role of carbon ion radiotherapy for the treatment of locally advanced pancreatic cancer.
Collapse
|
23
|
Liermann J, Shinoto M, Syed M, Debus J, Herfarth K, Naumann P. Carbon ion radiotherapy in pancreatic cancer: A review of clinical data. Radiother Oncol 2020; 147:145-150. [PMID: 32416281 DOI: 10.1016/j.radonc.2020.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Despite all efforts, pancreatic cancer remains a highly lethal disease. Only surgical resection offers a realistic chance of survival. But at diagnosis the majority of patients suffer from unresectable disease. Whereas guidelines clearly recommend systemic treatments in metastatic disease, data is limited to support a specific treatment option for locally advanced or borderline resectable pancreatic cancer. Therefore, there is an urgent need to improve treatment schemes addressing patients that suffer from unresectable pancreatic cancer. Chemotherapy, photon radiotherapy and combinations of both have shown improved local control rates but there is still a lack of evidence demonstrating an overall survival benefit of photon radiotherapy if no surgical resection is achieved. Impressive results of Japanese Phase I/II-trials investigating carbon ion radiotherapy in pancreatic cancer attracted global attention. Several studies have been initiated to validate and intensify this promising issue. This review gives an overview of the evidence and current use of carbon ion radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jakob Liermann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| | - Makoto Shinoto
- Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga, Japan.
| | - Mustafa Syed
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany.
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Klaus Herfarth
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Patrick Naumann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Vares G, Jallet V, Matsumoto Y, Rentier C, Takayama K, Sasaki T, Hayashi Y, Kumada H, Sugawara H. Functionalized mesoporous silica nanoparticles for innovative boron-neutron capture therapy of resistant cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102195. [PMID: 32278101 DOI: 10.1016/j.nano.2020.102195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Treatment resistance, relapse and metastasis remain critical issues in some challenging cancers, such as chondrosarcomas. Boron-neutron capture therapy (BNCT) is a targeted radiation therapy modality that relies on the ability of boron atoms to capture low energy neutrons, yielding high linear energy transfer alpha particles. We have developed an innovative boron-delivery system for BNCT, composed of multifunctional fluorescent mesoporous silica nanoparticles (B-MSNs), grafted with an activatable cell penetrating peptide (ACPP) for improved penetration in tumors and with gadolinium for magnetic resonance imaging (MRI) in vivo. Chondrosarcoma cells were exposed in vitro to an epithermal neutron beam after B-MSNs administration. BNCT beam exposure successfully induced DNA damage and cell death, including in radio-resistant ALDH+ cancer stem cells (CSCs), suggesting that BNCT using this system might be a suitable treatment modality for chondrosarcoma or other hard-to-treat cancers.
Collapse
Affiliation(s)
- Guillaume Vares
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan.
| | - Vincent Jallet
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan.
| | | | - Cedric Rentier
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo
| | - Toshio Sasaki
- Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo
| | - Hiroaki Kumada
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirotaka Sugawara
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| |
Collapse
|
25
|
Kim EH, Kim MS, Takahashi A, Suzuki M, Vares G, Uzawa A, Fujimori A, Ohno T, Sai S. Carbon-Ion Beam Irradiation Alone or in Combination with Zoledronic acid Effectively Kills Osteosarcoma Cells. Cancers (Basel) 2020; 12:cancers12030698. [PMID: 32187978 PMCID: PMC7140041 DOI: 10.3390/cancers12030698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone tumor in children and adolescents. The overall five-year survival rate for all bone cancers is below 70%; however, when the cancer has spread beyond the bone, it is about 15–30%. Herein, we evaluated the effects of carbon-ion beam irradiation alone or in combination with zoledronic acid (ZOL) on OSA cells. Carbon-ion beam irradiation in combination with ZOL significantly inhibited OSA cell proliferation by arresting cell cycle progression and initiating KHOS and U2OS cell apoptosis, compared to treatments with carbon-ion beam irradiation, X-ray irradiation, and ZOL alone. Moreover, we observed that this combination greatly inhibited OSA cell motility and invasion, accompanied by the suppression of the Pi3K/Akt and MAPK signaling pathways, which are related to cell proliferation and survival, compared to individual treatments with carbon-ion beam or X-ray irradiation, or ZOL. Furthermore, ZOL treatment upregulated microRNA (miR)-29b expression; the combination with a miR-29b mimic further decreased OSA cell viability via activation of the caspase 3 pathway. Thus, ZOL-mediated enhancement of carbon-ion beam radiosensitivity may occur via miR-29b upregulation; co-treatment with the miR-29b mimic further decreased OSA cell survival. These findings suggest that the carbon-ion beam irradiation in combination with ZOL has high potential to increase OSA cell death.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
- Correspondence: (E.H.K.); (S.S.); Tel.: +82-53-650-4480 (E.H.K.); +81-43-206-3231 (S.S.)
