1
|
Guan W, Zhang C, Miao T, Dong C, Li L, Yuan X, Zhao D, Ai R, Zhang X, Sun M, Kang H, Nan Y. The Potential of the lncRNAs ADAMTSL4-AS1, AC067931 and SOCS2-AS1 in Peripheral Blood Mononuclear Cells as Novel Diagnostic Biomarkers for Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1221-1233. [PMID: 38957436 PMCID: PMC11217008 DOI: 10.2147/jhc.s463804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) might be closely associated with hepatocellular carcinoma (HCC) progression and could serve as diagnostic and prognostic markers. This study aimed to investigate lncRNA-based diagnostic biomarkers for hepatitis B virus (HBV)-associated HCC. Materials and Methods High-throughput transcriptome sequencing was conducted on the liver tissues of 15 patients with HBV-associated liver diseases (5 with chronic hepatitis B [CHB], 5 with liver cirrhosis [LC], and 5 with HCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze lncRNA expressions. Potential diagnostic performance for HBV-associated HCC screening was evaluated. Results Through trend analysis and functional analysis, we found that 8 lncRNAs were gradually upregulated and 1 lncRNA was progressively downregulated by regulation of target mRNAs and downstream HCC-associated signaling pathways. The validation of dysregulated lncRNAs in peripheral blood mononuclear cells (PBMCs) and HCC tissues by qRT-PCR revealed that ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were significantly increased in HCC compared with CHB and cirrhosis. Moreover, differentially expressed lncRNAs were aberrantly elevated in Huh7, Hep3B, HepG2, and HepG2.215 cells compared with LX2 cells. Furthermore, ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were identified as novel biomarkers for HBV-associated HCC. For distinguishing HCC from CHB, ADAMTSL4-AS1, AC067931, and SOCS2-AS1 combined with alpha-fetoprotein (AFP) had an area under the curve (AUC) of 0.945 (sensitivity, 83.9%; specificity, 89.8%). Similarly, for distinguishing HCC from LC, this combination had an AUC of 0.871 (sensitivity, 91.1%; specificity, 68.2%). Furthermore, this combination showed the highest diagnostic ability to distinguish HCC from CHB and LC (AUC, 0.905; sensitivity, 91.1%; specificity, 75.3%). In particular, this combination identified AFP-negative (AFP < 20 ng/mL) (AUC = 0.814), small (AUC = 0.909), and early stage (AUC = 0.863) tumors. Conclusion ADAMTSL4-AS1, SOCS2-AS1, and AC067931 combined with AFP in PBMCs may serve as a noninvasive diagnostic biomarker for HBV-associated HCC, especially AFP-negative, small, and early stage HCC.
Collapse
Affiliation(s)
- Weiwei Guan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
- Department of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050023, People’s Republic of China
| | - Congyue Zhang
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Tongguo Miao
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Chen Dong
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Lu Li
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Dandan Zhao
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Rong Ai
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Mengjiao Sun
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Haiyan Kang
- Department of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050023, People’s Republic of China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital & Hebei International Joint Research Center for Liver Cancer Molecular Diagnosis, Hebei International Science and Technology Cooperation Base, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| |
Collapse
|
2
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Shan L, Zhao N, Wang F, Zhai D, Liu J, Lv X. Caffeine in Hepatocellular Carcinoma: Cellular Assays, Animal Experiments, and Epidemiological Investigation. J Inflamm Res 2024; 17:1589-1605. [PMID: 38495344 PMCID: PMC10941793 DOI: 10.2147/jir.s424384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The use of caffeine in treating various liver diseases has made substantial progress in the past decade owing to advances in science, technology, and medicine. However, whether caffeine has a preventive effect on hepatocellular carcinoma (HCC) and its mechanism are still worth further investigation. In this review, we summarize and analyze the efficacy and safety of caffeine in