1
|
Ghosh S, Fan F, Powell R, Park YS, Stephan C, Kopetz ES, Ellis LM, Bhattacharya R. Enhancing efficacy of the MEK inhibitor trametinib with paclitaxel in KRAS-mutated colorectal cancer. Ther Adv Med Oncol 2024; 16:17588359241303302. [PMID: 39664300 PMCID: PMC11632859 DOI: 10.1177/17588359241303302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background KRAS is frequently mutated in the tumors of patients with metastatic colorectal cancer (mCRC) and thus represents a valid target for therapy. However, the strategies of targeting KRAS directly and targeting the downstream effector mitogen-activated protein kinase kinase (MEK) via monotherapies have shown limited efficacy. Thus, there is a strong need for novel, effective combination therapies to improve MEK-inhibitor efficacy in patients with KRAS-mutated mCRC. Objective Our objective was to identify novel drug combinations that enhance MEK-inhibitor efficacy in patients with KRAS-mutated mCRC. Design In this study, we performed unbiased high-throughput screening (HTS) to identify drugs that enhance the efficacy of MEK inhibitors in vitro, and we validated the drugs' efficacy in vivo. Methods HTS was performed using three-dimensional CRC spheroids. Trametinib, the anchor drug, was probed with two "clinically ready" libraries of 252 drugs to identify effective drug combinations. The effects of the drug combinations on CRC cell proliferation and apoptosis were further validated using cell growth assays, flow cytometry, and biochemical assays. Proteomic and immunostaining studies were performed to determine the drugs' effects on molecular signaling and cell division. The effects of the drug combinations were examined in vivo using CRC patient-derived xenografts. Results HTS identified paclitaxel as being synergistic with trametinib. In vitro validation showed that, compared with monotherapies, this drug combination demonstrated strong inhibition of cell growth, reduced colony formation, and enhanced apoptosis in multiple KRAS-mutated CRC cell lines. Mechanistically, combining trametinib with paclitaxel led to alterations in signaling mediators that block cell-cycle progression. Trametinib also enhanced paclitaxel-mediated microtubule stability resulting in significantly higher defects in mitosis. Finally, the combination of trametinib with paclitaxel exhibited significant inhibition of tumor growth in several KRAS-mutant patient-derived xenograft mouse models. Conclusion Our data provide evidence supporting clinical trials of trametinib with paclitaxel as a novel therapeutic option for patients with KRAS-mutated, metastatic CRC.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reid Powell
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Houston, TX, USA
| | - Yong Sung Park
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Houston, TX, USA
| | - Clifford Stephan
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Houston, TX, USA
| | - E. Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee M. Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
2
|
Ghosh S, Fan F, Powell R, Park Y, Stephan C, Kopetz ES, Ellis LM, Bhattacharya R. Enhancing efficacy of the MEK inhibitor trametinib with paclitaxel in KRAS -mutated colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611458. [PMID: 39282351 PMCID: PMC11398522 DOI: 10.1101/2024.09.05.611458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Background KRAS is frequently mutated in the tumors of patients with metastatic colorectal cancer (mCRC) and thus represents a valid target for therapy. However, the strategies of targeting KRAS directly and targeting the downstream effector mitogen-activated protein kinase kinase (MEK) via monotherapies have shown limited efficacy. Thus, there is a strong need for novel, effective combination therapies to improve MEK-inhibitor efficacy in patients with KRAS -mutated mCRC. Objective Our objective was to identify novel drug combinations that enhance MEK-inhibitor efficacy in patients with KRAS -mutated mCRC. Design In this study, we performed unbiased high-throughput screening (HTS) to identify drugs that enhance the efficacy of MEK inhibitors in vitro , and we validated the efficacy of the drugs in vivo . Methods HTS was performed using 3-dimensional CRC spheroids. Trametinib, the anchor drug, was probed with 2 clinically ready libraries of 252 drugs to identify effective drug combinations. The effects of the drug combinations on CRC cell proliferation and apoptosis were further validated using cell growth assays, flow cytometry, and biochemical assays. Proteomic and immunostaining studies were performed to determine the effects of the drugs on molecular signaling and cell division. The effects of the drug combinations were examined in vivo using CRC patient-derived xenografts. Results HTS identified paclitaxel as being synergistic with trametinib. In vitro validation showed that, compared with monotherapies, this drug combination demonstrated strong inhibition of cell growth, reduced colony formation, and enhanced apoptosis in multiple KRAS -mutated CRC cell lines. Mechanistically, combining trametinib with paclitaxel led to alterations in signaling mediators that block cell cycle progression and increases in microtubule stability that resulted in significantly higher defects in the mitosis. Finally, the combination of trametinib with paclitaxel exhibited significant inhibition of tumor growth in several KRAS -mutant patient-derived xenograft mouse models. Conclusion Our data provide evidence supporting clinical trials of trametinib with paclitaxel as a novel therapeutic option for patients with KRAS -mutated, metastatic CRC.
Collapse
|
3
|
Wang Z, Tang R, Wang H, Li X, Liu Z, Li W, Peng G, Zhou H. Bioinformatics analysis of the role of lysosome-related genes in breast cancer. Comput Methods Biomech Biomed Engin 2024:1-20. [PMID: 39054687 DOI: 10.1080/10255842.2024.2379936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to investigate the roles of lysosome-related genes in BC prognosis and immunity. Transcriptome data from TCGA and MSigDB, along with lysosome-related gene sets, underwent NMF cluster analysis, resulting in two subtypes. Using lasso regression and univariate/multivariate Cox regression analysis, an 11-gene signature was successfully identified and verified. High- and low-risk populations were dominated by HR+ sample types. There were differences in pathway enrichment, immune cell infiltration, and immune scores. Sensitive drugs targeting model genes were screened using GDSC and CCLE. This study constructed a reliable prognostic model with lysosome-related genes, providing valuable insights for BC clinical immunotherapy.
Collapse
Affiliation(s)
- Zhongming Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Ruiyao Tang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huazhong Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Xizhang Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Zhenbang Liu
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Wenjie Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Gui Peng
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huaiying Zhou
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
4
|
Angelini G, Capra E, Rossi F, Mura G, Saclier M, Taglietti V, Rovetta G, Epis R, Careccia G, Bonfanti C, Messina G. MEK-inhibitors decrease Nfix in muscular dystrophy but induce unexpected calcifications, partially rescued with Cyanidin diet. iScience 2024; 27:108696. [PMID: 38205246 PMCID: PMC10777118 DOI: 10.1016/j.isci.2023.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Muscular dystrophies (MDs) are incurable genetic myopathies characterized by progressive degeneration of skeletal muscles. Dystrophic mice lacking the transcription factor Nfix display morphological and functional improvements of the disease. Recently, we demonstrated that MAPK signaling pathway positively regulates Nfix in muscle development and that Cyanidin, a natural antioxidant molecule, strongly ameliorates the pathology. To explore a synergistic approach aimed at treating MDs, we administered Trametinib, a clinically approved MEK inhibitor, alone or combined with Cyanidin to adult Sgca null mice. We observed that chronic treatment with Trametinib and Cyanidin reduced Nfix in myogenic cells but, unexpectedly, caused ectopic calcifications exclusively in dystrophic muscles. The combined treatment with Cyanidin resulted in histological improvements by preventing Trametinib-induced calcifications in Diaphragm and Soleus. Collectively, this first pilot study revealed that Nfix is modulated by the MAPK pathway in MDs, and that Cyanidin partly rescued the unexpected ectopic calcifications caused by MEK inhibition.