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son 904-0495, Okinawa, Japan;
| | - Akiko Uzawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
- Correspondence: (E.H.K.); (S.S.); Tel.: +82-53-650-4480 (E.H.K.); +81-43-206-3231 (S.S.)
| |
Collapse
|
26
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
27
|
Vitolo V, Cobianchi L, Brugnatelli S, Barcellini A, Peloso A, Facoetti A, Vanoli A, Delfanti S, Preda L, Molinelli S, Klersy C, Fossati P, Orecchia R, Valvo F. Preoperative chemotherapy and carbon ions therapy for treatment of resectable and borderline resectable pancreatic adenocarcinoma: a prospective, phase II, multicentre, single-arm study. BMC Cancer 2019; 19:922. [PMID: 31521134 PMCID: PMC6744648 DOI: 10.1186/s12885-019-6108-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background Pancreatic adenocarcinoma is a high-mortality neoplasm with a documented 5-years-overall survival around 5%. In the last decades, a real breakthrough in the treatment of the disease has not been achieved. Here we propose a prospective, phase II, multicentre, single-arm study aiming to assess the efficacy and the feasibility of a therapeutic protocol combining chemotherapy, carbon ion therapy and surgery for resectable and borderline resectable pancreatic adenocarcinoma. Method The purpose of this trial (PIOPPO Protocol) is to assess the efficacy and the feasibility of 3 cycles of FOLFIRINOX neoadjuvant chemotherapy followed by a short-course of carbon ion radiotherapy (CIRT) for resectable or borderline resectable pancreatic adenocarcinoma patients. Primary outcome of this study is the assessment of local progression free survival (L-PFS). The calculation of sample size is based on the analysis of the primary endpoint “progression free survival” according to Fleming’s Procedure. Discussion Very preliminary results provide initial evidence of the feasibility of the combined chemotherapy and CIRT in the neoadjuvant setting for resectable or borderline resectable pancreatic cancer. Completion of the accrual and long term results are awaited to see if this combination of treatment is advisable and will provide the expected benefits. Trial registration ClinicalTrials.gov Identifier: NCT03822936 registered on January 2019.
Collapse
Affiliation(s)
- Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia Brugnatelli
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Barcellini
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.
| | - Andrea Peloso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Delfanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia Molinelli
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Catherine Klersy
- Service of Clinical Epidemiology & Biometry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Piero Fossati
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Roberto Orecchia
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,European Institute of Oncology (IEO), Milan, Italy
| | - Francesca Valvo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| |
Collapse
|
28
|
Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, Grosshans D, Held KD, Mohan R, Moiseenko V, Niemierko A, Stewart RD, Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys 2019; 46:e53-e78. [PMID: 30661238 DOI: 10.1002/mp.13390] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/21/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Indra J Das
- New York University Langone Medical Center & Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Amundson SA. Gene Expression Studies for the Development of Particle Therapy. Int J Part Ther 2018; 5:49-59. [PMID: 30555854 PMCID: PMC6292674 DOI: 10.14338/ijpt-18-00010.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Proton therapy for cancer is now in widespread use, and facilities for carbon ion therapy are showing great promise, but a more complete understanding of the mechanisms underlying particle radiation therapy is still needed in order to optimize treatment. Studies of gene expression, especially those using whole genome techniques, can provide insight into many of the questions still remaining, from the molecular mechanisms involved to predicting patient outcome. This review will summarize gene expression studies of response to proton and carbon ion beams, as well as high-energy protons and high-z high-energy particles with relevance to particle therapy. In general, most such studies find that, in comparison with x-ray or gamma-ray exposure, particle irradiation increases both the number of genes responding and the magnitude of the response. Patterns of gene expression have suggested impacts on specific pathways of relevance to radiation therapy, such as enhancement or suppression of tumor progression or metastasis. However, even within the relatively small number of studies done to date there is no clear consensus of response, suggesting influence by multiple parameters, such as particle type, particle energy, and tumor type. Systematic gene expression studies can help to address these issues, and promoting a culture of data sharing will expedite the process, benefiting investigators across the radiation therapy field.