the prevention of HCC. We conducted a review of articles published in PubMed and Web of Science in the past 2 decades until December 6, 2023, which were searched for using the terms "Caffeine" and "Hepatocellular Carcinoma." Studies have found that coffee intake is negatively correlated with HCC risk, especially caffeinated coffee. Recent studies have found that caffeine has beneficial effects on liver health, decreasing levels of enzymes responsible for liver damaging and slowing the progression of hepatic fibrosis and cirrhosis. Caffeine also acts against liver fibrosis through adenosine receptors (ARs), which promote tissue remodeling by inducing fibrin and collagen production. Additionally, new studies have found that moderate consumption of caffeinated beverages can decrease various the levels of various collagens in patients with chronic hepatitis C. Furthermore, polyphenolic compounds in coffee can improve fat homeostasis, reduce oxidative stress, and prevent liver steatosis and fibrosis. Moreover, many in vitro studies have shown that caffeine can protect liver cells and inhibit the activation and proliferation of hepatic stellate cells. Taken together, we describe the benefits of caffeine for liver health and highlight its potential values as a drug to prevent various hepatic diseases. As a protective agent of liver inflammation, non-selective AR inhibitor caffeine can inhibit the growth of HCC cells by inhibiting adenosine and AR binding to initiate immune response, providing a basis for the future development of caffeine as an adjuvant drug against HCC.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Ning Zhao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Fengling Wang
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Dandan Zhai
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Jianjun Liu
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| |
Collapse
|
4
|
Romeo M, Dallio M, Scognamiglio F, Ventriglia L, Cipullo M, Coppola A, Tammaro C, Scafuro G, Iodice P, Federico A. Role of Non-Coding RNAs in Hepatocellular Carcinoma Progression: From Classic to Novel Clinicopathogenetic Implications. Cancers (Basel) 2023; 15:5178. [PMID: 37958352 PMCID: PMC10647270 DOI: 10.3390/cancers15215178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignancy with increasing incidences and mortalities worldwide. In Western countries, the progressive affirmation of Non-alcoholic Fatty Liver Disease (NAFLD) as the main chronic liver disorder in which HCC occurrence is appreciable even in non-cirrhotic stages, constitutes a real health emergency. In light of this, a further comprehension of molecular pathways supporting HCC onset and progression represents a current research challenge to achieve more tailored prognostic models and appropriate therapeutic approaches. RNA non-coding transcripts (ncRNAs) are involved in the regulation of several cancer-related processes, including HCC. When dysregulated, these molecules, conventionally classified as "small ncRNAs" (sncRNAs) and "long ncRNAs" (lncRNAs) have been reported to markedly influence HCC-related progression mechanisms. In this review, we describe the main dysregulated ncRNAs and the relative molecular pathways involved in HCC progression, analyzing their implications in certain etiologically related contexts, and their applicability in clinical practice as novel diagnostic, prognostic, and therapeutic tools. Finally, given the growing evidence supporting the immune system response, the oxidative stress-regulated mechanisms, and the gut microbiota composition as relevant emerging elements mutually influencing liver-cancerogenesis processes, we investigate the relationship of ncRNAs with this triad, shedding light on novel pathogenetic frontiers of HCC progression.
Collapse
Affiliation(s)
- Mario Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Flavia Scognamiglio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Lorenzo Ventriglia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Marina Cipullo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Annachiara Coppola
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Chiara Tammaro
- Biochemistry Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (C.T.); (G.S.)
| | - Giuseppe Scafuro
- Biochemistry Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (C.T.); (G.S.)