Collapse
Affiliation(s)
| | - Emanuele Capra
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Francesca Rossi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Gabriele Rovetta
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Raffaele Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | |
Collapse
|
5
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
6
|
Liu WJ, Wang L, Zhou FM, Liu SW, Wang W, Zhao EJ, Yao QJ, Li W, Zhao YQ, Shi Z, Qiu JG, Jiang BH. Elevated NOX4 promotes tumorigenesis and acquired EGFR-TKIs resistance via enhancing IL-8/PD-L1 signaling in NSCLC. Drug Resist Updat 2023; 70:100987. [PMID: 37392558 DOI: 10.1016/j.drup.2023.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used for human non-small-cell lung cancer (NSCLC) treatment. However, acquired resistance to EGFR-TKIs is the major barrier of treatment success, and new resistance mechanism remains to be elucidated. In this study, we found that elevated NADPH oxidase 4 (NOX4) expression was associated with acquired EGFR-TKIs resistance. Gefitinib is the first-generation FDA-approved EGFR-TKI, and osimertinib is the third-generation FDA-approved EGFR-TKI. We demonstrated that NOX4 knockdown in the EGFR-TKI resistant cells enabled the cells to become sensitive to gefitinib and osimertinib treatment, while forced expression of NOX4 in the sensitive parental cells was sufficient to induce resistance to gefitinib and osimertinib in the cells. To elucidate the mechanism of NOX4 upregulation in increasing TKIs resistance, we found that knockdown of NOX4 significantly down-regulated the expression of transcription factor YY1. YY1 bound directly to the promoter region of IL-8 to transcriptionally activate IL-8 expression. Interestingly, knockdown of NOX4 and IL-8 decreased programmed death ligand 1 (PD-L1) expression, which provide new insight on TKIs resistance and immune escape. We found that patients with higher NOX4 and IL-8 expression levels showed a shorter survival time compared to those with lower NOX4 and IL-8 expression levels in response to the anti-PD-L1 therapy. Knockdown of NOX4, YY1 or IL-8 alone inhibited angiogenesis and tumor growth. Furthermore, the combination of NOX4 inhibitor GKT137831 and gefitinib had synergistic effect to inhibit cell proliferation and tumor growth and to increase cellular apoptosis. These findings demonstrated that NOX4 and YY1 were essential for mediating the acquired EGFR-TKIs resistance. IL-8 and PD-L1 are two downstream targets of NOX4 to regulate TKIs resistance and immunotherapy. These molecules may be used as potential new biomarkers and therapeutic targets for overcoming TKIs resistance in the future.
Collapse
Affiliation(s)
- Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Lin Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Feng-Mei Zhou
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Shu-Wen Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Wei Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Er-Jiang Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Quan-Jun Yao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Wei Li
- Department of Pathology, Affiliated Drum Tower Hospital Nanjing University Medical School, Nanjing 210000, China
| | - Yan-Qiu Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jian-Ge Qiu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China.
| | - Bing-Hua Jiang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China.
| |
Collapse
|
7
|
Ghosh S, Fan F, Powell RT, Roszik J, Park YS, Stephan C, Sebastian M, Tan L, Sorokin AV, Lorenzi PL, Kopetz S, Ellis LM, Bhattacharya R. Vincristine Enhances the Efficacy of MEK Inhibitors in Preclinical Models of KRAS-mutant Colorectal Cancer. Mol Cancer Ther 2023; 22:962-975. [PMID: 37310170 DOI: 10.1158/1535-7163.mct-23-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Mutations in KRAS are found in more than 50% of tumors from patients with metastatic colorectal cancer (mCRC). However, direct targeting of most KRAS mutations is difficult; even the recently developed KRASG12C inhibitors failed to show significant benefit in patients with mCRC. Single agents targeting mitogen-activated protein kinase kinase (MEK), a downstream mediator of RAS, have also been ineffective in colorectal cancer. To identify drugs that can enhance the efficacy of MEK inhibitors, we performed unbiased high-throughput screening using colorectal cancer spheroids. We used trametinib as the anchor drug and examined combinations of trametinib with the NCI-approved Oncology Library version 5. The initial screen, and following focused validation screens, identified vincristine as being strongly synergistic with trametinib. In vitro, the combination strongly inhibited cell growth, reduced clonogenic survival, and enhanced apoptosis compared with monotherapies in multiple KRAS-mutant colorectal cancer cell lines. Furthermore, this combination significantly inhibited tumor growth, reduced cell proliferation, and increased apoptosis in multiple KRAS-mutant patient-derived xenograft mouse models. In vivo studies using drug doses that reflect clinically achievable doses demonstrated that the combination was well tolerated by mice. We further determined that the mechanism underlying the synergistic effect of the combination was due to enhanced intracellular accumulation of vincristine associated with MEK inhibition. The combination also significantly decreased p-mTOR levels in vitro, indicating that it inhibits both RAS-RAF-MEK and PI3K-AKT-mTOR survival pathways. Our data thus provide strong evidence that the combination of trametinib and vincristine represents a novel therapeutic option to be studied in clinical trials for patients with KRAS-mutant mCRC. SIGNIFICANCE Our unbiased preclinical studies have identified vincristine as an effective combination partner for the MEK inhibitor trametinib and provide a novel therapeutic option to be studied in patients with KRAS-mutant colorectal cancer.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reid T Powell
- Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Sung Park
- Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M University, Houston, Texas
| | - Manu Sebastian
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexey V Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Tóvári J, Vári-Mező D, Surguta SE, Ladányi A, Kigyós A, Cserepes M. Evolving Acquired Vemurafenib Resistance in a BRAF V600E Mutant Melanoma PDTX Model to Reveal New Potential Targets. Cells 2023; 12:1919. [PMID: 37508582 PMCID: PMC10377807 DOI: 10.3390/cells12141919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Malignant melanoma is challenging to treat, and metastatic cases need chemotherapy strategies. Targeted inhibition of commonly mutant BRAF V600E by inhibitors is efficient but eventually leads to resistance and progression in the vast majority of cases. Numerous studies investigated the mechanisms of resistance in melanoma cell lines, and an increasing number of in vivo or clinical data are accumulating. In most cases, bypassing BRAF and resulting reactivation of the MAPK signaling, as well as alternative PI3K-AKT signaling activation are reported. However, several unique changes were also shown. We developed and used a patient-derived tumor xenograft (PDTX) model to screen resistance evolution in mice in vivo, maintaining tumor heterogeneity. Our results showed no substantial activation of the canonical pathways; however, RNAseq and qPCR data revealed several altered genes, such as GPR39, CD27, SLC15A3, IFI27, PDGFA, and ABCB1. Surprisingly, p53 activity, leading to apoptotic cell death, was unchanged. The found biomarkers can confer resistance in a subset of melanoma patients via immune modulation, microenvironment changes, or drug elimination. Our resistance model can be further used in testing specific inhibitors that could be used in future drug development, and combination therapy testing that can overcome inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - Diána Vári-Mező
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - Andrea Ladányi
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary
| | | | - Mihály Cserepes
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
9
|
Wang W, Zhao X, Yi R. Establishment of an epithelioid sarcoma PDCs and PDX to evaluate drug sensitivity. Biochem Biophys Res Commun 2022; 625:140-146. [DOI: 10.1016/j.bbrc.2022.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
|
10
|
Alam MS, Rahaman MM, Sultana A, Wang G, Mollah MNH. Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer. Comput Biol Med 2022; 145:105508. [PMID: 35447458 DOI: 10.1016/j.compbiomed.2022.105508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is one of the most malignant tumors and the leading cause of cancer-related death in women worldwide. So, an in-depth investigation on the molecular mechanisms of BC progression is required for diagnosis, prognosis and therapies. In this study, we identified 127 common differentially expressed genes (cDEGs) between BC and control samples by analyzing five gene expression profiles with NCBI accession numbers GSE139038, GSE62931, GSE45827, GSE42568 and GSE54002, based-on two statistical methods LIMMA and SAM. Then we constructed protein-protein interaction (PPI) network of cDEGs through the STRING database and selected top-ranked 7 cDEGs (BUB1, ASPM, TTK, CCNA2, CENPF, RFC4, and CCNB1) as a set of key genes (KGs) by cytoHubba plugin in Cytoscape. Several BC-causing crucial biological processes, molecular functions, cellular components, and pathways were significantly enriched by the estimated cDEGs including at-least one KGs. The multivariate survival analysis showed that the proposed KGs have a strong prognosis power of BC. Moreover, we detected some transcriptional and post-transcriptional regulators of KGs by their regulatory network analysis. Finally, we suggested KGs-guided three repurposable candidate-drugs (Trametinib, selumetinib, and RDEA119) for BC treatment by using the GSCALite online web tool and validated them through molecular docking analysis, and found their strong binding affinities. Therefore, the findings of this study might be useful resources for BC diagnosis, prognosis and therapies.
Collapse
Affiliation(s)
- Md Shahin Alam
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Matiur Rahaman
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Adiba Sultana
- Center for Systems Biology, Soochow University, Suzhou, 215006, China; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Md Nurul Haque Mollah
- Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
11
|
Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicol Appl Pharmacol 2021; 434:115797. [PMID: 34780725 DOI: 10.1016/j.taap.2021.115797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Dabrafenib is a BRAF inhibitor used in combination treatment of malignant melanoma and non-small cell lung carcinoma. In this study, we aimed to characterize its interactions with cytochrome P450 (CYP) isoenzymes and ATP-binding cassette (ABC) efflux transporters that have critical impact on the pharmacokinetics of drugs and play a role in drug resistance development. Using accumulation assays, we showed that dabrafenib inhibited ABCG2 and, less potently, ABCB1 transporter. We also confirmed dabrafenib as a CYP2C8, CYP2C9, CYP3A4, and CYP3A5 inhibitor. Importantly, inhibition of ABCG2 and CYP3A4 by dabrafenib led to the potentiation of cytotoxic effects of mitoxantrone and docetaxel toward respective resistant cell lines in drug combination studies. On the contrary, the synergistic effect was not consistently observed in ABCB1-expressing models. We further demonstrated that mRNA levels of ABCB1, ABCG2, ABCC1, and CYP3A4 were increased after 24 h and 48 h exposure to dabrafenib. Overall, our data confirm dabrafenib as a drug frequently and potently interacting with ABC transporters and CYP isoenzymes. This feature should be addressed with caution when administering dabrafenib to patients with polypharmacy but also could be utilized advantageously when designing new dabrafenib-containing drug combinations to improve the therapeutic outcome in drug-resistant cancer.