Collapse
Affiliation(s)
- Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Tsuboi K. Advantages and Limitations in the Use of Combination Therapies with Charged Particle Radiation Therapy. Int J Part Ther 2018; 5:122-132. [PMID: 31773024 DOI: 10.14338/ijpt-18-00019.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Studies are currently underway to help provide basic and clinical evidence for combination particle beam radiation therapy, on which there are few published reports. The purpose of this article is to summarize the current status in the use of particle beams combined with other modalities. Results Following from experiences in x-ray radiation therapy, combination therapy with proton beams (PBT) has been attempted, and several clinical studies have reported improved survival rates for patients with non-small cell lung cancer, pancreatic cancers, esophageal cancers, and glioblastomas. Recently, basic studies combining PBT with PARP inhibitors and histone deacetylase inhibitors have also reported promising results. In the area of carbon ion therapy (CIT), there are few clinical reports on combination therapy; however, the number of basic research reports exceeds that for PBT. So far, the combined use of cytotoxic drugs with CIT yields independent additive effects. In addition, it is notable that combination therapy with CIT is effective against radioresistant cancer stem-like cells. Recent evidence also suggests that local radiation therapy can induce an effective antitumor immune response. There has been an increased use of combination immune-modulating agents and cytokines with particle beams, especially CIT. The field of radiation therapy is evolving from a strong reliance on local-regional treatment to a growing reliance on systemic immunotherapy. Conclusions The combined use of anticancer agents with particle radiation therapy has a considerable potential effect. Future research in molecular targeting therapy and immunotherapy may help identify the most efficacious approach for combination therapy with protons and carbon ions.
Collapse
Affiliation(s)
- Koji Tsuboi
- Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
31
|
Ghaffari H, Beik J, Talebi A, Mahdavi SR, Abdollahi H. New physical approaches to treat cancer stem cells: a review. Clin Transl Oncol 2018; 20:1502-1521. [PMID: 29869042 DOI: 10.1007/s12094-018-1896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) have been identified as the main center of tumor therapeutic resistance. They are highly resistant against current cancer therapy approaches particularly radiation therapy (RT). Recently, a wide spectrum of physical methods has been proposed to treat CSCs, including high energetic particles, hyperthermia (HT), nanoparticles (NPs) and combination of these approaches. In this review article, the importance and benefits of the physical CSCs therapy methods such as nanomaterial-based heat treatments and particle therapy will be highlighted.