| | - Patrizia Iodice
- Division of Medical Oncology, AORN Azienda dei Colli, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| |
Collapse
|
5
|
Sun Y, Zheng H, Qian L, Liu Y, Zhu D, Xu Z, Chang W, Xu J, Wang L, Sun B, Gu L, Yuan H, Lou H. Targeting GDP-Dissociation Inhibitor Beta (GDI2) with a Benzo[ a]quinolizidine Library to Induce Paraptosis for Cancer Therapy. JACS AU 2023; 3:2749-2762. [PMID: 37885576 PMCID: PMC10598831 DOI: 10.1021/jacsau.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Inducing paraptosis, a nonapoptotic form of cell death, has great therapeutic potential in cancer therapy, especially for drug-resistant tumors. However, the specific molecular target(s) that trigger paraptosis have not yet been deciphered yet. Herein, by using activity-based protein profiling, we identified the GDP-dissociation inhibitor beta (GDI2) as a manipulable target for inducing paraptosis and uncovered benzo[a]quinolizidine BQZ-485 as a potent inhibitor of GDI2 through the interaction with Tyr245. Comprehensive target validation revealed that BQZ-485 disrupts the intrinsic GDI2-Rab1A interaction, thereby abolishing vesicular transport from the endoplasmic reticulum (ER) to the Golgi apparatus and initiating subsequent paraptosis events including ER dilation and fusion, ER stress, the unfolded protein response, and cytoplasmic vacuolization. Based on the structure of BQZ-485, we created a small benzo[a]quinolizidine library by click chemistry and discovered more potent GDI2 inhibitors using a NanoLuc-based screening platform. Leveraging the engagement of BQZ-485 with GDI2, we developed a selective GDI2 degrader. The optimized inhibitor (+)-37 and degrader 21 described in this study exhibited excellent in vivo antitumor activity in two GDI2-overexpressing pancreatic xenograft models, including an AsPc-1 solid tumor model and a transplanted human PDAC tumor model. Altogether, our findings provide a promising strategy for targeting GDI2 for paraptosis in the treatment of pancreatic cancers, and these lead compounds could be further optimized to be effective chemotherapeutics.
Collapse
Affiliation(s)
- Yong Sun
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Lilin Qian
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Yue Liu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Deyu Zhu
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zejun Xu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Wenqiang Chang
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Jianwei Xu
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Lei Wang
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Bin Sun
- National
Glycoengineering Research Center, Shandong
University, Jinan 250100, China
| | - Lichuan Gu
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huiqing Yuan
- Key
Laboratory
of Experimental Teratology of the Ministry of Education, Institute
of Medical Sciences, The Second Hospital
of Shandong University, Jinan 250013, China
| | - Hongxiang Lou
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Li W, Xu X, Ma Z, Shen P, Cheng B, Xia J, Li Y. LncRNA BANCR promotes oral squamous cell carcinoma progression via regulating Rab1A signaling. J Oral Pathol Med 2023; 52:727-737. [PMID: 37433101 DOI: 10.1111/jop.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Long non-coding RNA BRAF-activated non-protein coding RNA plays bidirectional roles in human cancers. However, function and molecular mechanism of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma still need to clarify further. METHODS Long non-coding RNA microarray assay, in situ hybridization staining, clinicopathological data analysis were performed to investigate expression pattern of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma tissue samples. Constructing ectopically expressed BRAF-activated non-protein coding RNA in oral squamous cell carcinoma cells via plasmids or siRNAs, then changeable abilities of proliferation and motility of these cells were observed in vitro and in vivo. RNA-protein pulldown, RNA immunoprecipitation, and bioinformatics analyses were performed to explore potential pathways involved in BRAF-activated non-protein coding RNA-based regulation of malignant progression in oral squamous cell carcinoma. RESULTS BRAF-activated non-protein coding RNA was identified upregulated in oral squamous cell carcinoma tissue and correlated with nodal metastasis and clinical severity of patients. Overexpressed BRAF-activated non-protein coding RNA increased percentage of 5-ethynyl-2'-deoxyuridine-positive cells, viability, migration, and invasion rates of oral squamous cell carcinoma cells, while silenced BRAF-activated non-protein coding RNA could observe weakened effects in vitro. Xenograft tumor formed by BRAF-activated non-protein coding RNA-overexpressed cells had bigger volume, faster growth rates, higher weight, and more Ki67+ cells. Pulmonary metastasis induced by BRAF-activated non-protein coding RNA-silenced cells had fewer colony nodes, Ki67+ cells, and CD31+ blood vessels. Furthermore, BRAF-activated non-protein coding RNA was mainly localized in nucleus of oral squamous cell carcinoma cells and bound Ras-associated binding 1A. Silencing Ras-associated binding 1A could damage mobile ability and phosphorylation levels of nuclear factor-κB in oral squamous cell carcinoma cells induced by overexpressing BRAF-activated non-protein coding RNA. Opposite trend was also observed. CONCLUSION Acting as a promoter in oral squamous cell carcinoma metastasis, BRAF-activated non-protein coding RNA promotes oral squamous cell carcinoma cells proliferation and motility by regulating the BRAF-activated non-protein coding RNA/Ras-associated binding 1A complex, which activates nuclear factor-κB signaling pathway.