Collapse
|
12
|
Zou Y, Zhong C, Hu Z, Duan S. MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Front Oncol 2021; 11:743701. [PMID: 34676171 PMCID: PMC8523946 DOI: 10.3389/fonc.2021.743701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted genes, which have unique molecular functions such as catalytic activity, transcription regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/mTOR, Wnt/β-Catenin, NF-κβ, and MEK/ERK signaling pathways. In addition, the target genes of miR-873-5p are closely related to the proliferation, apoptosis, migration, invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This review summarizes the role and mechanism of miR-873-5p in human tumors shows the potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuhao Zou
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Chenming Zhong
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Zekai Hu
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Neupane R, Boddu SHS, Abou-Dahech MS, Bachu RD, Terrero D, Babu RJ, Tiwari AK. Transdermal Delivery of Chemotherapeutics: Strategies, Requirements, and Opportunities. Pharmaceutics 2021; 13:960. [PMID: 34206728 PMCID: PMC8308987 DOI: 10.3390/pharmaceutics13070960] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Chemotherapeutic drugs are primarily administered to cancer patients via oral or parenteral routes. The use of transdermal drug delivery could potentially be a better alternative to decrease the dose frequency and severity of adverse or toxic effects associated with oral or parenteral administration of chemotherapeutic drugs. The transdermal delivery of drugs has shown to be advantageous for the treatment of highly localized tumors in certain types of breast and skin cancers. In addition, the transdermal route can be used to deliver low-dose chemotherapeutics in a sustained manner. The transdermal route can also be utilized for vaccine design in cancer management, for example, vaccines against cervical cancer. However, the design of transdermal formulations may be challenging in terms of the conjugation chemistry of the molecules and the sustained and reproducible delivery of therapeutically efficacious doses. In this review, we discuss the nano-carrier systems, such as nanoparticles, liposomes, etc., used in recent literature to deliver chemotherapeutic agents. The advantages of transdermal route over oral and parenteral routes for popular chemotherapeutic drugs are summarized. Furthermore, we also discuss a possible in silico approach, Formulating for Efficacy™, to design transdermal formulations that would probably be economical, robust, and more efficacious.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - Sai H. S. Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Mariam Sami Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
- Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
14
|
Dong S, Song C, Qi B, Jiang X, Liu L, Xu Y. Strongly preserved modules between cancer tissue and cell line contribute to drug resistance analysis across multiple cancer types. Genomics 2021; 113:1026-1036. [PMID: 33647440 DOI: 10.1016/j.ygeno.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
The existence and emergence of drug resistance in tumor cells is the main burden of cancer treatment. Most cancer drug resistance analyses are based entirely on cell line data and ignore the discordance between human tumors and cell lines, leading to biased preclinical model transformation. Based on cancer tissue data in TCGA and cancer cell line data in CCLE, this study identified and excluded non-preserved module (NP module) between cancer tissue and cell lines. We used strongly preserved module (SP module) for clinically relevant drug resistance analysis and identified 2068 "cancer-drug-module" pairs of 7 cancer types and 212 drugs based on data in GDSC. Furthermore, we identified potentially ineffective combination therapy (PICT) from multiple perspectives. Finally, we found 1608 sets of predictors that can predict drug response. These results provide insights and clues for the clinical selection of effective chemotherapy drugs to overcome cancer resistance in a new perspective.
Collapse
Affiliation(s)
- Siyao Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chengyan Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Baocui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaochen Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
15
|
Joo MK, Shin S, Ye DJ, An HG, Kwon TU, Baek HS, Kwon YJ, Chun YJ. Combined treatment with auranofin and trametinib induces synergistic apoptosis in breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:84-94. [PMID: 33103613 DOI: 10.1080/15287394.2020.1835762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Auranofin is a gold complex used as an anti-rheumatic agent and may act as a potent anticancer drug against breast tumors. Trametinib is a specific mitogen-activated protein kinase inhibitor, approved for the treatment of metastatic melanoma. The aim of this study was to examine the synergistic effects of auranofin and trametinib on apoptosis in MCF-7 human breast cancer cells. The combination treatment inhibited cancer cell proliferation and induced cell cycle arrest at the sub-G1 phase and apoptosis via poly (ADP-ribose) polymerase cleavage and caspase-3/7 activation. It is noteworthy that this treatment significantly increased p38 mitogen-activated protein kinase (MAPK) phosphorylation to induce mitochondrial stress, subsequently promoting cancer cell apoptosis through release of apoptosis-inducing factor. Further data demonstrated that combined treatment significantly induced increase in nuclear translocation of AIF. These results indicated that activation of the p38 MAPK signaling pathway and mitochondrial apoptosis may contribute to the synergistic consequences in MCF-7 cells. Collectively, our data demonstrated that combined treatment with auranofin and trametinib exhibited synergistic breast cancer cell death and this combination might be utilized as a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Sangyun Shin
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Dong-Jin Ye
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Hong-Gyu An
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Tae-Uk Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Hyoung-Seok Baek
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Yeo-Jung Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Young-Jin Chun
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| |
Collapse
|
16
|
Abstract
Dabrafenib is a potent and selective inhibitor of BRAF-mutant kinase that is approved, as monotherapy or in combination with trametinib (mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor), for unresectable or metastatic BRAF-mutated melanoma, advanced non-small cell lung cancer and anaplastic thyroid cancer harbouring the BRAFV600E mutation. The recommended dose of dabrafenib is 150 mg twice daily (bid) under fasted conditions. After single oral administration of the recommended dose, the absolute oral bioavailability (F) of dabrafenib is 95%. Dabrafenib shows a time-dependent increase in apparent clearance (CL/F) following multiple doses, which is likely due to induction of its own metabolism through cytochrome P450 (CYP) 3A4. Therefore, steady state is reached only after 14 days of daily dose administration. Moreover, the extent of this auto-induction process is dependent on the dose, which explains why dabrafenib systemic exposure at steady state increases less than dose proportionally over the dose range of 75-300 mg bid. The main elimination route of dabrafenib is the oxidative metabolism via CYP3A4/2C8 and biliary excretion. Among the three major metabolites identified, hydroxy-dabrafenib appears to contribute to the pharmacological activity. Age, sex and body weight did not have any clinically significant influence on plasma exposure to dabrafenib. No dose adjustment is needed for patients with mild renal or hepatic impairment, whereas the impacts of severe impairment on dabrafenib pharmacokinetics remain unknown. Considering that dabrafenib is a substrate of CYP3A4/2C8 and is a CYP3A4/2B6/2C inducer, drug-drug interactions are expected with dabrafenib. The relationship between clinical outcomes and plasma exposure to dabrafenib and hydroxy-dabrafenib should be investigated more deeply.
Collapse
|
17
|
Huang S, Liu H, Huang S, Fu T, Xue W, Guo R. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr Polym 2020; 246:116650. [PMID: 32747282 DOI: 10.1016/j.carbpol.2020.116650] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Microneedles (MNs) technology has many advantages and is an ideal local transdermal drug delivery method. Here we synthesized photocrosslinkable dextran methacrylate (DexMA), and its degree of substitution is 5 % higher than the previous method. We used DexMA hydrogel for the first time to develop a new type of MNs for continuous transdermal administration. The prepared hydrogel MNs can successfully penetrate the epidermal layer and achieve sustained drug release. Doxorubicin (DOX) and trametinib (Tra) are anticancer drugs approved by FDA. Besides, Tra can also reverse P-gp-mediated multidrug resistance (MDR) to effectively block the efflux of DOX by P-gp. We used MNs to simultaneously load Tra and DOX, and achieved synergy in a B16 cell xenograft nude mouse model. The DexMA hydrogel MNs developed in this study can be used to enhance the transdermal delivery of small molecule drugs and reduce systemic toxicity and side effects.