Collapse
Affiliation(s)
- H Ghaffari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - J Beik
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - A Talebi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - S R Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
- Department of Medical Physics and Radiation Biology Research Center, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| | - H Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| |
Collapse
|
32
|
Brownstein JM, Wisdom AJ, Castle KD, Mowery YM, Guida P, Lee CL, Tommasino F, Tessa CL, Scifoni E, Gao J, Luo L, Campos LDS, Ma Y, Williams N, Jung SH, Durante M, Kirsch DG. Characterizing the Potency and Impact of Carbon Ion Therapy in a Primary Mouse Model of Soft Tissue Sarcoma. Mol Cancer Ther 2018; 17:858-868. [PMID: 29437879 PMCID: PMC5912881 DOI: 10.1158/1535-7163.mct-17-0965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy, including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here, we calculate the relative biological effectiveness (RBE) of carbon ions compared with X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice. Primary tumors were irradiated with a single fraction of carbon ions (10 Gy), X-rays (20 Gy, 25 Gy, or 30 Gy), or observed as controls. The RBE was calculated by determining the dose of X-rays that resulted in similar time to posttreatment tumor volume quintupling and exponential growth rate as 10 Gy carbon ions. The median tumor volume quintupling time and exponential growth rate of sarcomas treated with 10 Gy carbon ions and 30 Gy X-rays were similar: 27.3 and 28.1 days and 0.060 and 0.059 mm3/day, respectively. Tumors treated with lower doses of X-rays had faster regrowth. Thus, the RBE of carbon ions in this primary tumor model is 3. When isoeffective treatments of carbon ions and X-rays were compared, we observed significant differences in tumor growth kinetics, proliferative indices, and immune infiltrates. We found that carbon ions were three times as potent as X-rays in this aggressive tumor model and identified unanticipated differences in radiation response that may have clinical implications. Mol Cancer Ther; 17(4); 858-68. ©2018 AACR.
Collapse
Affiliation(s)
- Jeremy M Brownstein
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Amy J Wisdom
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| | - Katherine D Castle
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Peter Guida
- Department of Biology, Brookhaven National Laboratory, Upton, New York
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Chiara La Tessa
- Brookhaven National Laboratory, Upton, New York
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
| | - Junheng Gao
- Department of Biostatistics and Informatics, Duke University, Durham, North Carolina
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | | | - Yan Ma
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Nerissa Williams
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina
| | - Sin-Ho Jung
- Department of Biostatistics and Informatics, Duke University, Durham, North Carolina
| | - Marco Durante
- Trento Institute for Fundamental Physics and Applications, National Institute for Nuclear Physics (INFN), Trento, Italy
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Health System, Durham, North Carolina.
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| |
Collapse
|
33
|
Moncharmont C, Guy JB, Wozny AS, Gilormini M, Battiston-Montagne P, Ardail D, Beuve M, Alphonse G, Simoëns X, Rancoule C, Rodriguez-Lafrasse C, Magné N. Carbon ion irradiation withstands cancer stem cells' migration/invasion process in Head and Neck Squamous Cell Carcinoma (HNSCC). Oncotarget 2018; 7:47738-47749. [PMID: 27374096 PMCID: PMC5216975 DOI: 10.18632/oncotarget.10281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer Stem Cells (CSCs) in Head and Neck Squamous Cell Carcinoma (HNSCC) have extremely aggressive profile (high migratory and invasive potential). These characteristics can explain their resistance to conventional treatment. Efficacy of photon and carbon ion irradiation with addition of cetuximab (5 nM) is studied on clonogenic death, migration and invasion of two HNSCC populations: SQ20B and SQ20B/CSCs. SQ20B express E-cadherin and overexpress EGFR while SQ20B/CSCs express N-cadherin and low EGFR. Cetuximab strongly inhibits SQ20B proliferation but has no effect on SQ20B/CSCs. 2 Gy photon irradiation enhances migration and invasiveness in both populations (p < 0.05), while cetuximab only stops SQ20B migration (p < 0.005). Carbon irradiation significantly inhibits invasion in both populations (p < 0.05), and the association with cetuximab significantly inhibits invasion in both populations (p < 0.005). These results highlight CSCs characteristics: EGFRLow, cetuximab-resistant, and highly migratory. Carbon ion irradiation appears to be a very promising therapeutic modality counteracting migration/invasion process in both parental cells and CSCs in contrast to photon irradiation.
Collapse
Affiliation(s)
- Coralie Moncharmont
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Jean-Baptiste Guy
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Anne-Sophie Wozny
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Marion Gilormini
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France
| | - Priscilla Battiston-Montagne
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France
| | - Dominique Ardail
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Michael Beuve
- Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Xavier Simoëns
- Département de Pharmacologie Clinique et d'Innovation, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Chloé Rancoule
- Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Claire Rodriguez-Lafrasse
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Nicolas Magné
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| |
Collapse
|
34
|
Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams. Oncotarget 2018; 7:80568-80578. [PMID: 27802188 PMCID: PMC5348341 DOI: 10.18632/oncotarget.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams.