Collapse
Affiliation(s)
- Weiyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoqing Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zeyi Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Peiqi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaoyin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
7
|
Sato H, Hara T, Meng S, Tsuji Y, Arao Y, Sasaki K, Miyoshi N, Kobayashi S, Doki Y, Eguchi H, Ishii H. Drug Discovery and Development of miRNA-Based Nucleotide Drugs for Gastrointestinal Cancer. Biomedicines 2023; 11:2235. [PMID: 37626731 PMCID: PMC10452413 DOI: 10.3390/biomedicines11082235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Short non-coding RNAs, miRNAs, play roles in the control of cell growth and differentiation in cancer. Reportedly, the introduction of miRNAs could reduce the biologically malignant behavior of cancer cells, suggesting a possible use as therapeutic reagents. Given that the forced expression of several miRNAs, including miR-302, results in the cellular reprograming of human and mouse cells, which is similar to the effects of the transcription factors Oct4, Sox2, Klf4, and c-Myc, this suggests that the selective introduction of several miRNAs will be able to achieve anti-cancer effects at the epigenetic and metabolic levels. In this review article, we bring together the recent advances made in studies of microRNA-based therapeutic approaches to therapy-resistant cancers, especially in gastrointestinal organs.
Collapse
Affiliation(s)
- Hiromichi Sato
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Tomoaki Hara
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Sikun Meng
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Yoshiko Tsuji
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Yasuko Arao
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Kazuki Sasaki
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| |
Collapse
|
8
|
Upregulation of RAB7 is related to neuronal pyroptosis after spinal cord injury in rats. J Chem Neuroanat 2023; 128:102229. [PMID: 36592695 DOI: 10.1016/j.jchemneu.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Rab7 belongs to the Ras small GTPase superfamily, and abnormal expression of Rab7 can cause neuropathy and lipid metabolism diseases. Studies have shown that Rab7 plays a crucial role in the inner membrane translocase. However, the role of Rab7 in the regulatory mechanisms of cell survival in spinal cord injury remains unknown. We used a rat spinal cord injury (SCI) model to explore the cellular localization and expression of Rab7 after SCI in this study. Western blot analysis showed that Rab7 was expressed in the spinal cord tissue. On the first day, it significantly increased and peaked after SCI on the third day. Furthermore, western blotting also demonstrated that pyroptosis-related protein Gasdermin D (GSDMD), Caspase-1, apoptosis-associated speck-like protein (ASC) expression peaked after the third-day post-injury. Importantly, the immunohistochemistry analysis revealed that Rab7 was completely colocalized with ASC in neurons after SCI. These results suggested that Rab7 was colocalized with NeuN and ASC, involved in the pyroptosis of neurons, and closely related to the spinal cord after injury.
Collapse
|
9
|
Azizi M, Salehi-Mazandarani S, Nikpour P, Andalib A, Rezaei M. The role of unfolded protein response-associated miRNAs in immunogenic cell death amplification: A literature review and bioinformatics analysis. Life Sci 2023; 314:121341. [PMID: 36586572 DOI: 10.1016/j.lfs.2022.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Immunogenic cell death (ICD) is a type of cellular death that is elicited in response to the specific types of anti-cancer therapies and enhances the anti-tumor immune responses by the combination of antigenicity and adjuvanticity of dying tumor cells. There is a well-established interlink between endoplasmic reticulum stress (ERS) and ICD elicited by anti-cancer therapies. Most recent evidences support that unfolded protein response (UPR)-associated miRNAs can be key players in the ERS-induced ICD. Hence, in the present study, we conducted a literature review on the role of these miRNAs and associated molecular pathways that may regulate ICD. We first collected UPR-associated miRNAs that promote ERS-induced apoptosis and then focused on microRNAs (miRNAs) that promote ERS-induced apoptosis via PERK/eIF2α/ATF4/CHOP pathway activation, as the main core for ICD and release of damage-associated molecular patterns. To better identify