Collapse
Affiliation(s)
- Shanghui Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shaoshan Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Tingling Fu
- Nanhai Longtime Pharmaceutical Co., Ltd, Foshan 528200, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Poursheikhani A, Yousefi H, Tavakoli-Bazzaz J, Seyed H G. EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells. IRANIAN BIOMEDICAL JOURNAL 2020; 24:370-8. [PMID: 32660222 PMCID: PMC7601546 DOI: 10.29252/ibj.24.6.365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: EOC is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of EGFR with resistance to cytotoxic chemotherapies, hormone therapy, and radiotherapy in the cancers. These studies have highlighted the role of EGFR as an attractive therapeutic target in cisplatin-resistant EOC cells. Methods: The human ovarian cell lines (SKOV3 and OVCAR3) were cultured according to ATCC recommendations. The MTT assay was used to determine the chemosensitivity of the cell lines in exposure to cisplatin and erlotinib. The qRT-PCR was applied to analyze the mRNA expression of the desired genes. Results: Erlotinib in combination with cisplatin reduced the cell proliferation in the chemoresistant EOC cells in comparison to monotherapy of the drugs (p < 0.05). Moreover, erlotinib/cisplatin combination synergistically decreased the expression of anti-apoptotic and also increased pro-apoptotic genes expression (p < 0.05). Cisplatin alone could increase the expression of MDR genes. The data suggested that EGFR and cisplatin drive chemoresistance in the EOC cells through MEKK signal transduction as well as through EGFR/MEKK pathways in the cells, respectively. Conclusion: Our findings propose that EGFR is an attractive therapeutic target in chemoresistant EOC to be exploited in translational oncology, and erlotinib/cisplatin combination treatment is a potential anti-cancer approach to overcome chemoresistance and inhibit the proliferation of the EOC cells.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Louisiana State University, School of Medicine, New Orleans, USA
| | - Javad Tavakoli-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghaffari Seyed H
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Fan Y, Ma K, Jing J, Wang C, Hu Y, Shi Y, Li E, Geng Q. Recombinant Dual-target MDM2/MDMX Inhibitor Reverses Doxorubicin Resistance through Activation of the TAB1/TAK1/p38 MAPK Pathway in Wild-type p53 Multidrug-resistant Breast Cancer Cells. J Cancer 2020; 11:25-40. [PMID: 31892970 PMCID: PMC6930415 DOI: 10.7150/jca.32765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy resistance represents a major obstacle for the treatment of patients with breast cancer (BC) and greatly restricts the therapeutic effect of the first-line chemotherapeutic agent doxorubicin (DOX). The present study aimed to investigate the feasibility of the recombinant dual-target murine double minute 2 (MDM2) and murine double minute X (MDMX) inhibitor in reversing the DOX resistance of BC. Both DOX-resistant human breast carcinoma cell lines exhibited a multidrug resistance (MDR) phenotype. The ability of the dual-target MDM2/MDMX inhibitor in reversing doxorubicin resistance was subsequently verified, (9.15 and 13.92 - fold reversal indexes) respectively. We observed that the MDM2/MDMX inhibitor in combination with DOX could suppress proliferation, promote cell cycle arrest and induce apoptosis. In addition, it was capable of reducing rhodamine123 efflux in DOX-resistance BC cell lines and further played a key role in BC nude mice model. The groups that were treated with the combination of the drugs had decreased P-glycoprotein/multidrug resistance-associated protein/cdc 2/Bcl-2 expression and increased CyclinB1/Bax expression. These effects were caused due to activation of the transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1)/TAK1/p38 mitogen-activated protein kinase (MAPK) signaling pathway, as shown by small interfering RNA (siRNA) silencing and immumohistochemical staining of BC tissue sections. Furthermore, high MDM2/MDMX expression was positively associated with weak TAB1 expression in BC patients. Therefore, the recombinant dual-target MDM2/MDMX inhibitor could reverse doxorubicin resistance via the activation of the TAB1/TAK1/p38 MAPK pathway in wild-type p53 multidrug-resistant BC.
Collapse
Affiliation(s)
- Yangwei Fan
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Ke Ma
- Department of Medical Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Jiayu Jing
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Chuying Wang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Yuan Hu
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Yu Shi
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Enxiao Li
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Qianqian Geng
- Department of Nuclear Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| |
Collapse
|
20
|
Zhou HH, Chen X, Cai LY, Nan XW, Chen JH, Chen XX, Yang Y, Xing ZH, Wei MN, Li Y, Wang ST, Liu K, Shi Z, Yan XJ. Erastin Reverses ABCB1-Mediated Docetaxel Resistance in Ovarian Cancer. Front Oncol 2019; 9:1398. [PMID: 31921655 PMCID: PMC6930896 DOI: 10.3389/fonc.2019.01398] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Overexpression of drug efflux transport ABCB1 is correlated with multidrug resistance (MDR) among cancer cells. Upregulation of ABCB1 accounts for the recurrence of resistance to docetaxel therapy in ovarian cancer with poor survival. Erastin is a novel and specific small molecule that targets SLC7A11 to induce ferroptosis. In the present research, we explored the synergistic effect of erastin and docetaxel in ovarian cancer. We confirmed that the co-delivery of erastin with docetaxel significantly decreased cell viability, promoted cell apoptosis, and induced cell cycle arrest at G2/M in ovarian cancer cells with ABCB1 overexpression. Mechanistically, erastin dominantly elevated the intracellular ABCB1 substrate levels by restricting the drug-efflux activity of ABCB1 without alteration of the expression of ABCB1. Consequently, erastin can reverse ABCB1-mediated docetaxel resistance in ovarian cancer, revealing that the combination of erastin and docetaxel may potentially offer an effective administration for chemo-resistant patients suffering from ovarian cancers.
Collapse
Affiliation(s)
- Hai-Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xu Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu-Ya Cai
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Wei Nan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hua Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiu-Xiu Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Hao Xing
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ning Wei
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sheng-Te Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kun Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Jian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital and Institute of Translation Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Morales ML, Arenas A, Ortiz-Ruiz A, Leivas A, Rapado I, Rodríguez-García A, Castro N, Zagorac I, Quintela-Fandino M, Gómez-López G, Gallardo M, Ayala R, Linares M, Martínez-López J. MEK inhibition enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia. Sci Rep 2019; 9:18630. [PMID: 31819100 PMCID: PMC6901485 DOI: 10.1038/s41598-019-54901-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML. Here, we used phosphoproteomics to identify differentially-phosphorylated proteins in patients with AML and TKI resistance. We then studied resistance mechanisms in vitro and evaluated the efficacy and safety of rational combinational therapy in vitro, ex vivo and in vivo in mice. Proteomic and immunohistochemical studies showed the sustained activation of ERK1/2 in bone marrow samples of patients with AML after developing resistance to FLT3 inhibitors, which was identified as a common resistance pathway. We examined the concomitant inhibition of MEK-ERK1/2 and FLT3 as a strategy to overcome drug-resistance, finding that the MEK inhibitor trametinib remained potent in TKI-resistant cells and exerted strong synergy when combined with the TKI midostaurin in cells with mutated and wild-type FLT3. Importantly, this combination was not toxic to CD34+ cells from healthy donors, but produced survival improvements in vivo when compared with single therapy groups. Thus, our data point to trametinib plus midostaurin as a potentially beneficial therapy in patients with AML.
Collapse
Affiliation(s)
- María Luz Morales
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alicia Arenas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Inmaculada Rapado
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Alba Rodríguez-García
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Nerea Castro
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
| | - Ivana Zagorac
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Rosa Ayala
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - María Linares
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
- Universidad Complutense de Madrid, Madrid, Spain.
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Zhang W, Yang Y, Dong Z, Shi Z, Zhang JT. Single-nucleotide polymorphisms in a short basic motif in the ABC transporter ABCG2 disable its trafficking out of endoplasmic reticulum and reduce cell resistance to anticancer drugs. J Biol Chem 2019; 294:20222-20232. [PMID: 31719146 DOI: 10.1074/jbc.ra119.008347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) belongs to the ABC transporter superfamily and has been implicated in multidrug resistance of cancers. Although the structure and function of ABCG2 have been extensively studied, little is known about its biogenesis and the regulation thereof. In this study, using mutagenesis and several biochemical analyses, we show that the positive charges in the vicinity of the RKR motif downstream of the ABC signature drive trafficking of nascent ABCG2 out of the endoplasmic reticulum (ER) onto plasma membranes. Substitutions of and naturally occurring single-nucleotide polymorphisms within these positively charged residues disabled the trafficking of ABCG2 out of the ER. A representative ABCG2 variant in which the RKR motif had been altered underwent increased ER stress-associated degradation. We also found that unlike WT ABCG2, genetic ABCG2 RKR variants have disrupted normal maturation and do not reduce accumulation of the anticancer drug mitoxantrone and no longer confer resistance to the drug. We conclude that the positive charges downstream of the ABC signature motif critically regulate ABCG2 trafficking and maturation. We propose that single-nucleotide polymorphisms of these residues reduce ABCG2 expression via ER stress-associated degradation pathway and may contribute to reduced cancer drug resistance, improving the success of cancer chemotherapy.