Collapse
|
35
|
Sai S, Suzuki M, Kim EH, Hayashi M, Vares G, Yamamoto N, Miyamoto T. Effects of carbon ion beam alone or in combination with cisplatin on malignant mesothelioma cells in vitro. Oncotarget 2017; 9:14849-14861. [PMID: 29599911 PMCID: PMC5871082 DOI: 10.18632/oncotarget.23756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MM) is extremely aggressive and a typical refractory cancer. In this study we investigated how effective on killing MM cells by carbon ion beam alone or in combination with cisplatin (CDDP) in vitro. Carbon ion beam (at the center of SOBP with 50 keV/µm of average LET) dose-independently suppressed MM cells MESO-1 and H226 cell viability and in combination with CDDP (25 μM) significantly enhanced its action. Relative biological effectiveness (RBE) values at 73 keV/μm and 13 keV/μm portion of carbon ion beam was estimated as 2.82-2.93 and 1.19-1.22 at D10 level relative to X-ray, respectively by using colony formation assay. Quantitative real time PCR analysis showed that expression of apoptosis-related BAX and autophagy-related Beclin1 and ATG7 was significantly enhanced by carbon ion beam alone or in combination with CDDP. Apoptosis analysis showed that caspase 3/7 activity and the percentage of apoptotic cells was dose-dependently increased after carbon ion beam and it was further increased when combined with CDDP. Spheroid formation ability of cancer stem like CD44+/CD26+ cells was significantly inhibited by carbon ion beam combined with CDDP. Besides, carbon ion beam combined with cisplatin significantly inhibited cell cycle progression (sub-G1 arrest) and induced more large number of γH2AX foci. In conclusion, carbon ion beam combined with CDDP has superior potential to kill MM cells including CSCs with enhanced apoptosis.
Collapse
Affiliation(s)
- Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eun Ho Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Gongneung-dong, Nowon-Gu, Seoul, South Korea
| | - Mitsuhiro Hayashi
- Breast Center, Dokkyo Medical University Hospital, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Guillaume Vares
- Okinawa Institute of Science and Technology (OIST), Advanced Medical Instrumentation Unit, Onna-son, Okinawa, Japan
| | - Naoyoshi Yamamoto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Tadaaki Miyamoto
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| |
Collapse
|
36
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
37
|
Abstract
Carbon ion therapy is a promising evolving modality in radiotherapy to treat tumors that are radioresistant against photon treatments. As carbon ions are more effective in normal and tumor tissue, the relative biological effectiveness (RBE) has to be calculated by bio-mathematical models and has to be considered in the dose prescription. This review (i) introduces the concept of the RBE and its most important determinants, (ii) describes the physical and biological causes of the increased RBE for carbon ions, (iii) summarizes available RBE measurements in vitro and in vivo, and (iv) describes the concepts of the clinically applied RBE models (mixed beam model, local effect model, and microdosimetric-kinetic model), and (v) the way they are introduced into clinical application as well as (vi) their status of experimental and clinical validation, and finally (vii) summarizes the current status of the use of the RBE concept in carbon ion therapy and points out clinically relevant conclusions as well as open questions. The RBE concept has proven to be a valuable concept for dose prescription in carbon ion radiotherapy, however, different centers use different RBE models and therefore care has to be taken when transferring results from one center to another. Experimental studies significantly improve the understanding of the dependencies and limitations of RBE models in clinical application. For the future, further studies investigating quantitatively the differential effects between normal tissues and tumors are needed accompanied by clinical studies on effectiveness and toxicity.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | |
Collapse
|
38
|
Di Martile M, Desideri M, De Luca T, Gabellini C, Buglioni S, Eramo A, Sette G, Milella M, Rotili D, Mai A, Carradori S, Secci D, De Maria R, Del Bufalo D, Trisciuoglio D. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget 2017; 7:11332-48. [PMID: 26870991 PMCID: PMC4905477 DOI: 10.18632/oncotarget.7238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC.