PERK/eIF2α/ATF4/CHOP pathway-inducing miRNAs that can be used as potential therapeutic targets for improving ICD in cancer treatment, we did a comprehensive bioinformatics analysis and network construction. Our results showed that "pathways in cancer", "MAPK signaling pathway", "PI3K-Akt signaling pathway", and "Cellular senescence", which correlate with UPR components and ERS induction, were among the significant signaling pathways related to the target genes of these miRNAs. Furthermore, a protein-protein interaction (PPI) network was constructed, which revealed the involvement of the PPI-extracted hub genes in the regulation of proliferation and apoptosis. In conclusion, we propose that these types of miRNAs can be considered as the potential cancer therapy options for better induction of ICD in combination with other ICD inducers.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Jamal HH, Taheri M, Hajiesmaeili M. A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Front Oncol 2022; 12:870996. [PMID: 35586497 PMCID: PMC9108330 DOI: 10.3389/fonc.2022.870996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
miR-15b-5p is encoded by MIR15B gene. This gene is located on cytogenetic band 3q25.33. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s and Parkinson’s diseases, cerebral ischemia reperfusion injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity. In malignant conditions, both oncogenic and tumor suppressor impacts have been described for miR-15b-5p. Dysregulation of miR-15b-5p in clinical samples has been associated with poor outcome in different kinds of cancers. In this review, we discuss the role of miR-15b-5p in malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Fellowship, Department of Anesthesiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| |
Collapse
|
11
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey. .,Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
12
|
Zhao T, Jin Q, Kong L, Zhang D, Teng Y, Lin L, Yao X, Jin Y, Li M. microRNA-15b-5p shuttled by mesenchymal stem cell-derived extracellular vesicles protects podocytes from diabetic nephropathy via downregulation of VEGF/PDK4 axis. J Bioenerg Biomembr 2021; 54:17-30. [PMID: 34806156 DOI: 10.1007/s10863-021-09919-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes lethal for end-stage renal disease, with less treatment methodologies and uncertain pathogenesis. In the current study, we determined the role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing microRNA (miR)-15b-5p in DN. After extraction and identification of MSC-derived EVs, mouse podocyte line MPC5 was selected to establish an in vitro high-glucose (HG) cell model, where expression of miR-15b-5p, pyruvate dehydrogenase kinase 4 (PDK4) and VEGFA expression in tissues and cells were determined. The loss- and gain- function assays were conducted to determine the roles of miR-15b-5p, PDK4 and VEGFA. MPC5 cells were then co-cultured with MSC-derived EVs and their biological behaviors were detected by Western blot, CCK-8 assay, and flow cytometry. The binding relationship between miR-15b-5p and PDK43 by dual luciferase reporter gene assay. The expression of miR-15b-5p was downregulated in podocytes under HG environment, but highly expressed in mouse MSCs-derived EVs. EVs-derived miR-15b-5p could protect MPC5 cell apoptosis and inflammation. miR-15b-5p inhibited the expression of PDK4 by directly bound to the 3'UTR region of PDK4 gene. miR-15b-5p inhibits VEGF expression by binding to PDK4. Inhibition of PDK4 decreased VEGFA expression and reduced apoptosis and inflammation. Collectively, miR-15b-5p shuttled by MSC-derived EV can play protective roles in HG-induced mouse podocyte injury, possibly by targeting PDK4 and decreasing the VEGFA expression.
Collapse
Affiliation(s)
- Tiantian Zhao
- Department of Endocrinology and Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong Province, China
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qingsong Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Lili Kong
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Dongdong Zhang
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yaqin Teng
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Liangyan Lin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xiaoyan Yao
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yongjun Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Minglong Li
- Department of Endocrinology and Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong Province, China.