Collapse
Affiliation(s)
- Wenji Zhang
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zizheng Dong
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202 .,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| |
Collapse
|
24
|
Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, Gouws C. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019; 145:1949-1976. [PMID: 31292714 DOI: 10.1007/s00432-019-02973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters. RESULTS This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. CONCLUSIONS It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Collapse
Affiliation(s)
- Clarissa Willers
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hanna Svitina
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Michael J Rossouw
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roan A Swanepoel
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Josias H Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
25
|
Abstract
Inhibition of BRAF improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to BRAF inhibitor is inevitable, and the drug resistance mechanisms still remain to be elucidated. Here, BRAF mutant cells A375 and SK-MEL-28 were chosen and treated with BRAF inhibitor vemurafenib, and the results showed that the ERK signaling pathway was blocked in these cells. Then, vemurafenib-resistant cells were constructed, and we found that drug resistance-related gene P-gp was overexpressed in the two cell lines. In addition, the histone acetylation was significantly increased on the P-gp promoter region, which suggested that the epigenetic modification participated in the P-gp overexpression. Furthermore, JQ1, a bromodomain inhibitor, was added to the vemurafenib-resistant cells and sensitizes the vemurafenib-induced melanoma cell apoptosis. In C57BL/6 mice intravenously injected with vemurafenib-resistant melanoma cells, cotreatment of vemurafenib and JQ1 also severely suppressed melanoma lung metastasis. Taken together, our findings may have important implications for the combined use of vemurafenib and JQ1 in the therapy for melanoma treatment.
Collapse
|
26
|
Silbermann K, Stefan SM, Elshawadfy R, Namasivayam V, Wiese M. Identification of Thienopyrimidine Scaffold as an Inhibitor of the ABC Transport Protein ABCC1 (MRP1) and Related Transporters Using a Combined Virtual Screening Approach. J Med Chem 2019; 62:4383-4400. [PMID: 30925062 DOI: 10.1021/acs.jmedchem.8b01821] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A virtual screening protocol with combination of similarity search and pharmacophore modeling was applied to virtually screen a large compound library to gain new scaffolds regarding ABCC1 inhibition. Biological investigation of promising candidates revealed four compounds as ABCC1 inhibitors, three of them with scaffolds not associated with ABCC1 inhibition until now. The best hit molecule-a thienopyrimidine-was a moderately potent, competitive inhibitor of the ABCC1-mediated transport of calcein AM which also sensitized ABCC1-overexpressing cells toward daunorubicin. Further evaluation showed that it was a moderately potent, competitive inhibitor of the ABCB1-mediated transport of calcein AM, and noncompetitive inhibitor of the ABCG2-mediated pheophorbide A transport. In addition, the thienopyrimidine could also sensitize ABCB1- as well as ABCG2-overexpressing cells toward daunorubicin and SN-38, respectively, in concentration ranges that qualified it as one of the ten best triple ABCC1/ABCB1/ABCG2 inhibitors in the literature. Besides, three more new multitarget inhibitors were identified by this virtual screening approach.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Randa Elshawadfy
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
27
|
Qiu J, Li Q, Bell KA, Yao X, Du Y, Zhang E, Yu JJ, Yu Y, Shi Z, Jiang J. Small-molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase-associated malignant glioma growth. Br J Pharmacol 2019; 176:1680-1699. [PMID: 30761522 DOI: 10.1111/bph.14622] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 01/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE An up-regulation of COX-2 in malignant gliomas causes excessive synthesis of PGE2 , which is thought to facilitate brain tumour growth and invasion. However, which downstream PGE2 receptor subtype (i.e., EP1 -EP4 ) directly contributes to COX activity-promoted glioma growth remains largely unknown. EXPERIMENTAL APPROACH Using a publicly available database from The Cancer Genome Atlas research network, we compared the expression of PGE2 signalling-associated genes in human lower grade glioma and glioblastoma multiforme (GBM) samples. The Kaplan-Meier analysis was performed to determine the relationship between their expression and survival probability. A time-resolved FRET method was used to identify the EP subtype that mediates COX-2/PGE2 -initiated cAMP signalling in human GBM cells. Taking advantage of a recently identified novel selective bioavailable brain-permeable small-molecule antagonist, we studied the effect of pharmacological inhibition of the EP2 receptor on glioma cell growth in vitro and in vivo. KEY RESULTS The EP2 receptor is a key Gαs -coupled receptor that mediates COX-2/PGE2 -initiated cAMP signalling pathways in human malignant glioma cells. Inhibition of EP2 receptors reduced COX-2 activity-driven GBM cell proliferation, invasion, and migration and caused cell cycle arrest at G0-G1 and apoptosis of GBM cells. Glioma cell growth in vivo was also substantially decreased by post-treatment with an EP2 antagonist in both subcutaneous and intracranial tumour models. CONCLUSION AND IMPLICATIONS Taken together, our results suggest that PGE2 signalling via the EP2 receptor increases the malignant potential of human glioma cells and might represent a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,Cell Signal Transduction and Proteomics Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine A Bell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Xue Yao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Erik Zhang
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jane J Yu
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
28
|
Wawro ME, Sobierajska K, Ciszewski WM, Niewiarowska J. Nonsteroidal Anti-Inflammatory Drugs Prevent Vincristine-Dependent Cancer-Associated Fibroblasts Formation. Int J Mol Sci 2019; 20:ijms20081941. [PMID: 31010006 PMCID: PMC6515011 DOI: 10.3390/ijms20081941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
Vincristine is used in the clinical treatment of colon cancer, especially in patients diagnosed in the advanced phase of cancer development. Unfortunately, similar to other agents used during antitumor therapy, vincristine might induce chemoresistance. Studies of this process focus mainly on the analysis of the molecular mechanisms within cancer, usually ignoring the role of stromal cells. Our present findings confirm that vincristine stimulates the secretion of tumor growth factors class beta and interleukin-6 from cancer-associated fibroblasts as a result of paracrine stimulation by cancer cells. Based on alterations in morphology, modulation of capillary formation, and changes in endothelial and mesenchymal marker profile, our findings demonstrate that higher levels of tumor growth factor-βs and interleukin-6 enhance cancer-associated fibroblast-like cell formation through endothelial–mesenchymal transition and that nonsteroidal anti-inflammatory drug treatment (aspirin and ibuprofen) is able to inhibit this phenomenon. The process appears to be regulated by the rate of microtubule polymerization, depending on β-tubulin composition. While higher levels of tubulin-β2 and tubulin-β4 caused slowed polymerization and reduced the level of factors secreted to the extracellular matrix, tubulin-β3 induced the opposite effect. We conclude that nonsteroidal anti-inflammatory drugs should be considered for use during vincristine monotherapy in the treatment of patients diagnosed with colorectal cancer.
Collapse
Affiliation(s)
- Marta Ewelina Wawro
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Wojciech Michał Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
29
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
30
|
Ibrahim SM, Bakhashab S, Ilyas AM, Pushparaj PN, Karim S, Khan JA, Abuzenadah AM, Chaudhary AG, Al-Qahtani MH, Ahmed F. WYE-354 restores Adriamycin sensitivity in multidrug-resistant acute myeloid leukemia cell lines. Oncol Rep 2019; 41:3179-3188. [PMID: 30942458 PMCID: PMC6489006 DOI: 10.3892/or.2019.7093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) is a major reason for the failure of acute myeloid leukemia (AML) therapy. Agents that reverse MDR and sensitize AML cells to chemotherapy are of great clinical significance. The present study developed Adriamycin (Adr)-resistant cell lines, namely K562/Adr200 and K562/Adr500, which exhibited MDR. The upregulation of ATP-binding cassette subfamily B member 1 (ABCB1) was confirmed as the mechanism of resistance by reverse transcription-quantitative polymerase chain reaction and western blot analyses. Subsequently, the role of the mammalian target of rapamycin (mTOR) kinase inhibitor, WYE-354, in sensitizing the K562/Adr200 and K562/Adr500 cell lines to Adr was evaluated. At sub-cytotoxic concentrations, WYE-354 increased Adr cytotoxicity in the K562/Adr200 and K562/Adr500 cells. WYE-354 restored Adr sensitivity in the resistant cells by inhibiting ABCB1-mediated substrate efflux, thereby leading to an accumulation of Adr, an increase in Adr-mediated G2/M cell cycle arrest and the induction of apoptosis. Furthermore, WYE-354 stimulated the ATPase activity of ABCB1, which was consistent with in silico predictions using a human ABCB1 mouse homology model, indicating that WYE-354 is a potent substrate of ABCB1. WYE-354 did not regulate the expression of ABCB1 at the concentrations used in the present study. These findings indicate that WYE-354 may be a competitive inhibitor of ABCB1-mediated efflux and a potential candidate in combination with standard chemotherapy for overcoming MDR. Further clinical investigations are warranted to validate this combination in vivo.