Collapse
Affiliation(s)
- Marta Di Martile
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Teresa De Luca
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Gabellini
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Milella
- Clinical and Experimental Oncology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, 'Sapienza' University, Rome, Italy
| | - Simone Carradori
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Ruggero De Maria
- Scientific Director, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
39
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
40
|
Cobianchi L, Fossati P, Peloso A, Brugnatelli S, Vanoli A, Valvo F, Orecchia R, Dionigi P. Carbon ion radiotherapy and completion pancreatectomy. A feasible model to explore a new integrated approach? Pancreatology 2017; 17:19-21. [PMID: 28063781 DOI: 10.1016/j.pan.2016.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Italy.
| | - Piero Fossati
- Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy; Radiotherapy Division, IEO, Milan, Italy
| | - Andrea Peloso
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Silvia Brugnatelli
- Department of Onco-Hematology, Oncology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Vanoli
- Division of Pathology, Department of Molecular Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Valvo
- Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Roberto Orecchia
- Centro Nazionale Adroterapia Oncologica (CNAO), Pavia, Italy; Radiotherapy Division, IEO, Milan, Italy
| | - Paolo Dionigi
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Italy
| |
Collapse
|
41
|
Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, Lazareva N, Pulin A, Zhavoronkov A, Roumiantsev S, Klokov D, Eremin I. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget 2016; 6:26876-85. [PMID: 26337087 PMCID: PMC4694959 DOI: 10.18632/oncotarget.4946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices.
Collapse
Affiliation(s)
- Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Anna Grekhova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Pustovalova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan V Ozerov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Petr Eremin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Natalia Vorobyeva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia
| | - Natalia Lazareva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Andrey Pulin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Alex Zhavoronkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, BGRF, London W1J 5NE, UK
| | - Sergey Roumiantsev
- Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, ON K0J1P0, Canada
| | - Ilya Eremin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| |
Collapse
|
42
|
Lipsey CC, Harbuzariu A, Daley-Brown D, Gonzalez-Perez RR. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol 2016; 6:43-55. [PMID: 27019796 PMCID: PMC4804251 DOI: 10.5662/wjm.v6.i1.43] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/11/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers.
Collapse
|
43
|
Held KD, Kawamura H, Kaminuma T, Paz AES, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016; 6:23. [PMID: 26904502 PMCID: PMC4751258 DOI: 10.3389/fonc.2016.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center , Gunma , Japan
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|
44
|
Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, Kobayashi T, Kosugi SI, Takabe K, Komatsu M, Wakai T. DNA damage response and sphingolipid signaling in liver diseases. Surg Today 2015; 46:995-1005. [PMID: 26514817 DOI: 10.1007/s00595-015-1270-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023]
Abstract
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin-Ichi Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
45
|
Sai S, Vares G, Kim EH, Karasawa K, Wang B, Nenoi M, Horimoto Y, Hayashi M. Carbon ion beam combined with cisplatin effectively disrupts triple negative breast cancer stem-like cells in vitro. Mol Cancer 2015; 14:166. [PMID: 26338199 PMCID: PMC4560051 DOI: 10.1186/s12943-015-0429-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/06/2015] [Indexed: 12/23/2022] Open
Abstract
Aims Although a relatively small proportion of all breast cancer (BC), triple negative (TN) BC is responsible for a relatively large proportion of BC deaths because of its worse clinical outcome. To investigate whether a carbon ion beam alone or in combination with cisplatin (CDDP) has a beneficial effect compared to X-rays, we target triple negative (TN) breast cancer stem-like cells (CSCs). Methods Human breast CSCs sorted from MDA-MB-231 and MDA-MB-453 cells were treated with a carbon ion beam or X-ray irradiation alone or in combination with CDDP, and then colony, spheroid and tumor formation assays, RT-PCR Array analysis, and immunofluorescence γH2AX foci assay were performed. Results The colony, spheroid formation, and tumorigenicity assays confirmed that CD44+/CD24- and ESA+/CD24- cells have CSC properties in MDA-MB-231 and MDA-MB-453 cells, respectively. The proportion of CSCs was more enriched after CDDP combination with either X-ray or carbon ion beam, however carbon ion beam combined with CDDP significantly suppressed colony and spheroid formation and more significantly inhibited cell cycle progression (sub-G1 arrest) compared to X-ray combined with CDDP or carbon ion beam alone. RT-PCR Array analysis showed that carbon ion beam combined with CDDP significantly induced apoptosis-related Cytochrome c, almost completely eliminated expression of the CSC markers CD44 and ESA, and significantly inhibited angiogenesis, and metastasis-related HIF1α and CD26 compared to carbon ion beam alone, X-ray alone, or X-ray combined with CDDP. The immunofluorescence assay showed that not only the number but also the size of γH2AX foci in CSCs were larger 24 h after carbon ion beam combined with CDDP compared to those of X-ray alone and X-ray combined with CDDP. Conclusions Carbon ion beam combined with CDDP has superior potential to kill TN breast CSCs with irreparable severe DNA damage and enhanced apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0429-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sei Sai
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa Inage-ku, Chiba, Chiba, 263-8555, Japan.