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250062, China.
| |
Collapse
|
13
|
Endoplasmic reticulum stress: Multiple regulatory roles in hepatocellular carcinoma. Biomed Pharmacother 2021; 142:112005. [PMID: 34426262 DOI: 10.1016/j.biopha.2021.112005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a basic cellular stress response that maintains cellular protein homeostasis under endogenous or exogenous stimuli, which depends on the stimulus, its intensity, and action time. The ER produces a corresponding cascade reaction for crosstalk of adaptive and/or pro-death regulation with other organelles. Hepatocellular carcinoma(HCC) is one of the most common malignant solid tumors with an extremely poor prognosis. Viral hepatitis infection, cirrhosis, and steatohepatitis are closely related to the occurrence and development of HCC, and ER stress has gradually been shown to be a major mechanism. Moreover, an increasing need for protein and lipid products and relative deficiencies of oxygen and nutrients for rapid proliferation and endoplasmic reticulum stress are undoubtedly involved. Therefore, to fully and comprehensively understand the regulatory role of endoplasmic reticulum stress in the occurrence and progression of HCC is of vital importance to explore its pathogenesis and develop novel anti-cancer strategies. METHODOLOGY We searched for relevant publications in the PubMed databases using the keywords "Endoplasmic reticulum stress", "hepatocellular carcinoma" in last five years,and present an overview of the current knowledge that links ER stress and HCC, which includes carcinogenesis, progression, and anti-cancer strategies, and propose directions of future research. RESULT ER stress were confirmed to be multiple regulators or effectors of cancer, which also be confirmed to drive tumorigenesis and progression of HCC. Targeting ER stress signaling pathway and related molecules could play a critical role for anti-HCC and has become a research hotspot for anti-cancer in recent years. CONCLUSION ER stress are critical for the processes of the tumorigenesis and progression of tumors. For HCC, ER stress was associated with tumorigenesis, development, metastasis, angiogenesis and drug resistance, targeting ER stress has emerged as a potential anti-tumor strategy.
Collapse
|
14
|
Shahrisa A, Tahmasebi-Birgani M, Ansari H, Mohammadi Z, Carloni V, Mohammadi Asl J. The pattern of gene copy number alteration (CNAs) in hepatocellular carcinoma: an in silico analysis. Mol Cytogenet 2021; 14:33. [PMID: 34215297 PMCID: PMC8254242 DOI: 10.1186/s13039-021-00553-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver cancer that occurs predominantly in patients with previous liver conditions. In the absence of an ideal screening modality, HCC is usually diagnosed at an advanced stage. Recent studies show that loss or gain of genomic materials can activate the oncogenes or inactivate the tumor suppressor genes to predispose cells toward carcinogenesis. Here, we evaluated both the copy number alteration (CNA) and RNA sequencing data of 361 HCC samples in order to locate the frequently altered chromosomal regions and identify the affected genes. RESULTS Our data show that the chr1q and chr8p are two hotspot regions for genomic amplifications and deletions respectively. Among the amplified genes, YY1AP1 (chr1q22) possessed the largest correlation between CNA and gene expression. Moreover, it showed a positive correlation between CNA and tumor grade. Regarding deleted genes, CHMP7 (chr8p21.3) possessed the largest correlation between CNA and gene expression. Protein products of both genes interact with other cellular proteins to carry out various functional roles. These include ASH1L, ZNF496, YY1, ZMYM4, CHMP4A, CHMP5, CHMP2A and CHMP3, some of which are well-known cancer-related genes. CONCLUSIONS Our in-silico analysis demonstrates the importance of copy number alterations in the pathology of HCC. These findings open a door for future studies that evaluate our results by performing additional experiments.