Collapse
Affiliation(s)
- Sara M Ibrahim
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asad M Ilyas
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Peter N Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin A Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Zeidan MA, Mostafa AS, Gomaa RM, Abou-zeid LA, El-Mesery M, El-Sayed MAA, Selim KB. Design, synthesis and docking study of novel picolinamide derivatives as anticancer agents and VEGFR-2 inhibitors. Eur J Med Chem 2019; 168:315-329. [DOI: 10.1016/j.ejmech.2019.02.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
32
|
Huang SZ, Wei MN, Huang JR, Zhang ZJ, Zhang WJ, Jiang QW, Yang Y, Wang HY, Jin HL, Wang K, Xing ZH, Yuan ML, Li Y, He XS, Shi Z, Zhou Q. Targeting TF-AKT/ERK-EGFR Pathway Suppresses the Growth of Hepatocellular Carcinoma. Front Oncol 2019; 9:150. [PMID: 30931258 PMCID: PMC6428933 DOI: 10.3389/fonc.2019.00150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 01/20/2023] Open
Abstract
Tissue factor (TF) is a transmembrane glycoprotein to initiate blood coagulation and frequently overexpressed in a variety of tumors. Our previous study has showed that the expression of TF is upregulated and correlated with prognosis in hepatocellular carcinoma (HCC). However, the role and molecular mechanism of TF in the growth of HCC are still unclear. In vitro and in vivo functional experiments were performed to determine the effect of TF on the growth of HCC cells. A panel of biochemical assays was used to elucidate the underlying mechanisms. TF could promote the growth of HCC in vitro and in vivo by activating both ERK and AKT signaling pathways. TF induced EGFR upregualtion, and inhibition of EGFR suppressed TF-mediated HCC growth. In addition, TF protein expression was correlated with EGFR in HCC tissues. TF promotes HCC growth by upregulation of EGFR, and TF as well as EGFR may be potential therapeutic targets of HCC.
Collapse
Affiliation(s)
- Shan-Zhou Huang
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng-Ning Wei
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia-Rong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Jian Zhang
- Department of Hepatobiliary Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wen-Ji Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qi-Wei Jiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Huan-Yu Wang
- Department of Thyroid and Breast Surgery, Nanshan District People's Hospital, Shenzhen, China
| | - Hui-Lin Jin
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Hao Xing
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ling Yuan
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Shun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Shi
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhou
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, China
| |
Collapse
|
33
|
Silbermann K, Shah CP, Sahu NU, Juvale K, Stefan SM, Kharkar PS, Wiese M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur J Med Chem 2019; 164:193-213. [PMID: 30594677 DOI: 10.1016/j.ejmech.2018.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
During cancer chemotherapy, certain cancers may become cross-resistant to structurally diverse antineoplastic agents. This so-called multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transport proteins. These membrane-bound efflux pumps export a broad range of structurally diverse endo- and xenobiotics, including chemically unrelated anticancer agents. This translocation of drugs from the inside to the outside of cancer cells is mediated at the expense of ATP. In the last 40 years, three ABC transporters - ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) - have mainly been attributed to the occurrence of MDR in cancer cells. One of the strategies to overcome MDR is to inhibit the efflux transporter function by small-molecule inhibitors. In this work, we investigated new chalcone- and flavone-based compounds for selective as well as broad-spectrum inhibition of the stated transport proteins. These include substituted chalcones with variations at rings A and B, and flavones with acetamido linker at position 3. The synthesized molecules were evaluated for their inhibitory potential against ABCB1, ABCC1, and ABCG2 in calcein AM and pheophorbide A assays. In further investigations with the most promising candidates from each class, we proved that ABCB1- and ABCG2-mediated MDR could be reversed by the compounds. Moreover, their intrinsic toxicity was found to be negligible in most cases. Altogether, our findings contribute to the understanding of ABC transport proteins and reveal new compounds for ongoing evaluation in the field of ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Chetan P Shah
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
34
|
Huang JR, Qin WM, Wang K, Fu DR, Zhang WJ, Jiang QW, Yang Y, Yuan ML, Xing ZH, Wei MN, Li Y, Shi Z. Cyclin-dependent kinase 7 inhibitor THZ2 inhibits the growth of human gastric cancer in vitro and in vivo. Am J Transl Res 2018; 10:3664-3676. [PMID: 30662617 PMCID: PMC6291693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
Cyclin-dependent kinase 7 (CDK7) is a member of the CDK family, which forms the CDK activating kinase complex with Cyclin H and RING finger protein Mat1 to control cell cycle progression and transcription by phosphorylating other CDKs and RNA polymerase II. In this study, we analyzed TCGA data and found that upregulation of CDK7 frequently occurred in human gastric cancer. A potent and selective irreversible CDK7 inhibitor THZ2 was able to induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the increasing intracellular reactive oxidative species (ROS) levels in gastric cancer cells. Pretreatment with ROS scavenger N-acety-L-cysteine partially reversed cell apoptosis induced by THZ2. In the nude mice, THZ2 also suppressed the growth of xenograft tumors of gastric cancer. Overall, our data showed that inhibition of CDK7 with THZ2 in gastric cancer presented outstanding anticancer effect in vitro and in vivo, suggesting that CDK7 is a potential therapeutic target for gastric cancer patients.
Collapse
Affiliation(s)
- Jia-Rong Huang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Wu-Ming Qin
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Kun Wang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Deng-Rui Fu
- Guangzhou Yucai Middle SchoolGuangzhou 510632, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yang Yang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Meng-Ling Yuan
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Zi-Hao Xing
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yao Li
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| |
Collapse
|
35
|
Wei S, Chen W, Hu L, Pan J, Wang X. A 20(S)-protopanaxadiol derivative PPD12 reverses ABCB1-mediated multidrug resistance with oral bioavailability and low toxicity. Oncol Lett 2018; 16:5891-5899. [PMID: 30344740 PMCID: PMC6176371 DOI: 10.3892/ol.2018.9338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 07/04/2018] [Indexed: 01/20/2023] Open
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1) is a transporter that mediates multidrug resistance (MDR) against chemotherapy, which leads to decreased patient survival. To inhibit ABCB1 activity in MDR cancer cells, the authors previously designed and synthesized a derivative from 20(S)-protopanaxadiol (PPD) PPD12 and verified its efficacy in ABCB1-overexpressing cancer cells. In the present study, the reversal effect of PPD12 on MDR was further evaluated and its pharmacokinetics and toxicity in vitro and in vivo were investigated. Incubation with PPD12 may significantly ameliorate the drug resistance of KB/VCR cells in a short time and maintain its reversed MDR ability for increasing time periods. In assays on a series of CYP450 activities, PPD12 demonstrated slight inhibition effects on the majority of enzymes. The bioavailability of PPD12 was nearly 100% by oral administration in a mouse model. Single PPD12 oral gavage at either high doses or subchronic low doses, was well tolerated by the mice. In addition, PPD12 at the therapeutic dosage did not significantly increase the toxicity of the chemotherapeutic agent Adriamycin when mice received a combination of the two compounds. In conclusion, PPD12 represents a novel type of ABCB1 inhibitor that has significant bioactivity in terms of MDR, high oral bioavailability and low toxicity.
Collapse
Affiliation(s)
- Shunfeng Wei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.,Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lihong Hu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
36
|
Mitra T, Prasad P, Mukherjee P, Chaudhuri SR, Chatterji U, Roy SS. Stemness and chemoresistance are imparted to the OC cells through TGFβ1 driven EMT. J Cell Biochem 2018. [PMID: 29537103 DOI: 10.1002/jcb.26753] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is the fourth most common gynecological malignancy due to its highly aggressive, recurrent, and drug-resistant nature. The last two features are rendered by the presence of cancer stem cells (CSCs). Factors like TGFβ1 and their downstream signaling pathways are upregulated in most cancers and are known to induce EMT and stemness, but the exact mechanisms underlying the process remain unelucidated. In our study, TGFβ1 induced enhanced stem-like properties like high expression of the pluripotent markers SOX2, OCT4a, and NANOG, along with CD44, and CD117 in the OC cells. In addition, increased activity of the aldehyde dehydrogenase enzyme, formation of compact spheroids, and a quiescent phenotype were observed. In deciphering the mechanism behind it, our data propose ZEB1 transcription factor to play a substantial role in inducing the EMT-mediated stemness and chemoresistance. Further, in our study, we elucidated the significant contribution of both Smad and non-Smad pathways like ERK, JNK, and P38 MAPK pathways in the induction of stem-like characteristics. The novelty of the study also resides with the fact in the expression of different lineage-specific markers, like CD31, CD45, and CD117 along with CD44 in the TGFβ1-induced epithelial ovarian cancer spheroids. This suggests a tendency of the spheroidal cells towards differentiating into heterogenic populations, which is a distinctive feature of a stem cell. Taken together, the present study provides an insight to the molecular cues involved in the acquisition of stemness and chemoresistance along with tumor heterogeneity in TGFβ1-induced OC cells.