| | - Guillaume Vares
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Eun Ho Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-Gu, Seoul, 139-706, South Korea
| | - Kumiko Karasawa
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Department of Breast Oncology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| |
Collapse
|
46
|
Benedict A, Bansal N, Senina S, Hooper I, Lundberg L, de la Fuente C, Narayanan A, Gutting B, Kehn-Hall K. Repurposing FDA-approved drugs as therapeutics to treat Rift Valley fever virus infection. Front Microbiol 2015. [PMID: 26217313 PMCID: PMC4495339 DOI: 10.3389/fmicb.2015.00676] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are currently no FDA-approved therapeutics available to treat Rift Valley fever virus (RVFV) infection. In an effort to repurpose drugs for RVFV treatment, a library of FDA-approved drugs was screened to determine their ability to inhibit RVFV. Several drugs from varying compound classes, including inhibitors of growth factor receptors, microtubule assembly/disassembly, and DNA synthesis, were found to reduce RVFV replication. The hepatocellular and renal cell carcinoma drug, sorafenib, was the most effective inhibitor, being non-toxic and demonstrating inhibition of RVFV in a cell-type and virus strain independent manner. Mechanism of action studies indicated that sorafenib targets at least two stages in the virus infectious cycle, RNA synthesis and viral egress. Computational modeling studies also support this conclusion. siRNA knockdown of Raf proteins indicated that non-classical targets of sorafenib are likely important for the replication of RVFV.
Collapse
Affiliation(s)
- Ashwini Benedict
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Neha Bansal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Bradford Gutting
- Chemical, Biological, Radiological Defense Division, Naval Surface Warfare Center Dahlgren, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
47
|
Durante M, Tommasino F, Yamada S. Modeling Combined Chemotherapy and Particle Therapy for Locally Advanced Pancreatic Cancer. Front Oncol 2015. [PMID: 26217585 PMCID: PMC4492201 DOI: 10.3389/fonc.2015.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the only cancer for which deaths are predicted to increase in 2014 and beyond. Combined radiochemotherapy protocols using gemcitabine and hypofractionated X-rays are ongoing in several clinical trials. Recent results indicate that charged particle therapy substantially increases local control of resectable and unresectable pancreas cancer, as predicted from previous radiobiology studies considering the high tumor hypoxia. Combination with chemotherapy improves the overall survival (OS). We compared published data on X-ray and charged particle clinical results with or without adjuvant chemotherapy calculating the biological effective dose. We show that chemoradiotherapy with protons or carbon ions results in 1 year OS significantly higher than those obtained with other treatment schedules. Further hypofractionation using charged particles may result in improved local control and survival. A comparative clinical trial using the standard X-ray scheme vs. the best current standard with carbon ions is crucial and may open new opportunities for this deadly disease.
Collapse
Affiliation(s)
- Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany ; Department of Physics, Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics (INFN), University of Trento , Trento , Italy
| | - Francesco Tommasino
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany ; Department of Physics, Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics (INFN), University of Trento , Trento , Italy
| | - Shigeru Yamada
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS) , Chiba , Japan
| |
Collapse
|