Collapse
Affiliation(s)
- Tulika Mitra
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Parash Prasad
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Susri Ray Chaudhuri
- Tata Translational Cancer Research Centre, Tata Medical Centre, Kolkata, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Sib S Roy
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Biology Campus, Kolkata, India
| |
Collapse
|
37
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Li S, Yang J, Wang J, Gao W, Ding Y, Ding Y, Jia Z. Down-regulation of miR-210-3p encourages chemotherapy resistance of renal cell carcinoma via modulating ABCC1. Cell Biosci 2018; 8:9. [PMID: 29445446 PMCID: PMC5803904 DOI: 10.1186/s13578-018-0209-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background ATP-binding cassette transporter super-family including ABCC1 and MDR-1 were involved in multi-drug resistance (MDR) of renal cell carcinoma (RCC) patients. Several miRNAs were confirmed to promote the MDR and the survival of tumor cells. Methods The RCC cell lines Caki-2 with vinblastine-resistant (Caki-2/VBL) or doxorubicin-resistant (Caki-2/DOX) were constructed, respectively. The expressions of miR-210-3p, ABCC1 and MDR-1 protein were determined by qRT-PCR and Western blot assays. The viability of RCC cells was assessed by MTT assay. The regulatory relationship between miR-210-3p and ABCC1 was analyzed by Dual Luciferase assay. The effect of miR-210-3p in vivo was investigated with a tumor xenograft model in mice. Results MiR-210-3p expression was observed to significantly decrease in Caki-2/VBL and Caki-2/DOX cells. Meanwhile, ABCC1 and MDR-1 were significantly increased in Caki-2/VBL and Caki-2/DOX cells. ABCC1 was a novel target of miR-210-3p and negatively regulated by miR-210-3p. And miR-210-3p improved drug-sensitivity of RCC cells. Down-regulation of ABCC1 could reverse the effect of miR-210-3p knockdown on the drug-resistance and the level of MDR-1 in drug-sensitive RCC cells. Conclusion We confirmed that down-regulation of miR-210-3p increased ABCC1 expression, thereby enhancing the MRP-1-mediated multidrug resistance of RCC cells.
Collapse
Affiliation(s)
- Songchao Li
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Jinjian Yang
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Jun Wang
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Wansheng Gao
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yafei Ding
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yinghui Ding
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Zhankui Jia
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| |
Collapse
|
39
|
Lv L, Liu C, Chen C, Yu X, Chen G, Shi Y, Qin F, Ou J, Qiu K, Li G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget 2017; 7:32184-99. [PMID: 27058756 PMCID: PMC5078006 DOI: 10.18632/oncotarget.8607] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug–loaded nanoparticles, or non-biotin–decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.
Collapse
Affiliation(s)
- Li Lv
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Chunxia Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou 511300, Guangdong, China
| | - Chuxiong Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xiaoxia Yu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guanghui Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Fengchao Qin
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Jiebin Ou
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guocheng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
40
|
Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget 2017; 8:113013-113033. [PMID: 29348885 PMCID: PMC5762570 DOI: 10.18632/oncotarget.22956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic drug treatment can result in the emergence of drug-resistant cells. By culturing an interleukin-3 (IL-3)-dependent cell line, FL5.12 cells in the presence of the chemotherapeutic drug doxorubicin, we isolated FL/Doxo cells which are multi-drug resistant. Increased levels of drug efflux were detected in FL/Doxo cells which could be inhibited by the MDR1 inhibitor verapamil but not by the MRP1 inhibitor MK571. The effects of TP53 and MEK1 were examined by infection of FL/Doxo cells with retroviruses encoding either a dominant negative TP-53 gene (FL/Doxo+ TP53 (DN) or a constitutively-activated MEK-1 gene (FL/Doxo + MEK1 (CA). Elevated MDR1 but not MRP1 mRNA transcripts were detected by quantitative RT-PCR in the drug-resistant cells while transcripts encoding anti-apoptotic genes such as: BCL2, BCLXL and MCL1 were observed at higher levels in the drug-sensitive FL5.12 cells. The percentage of cells that were side-population positive was increased in the drug-resistant cells compared to the parental line. Drug-resistance and side-positive population cells have been associated with cancer stem cells (CSC). Our studies suggest mechanisms which could allow the targeting of these molecules to prevent drug-resistance.
Collapse
|
41
|
Ju RJ, Cheng L, Xiao Y, Wang X, Li CQ, Peng XM, Li XT. PTD modified paclitaxel anti-resistant liposomes for treatment of drug-resistant non-small cell lung cancer. J Liposome Res 2017; 28:236-248. [PMID: 28480778 DOI: 10.1080/08982104.2017.1327542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Non-small cell lung carcinoma (NSCLC) is a type of epithelial lung cancer that accounts for approximately 80-85% of lung carcinoma cases. Chemotherapy for the NSCLC is unsatisfactory due to multidrug resistance, nonselectively distributions and the accompanying side effects. OBJECTIVE The objective of this study was to develop a kind of PTD modified paclitaxel anti-resistant liposomes to overcome these chemotherapy limitations. METHOD The studies were performed on LLT cells and resistant LLT cells in vitro and on NSCLC xenograft mice in vivo, respectively. RESULTS AND DISCUSSION In vitro results showed that the liposomes with suitable physicochemical characteristics could significantly increase intracellular uptake in both LLT cells and resistant LLT cells, evidently inhibit the growth of cancer cells, and clearly induce the apoptosis of resistant LLT cells. Studies on resistant LLT cells xenograft mice demonstrated that the liposomes magnificently enhanced the anticancer efficacy in vivo. Involved action mechanisms were down-regulation of adenosine triphosphate binding cassette transporters on resistant LLT cells, and activation of the apoptotic enzymes (caspase 8/9/3). CONCLUSION The PTD modified paclitaxel anti-resistant liposomes may provide a promising strategy for treatment of the drug-resistant non-small cell lung cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yao Xiao
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xin Wang
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
42
|
Xu Z, Zhang L. BRCA1 expression serves a role in vincristine resistance in colon cancer cells. Oncol Lett 2017; 14:345-348. [PMID: 28693174 DOI: 10.3892/ol.2017.6149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the association between breast cancer susceptibility gene 1 (BRCA1) expression and drug resistance in colon cancer, with the specific aim of elucidating the underlying molecular mechanisms of vincristine (VCR) resistance in tumor cells. The HCT-8 human colon cancer cell line was used to establish the VCR-resistant HCT-8/V line by gradually increasing the concentration of VCR during cell culture. The relative mRNA and protein expression levels of BRCA1 in these colon cancer cell lines was assessed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. Resistance to VCR was established in the HCT-8/V colon cancer cells, and RT-qPCR and western blot analysis revealed the expression of BRCA1 to be significantly higher in the VCR-resistant cells compared with their drug-sensitive counterparts (P<0.05). The decreased BRCA1 expression in these VCR-resistant cells may be associated with the drug resistance frequently observed in colon cancer.
Collapse
Affiliation(s)
- Zhongjie Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.,Department of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lirong Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
43
|
Huang XX, Xie FF, Hou LJ, Chen XX, Ou RY, Yu JT, Qiu JG, Zhang WJ, Jiang QW, Yang Y, Zheng DW, Chen Y, Huang JR, Wang K, Wei MN, Li WF, Shi Z, Yan XJ. Crizotinib synergizes with cisplatin in preclinical models of ovarian cancer. Am J Transl Res 2017; 9:1667-1679. [PMID: 28469773 PMCID: PMC5411916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Crizotinib, a small molecule inhibitor of anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1) and c-MET (also called MET or hepatocyte growth factor receptor), has been approved by the Food and Drug Administration for the treatment of patients with advanced non-small cell lung cancer whose tumors have rearrangements in the ALK or ROS1 gene. However, the anticancer effect of crizotinib on ovarian cancer is still unclear. In this study, our data show that crizotinib can actively induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the decreasing phosphorylation of the downstream signaling effectors AKT and ERK in human ovarian cancer cells. Crizotinib also increases the intracellular reactive oxidative species (ROS) levels, and pretreating with ROS scavenger N-acety-L-cysteine partially reverses crizotinib-induced apoptosis. Moreover, crizotinib can synergistically inhibit ovarian cancer cells growth in vitro and in vivo when combines with cisplatin. Altogether, crizotinib potently potentiates the activity of cisplatin in ovarian cancer, suggesting the synergistic effect of crizotinib and cisplatin may be valuable for ovarian cancer patients' treatment.
Collapse
Affiliation(s)
- Xiao-Xiu Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Feng-Feng Xie
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Li-Jiao Hou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Xiu-Xiu Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Rong-Ying Ou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Jiang-Tao Yu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Wen-Feng Li
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Xiao-Jian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| |
Collapse
|
44
|
Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:molecules22040600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
|
45
|
Frankel AE, Eskiocak U, Gill JG, Yuan S, Ramesh V, Froehlich TW, Ahn C, Morrison SJ. Digoxin Plus Trametinib Therapy Achieves Disease Control in BRAF Wild-Type Metastatic Melanoma Patients. Neoplasia 2017; 19:255-260. [PMID: 28278423 PMCID: PMC5342980 DOI: 10.1016/j.neo.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
This is the first prospective study of a combination therapy involving a cardenolide and a MEK inhibitor for metastatic melanoma. Whereas BRAF mutant melanomas can exhibit profound responses to treatment with BRAF and MEK inhibitors, there are fewer options for BRAF wild-type melanomas. In preclinical studies, we discovered that cardenolides synergize with MEK inhibitor to promote the regression of patient-derived xenografts irrespective of BRAF mutation status. We therefore conducted a phase 1B study of digoxin 0.25 mg and trametinib 2 mg given orally once daily in 20 patients with advanced, refractory, BRAF wild-type melanomas. The most common adverse events were rash, diarrhea, nausea, and fatigue. The response rate was 4/20 or 20% with response durations of 2, 4, 6, and 8 months. The disease control rate (including partial responses and stable disease) was 13/20 or 65% of patients, including 5/6 or 83% of patients with NRAS mutant melanomas and 8/14 or 57% of NRAS wild-type melanomas. Patients with stable disease had disease control for 2, 2, 2, 4, 5, 6, 7, 10, and 10 months. Xenografts from four patients recapitulated the treatment responses observed in patients. Based on these pilot results, an expansion arm of digoxin plus MEK inhibitor is warranted for NRAS mutant metastatic melanoma patients who are refractory or intolerant of immunotherapy. KEY POINTS Digoxin plus trametinib is well tolerated and achieves a high rate of disease control in BRAF wild-type metastatic melanoma patients.
Collapse
Affiliation(s)
- Arthur E Frankel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| | - Ugur Eskiocak
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Compass Therapeutics, Cambridge, MA
| | - Jennifer G Gill
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Stacy Yuan
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vijayashree Ramesh
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas W Froehlich
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chul Ahn
- Department of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
46
|
Chen G, Liu J, Chen W, Xu Q, Xiao M, Hu L, Mao L, Wang X. A 20(S)-protopanoxadiol derivative overcomes multi-drug resistance by antagonizing ATP-binding cassette subfamily B member 1 transporter function. Oncotarget 2017; 7:9388-403. [PMID: 26824187 PMCID: PMC4891047 DOI: 10.18632/oncotarget.7011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/01/2016] [Indexed: 02/04/2023] Open
Abstract
In cancer cells, failure of chemotherapy is often caused by the ATP-binding cassette subfamily B member 1 (ABCB1), and few drugs have been successfully developed to overcome ABCB1-mediated multi-drug resistance (MDR). To suppress ABCB1 activity, we previously designed and synthesized a new series of derivatives based on 20(S)-protopanoxadiol (PPD). In the present study, we investigated the role of PPD derivatives in the function of ABC transporters. Non-toxic concentrations of the PPD derivative PPD12 sensitized ABCB1-overexpressing cells to their anti-cancer substrates better than either the parental PPD or inactive PPD11. PPD12 increased intracellular accumulation of adriamycin and rhodamine123 in resistant cancer cells. Although PPD12 did not suppress the expression of ABCB1 mRNA or protein, it stimulated the activity of ABCB1 ATPase. Because PPD12 is a competitive inhibitor, it was predicted to bind to the large hydrophobic cavity of homology-modeled human ABCB1. PPD12 also enhanced the efficacy of adriamycin against ABCB1-overexpressing KB/VCR xenografts in nude mice. In conclusion, PPD12 enhances the efficacy of substrate drugs in ABCB1-overexpressing cancer cells. These findings suggest that a combination therapy consisting of PPD12 with conventional chemotherapeutic agents may be an effective treatment for ABCB1-mediated MDR cancer patients.
Collapse
Affiliation(s)
- Gang Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Junhua Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Lihong Hu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Li Mao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| |
Collapse
|
47
|
Zhang WJ, Li Y, Wei MN, Chen Y, Qiu JG, Jiang QW, Yang Y, Zheng DW, Qin WM, Huang JR, Wang K, Zhang WJ, Wang YJ, Yang DH, Chen ZS, Shi Z. Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer. Cancer Lett 2016; 386:100-109. [PMID: 27864115 DOI: 10.1016/j.canlet.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
Regorafenib significantly prolongs overall survival in patients with metastatic colorectal cancer (mCRC), but the overall clinical efficacy of regorafenib remains quite limited. Combination chemotherapy is a potentially promising approach to enhance anticancer activity, overcome drug resistance, and improve disease-free and overall survival. The current study investigates the antitumor activity of regorafenib in combination with lapatinib in preclinical models of human CRC. Our results show improved antitumor efficacy when regorafenib is combined with lapatinib both in vitro and in vivo. Furthermore, pharmacokinetic analyses revealed that regorafenib and lapatinib do not influence on each plasma concentration. The finding that regorafenib in combination with lapatinib have synergistic activity warrants further clinical investigation of this beneficial combination as a potential treatment strategy for CRC patients.
Collapse
Affiliation(s)
- Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yong Li
- Department of Gastrointestinal Surgery & General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wu-Ming Qin
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wen-Juan Zhang
- Department of Preventive Medicine, College of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
48
|
Zheng DW, Xue YQ, Li Y, Di JM, Qiu JG, Zhang WJ, Jiang QW, Yang Y, Chen Y, Wei MN, Huang JR, Wang K, Wei X, Shi Z. Volasertib suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. Am J Cancer Res 2016; 6:2476-2488. [PMID: 27904765 PMCID: PMC5126267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most frequent malignant tumor with poor prognosis, and its clinical therapeutic outcome is poor. Volasertib, a potent small molecular inhibitor of polo-like kinase 1 (PLK1), is currently tested for treatment of multiple cancers in the clinical trials. However, the antitumor effect of volasertib on HCC is still unknown. In this study, our data show that volasertib is able to induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the spindle abnormalities in human HCC cells. Furthermore, volasertib also increases the intracellular reactive oxidative species (ROS) levels, and pretreated with ROS scavenger N-acety-L-cysteine partly reverses volasertib-induced apoptosis. Moreover, volasertib markedly inhibits the subcutaneous xenograft growth of HCC in nude mice. Overall, our study provides new therapeutic potential of volasertib on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - You-Qiu Xue
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
- Center for Clinic Immunology, Third Hospital at Sun Yat-sen UniversityGuangzhou 510630, China
| | - Yong Li
- Department of Gastrointertinal Surgery & General Surgery, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong 510080, China
| | - Jin-Ming Di
- Department of Urology, The 3rd Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong 510630, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Xing Wei
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| |
Collapse
|
49
|
Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1469693. [PMID: 27803760 PMCID: PMC5075627 DOI: 10.1155/2016/1469693] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/21/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022]
Abstract
TRPM7 is a potential therapeutic target for treatment of prostate cancer. In this study, we investigated the effects of nonselective TRPM7 inhibitor carvacrol on cell proliferation, migration, and invasion of prostate cancer PC-3 and DU145 cells. Our results showed that carvacrol blocked TRPM7-like currents in PC-3 and DU145 cells and reduced their proliferation, migration, and invasion. Moreover, carvacrol treatment significantly decreased MMP-2, p-Akt, and p-ERK1/2 protein expression and inhibited F-actin reorganization. Furthermore, consistently, TRPM7 knockdown reduced prostate cancer cell proliferation, migration, and invasion as well. Our study suggests that carvacrol may have therapeutic potential for the treatment of prostate cancer through its inhibition of TRPM7 channels and suppression of PI3K/Akt and MAPK signaling pathways.
Collapse
|
50
|
Wang F, Chen Y, Huang L, Liu T, Huang Y, Zhao J, Wang X, Yang K, Ma S, Huang L, To KKW, Gu Y, Fu L. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells. Oncotarget 2016; 6:40850-65. [PMID: 26506420 PMCID: PMC4747373 DOI: 10.18632/oncotarget.5813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Yifan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Lihua Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tao Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianming Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaokun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaolin Ma
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liyan Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|