Collapse
Affiliation(s)
- Arman Shahrisa
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hossein Ansari
- Department of Biotechnology, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Zahra Mohammadi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Javad Mohammadi Asl
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Zhu J, Xu X, Liang Y, Zhu R. Downregulation of microRNA-15b-5p Targeting the Akt3-Mediated GSK-3 β/ β-Catenin Signaling Pathway Inhibits Cell Apoptosis in Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8814862. [PMID: 33506036 PMCID: PMC7806375 DOI: 10.1155/2021/8814862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an incurable progressive disorder resulting from neurodegeneration, and apoptosis is considered a dominant mechanism underlying the process of neurodegeneration. MicroRNAs (miRNAs), which are small and noncoding RNAs involved in many a biological process like apoptosis and regulation of gene expressions, have been found in postmortem brain samples of patients with PD, as well as in vitro and in vivo models of PD. To explore the impact of miR-15b-5p and Akt3 on apoptosis in the progression of PD, the method of quantitative reverse transcription polymerase chain reaction (qRT-PCR) was employed, and the analysis result showed upregulated expression of miR-15b-5p and downregulated expression of Akt3 in the serum of PD patients, MPP+-induced SH-SY5Y cells, and the brain tissues of MPTP-induced mice. Meanwhile, the dual-luciferase reporter assay was used to demonstrate the regulator-target interaction between miR-15b-5p and Akt3; flow cytometry and spectrophotometry revealed that transfection of miR-15b-5p mimic and si-Akt3 increased the rate of apoptosis and caspase-3 activity, whereas transfecting the miR-15b-5p inhibitor and Akt3-overexpression plasmid repressed the rate of apoptosis and caspase-3 activity in the MPP+-induced SH-SY5Y cell model and the MPTP-induced mouse model. Additionally, analysis of western blotting (WB) assays in vivo and in vitro revealed that proapoptosis proteins (Bax, caspase-3, GSK-3β, and β-catenin) showed markedly upregulated expression in the miR-15b-5p inhibitor and si-Akt3-overexpression groups, while the expression of an antiapoptosis gene (i.e., Bcl2) was downregulated. These analysis results indicate that downregulation of miR-15b-5p by targeting the Akt3-mediated GSK-3β/β-catenin signaling pathway would repress cell apoptosis in PD in vivo and in vitro. It is expected that the research findings would help find new therapeutic targets for treatment of PD.
Collapse
Affiliation(s)
- Jianzhong Zhu
- Department of Neurology, Longmen County People's Hospital, Huizhou 516800, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yatsen University, Guangzhou 510080, China
| | - Yingyin Liang
- Department of Neurology, The First Affiliated Hospital of Sun Yatsen University, Guangzhou 510080, China
| | - Ronglan Zhu
- Department of Neurology, The First Affiliated Hospital of Sun Yatsen University, Guangzhou 510080, China
| |
Collapse
|
16
|
LncRNA miR503HG inhibits epithelial-mesenchymal transition and angiogenesis in hepatocellular carcinoma by enhancing PDCD4 via regulation of miR-15b. Dig Liver Dis 2021; 53:107-116. [PMID: 33046427 DOI: 10.1016/j.dld.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To reveal the effect of lncRNA miR503HG on epithelial-mesenchymal transition (EMT) and angiogenesis in hepatocellular carcinoma (HCC). METHODS The expressions of miR503HG, miR-15b and PDCD4 in HCC tissues and cell lines were measured. After cell transfection, Transwell assay tested the migration and invasion ability of HCC cells. qRT-PCR and Western blot detected the expressions of EMT markers (E-cad, N-cad, Vim and Snail-1). Matrigel-based tube formation assay assessed the angiogenesis capacity of human umbilical vein endothelial cells (HUVECs) cultured in conditioned medium of treated HCC cells. ELISA detected the level of VEGF in supernatant of HUVECs. RIP, RNA pulldown and dual-luciferase reporter assay were applied to verify the binding of miR-15b to miR503HG or PDCD4. pcDNA3.1-miR503HG-BEL-7404 cells or pcDNA3.1-BEL-7404 cells were implanted into nude mice for construction of HCC model in vivo. RESULTS miR503HG and PDCD4 were under-expressed and miR-15b was over-expressed in HCC cells and tissues. Up-regulation of miR503HG and PDCD4 or inhibition of miR-15b hindered migration, invasion and EMT of HCC cells and angiogenesis of HUVECs. Both miR503HG and PDCD4 could bind to miR-15b. Over-expression of miR503HG suppressed HCC growth and angiogenesis in nude mice. CONCLUSION LncRNA miR503HG suppresses EMT and angiogenesis in HCC via miR-15b/PDCD4 axis.
Collapse
|
17
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
18
|
Liu ZJ, Liu SH, Li JR, Bie XC, Zhou Y. MiR-15b-5b Regulates the Proliferation of Prostate Cancer PC-3 Cells via Targeting LATS2. Cancer Manag Res 2020; 12:10669-10678. [PMID: 33149674 PMCID: PMC7604262 DOI: 10.2147/cmar.s266421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose In order to investigate the role of miR-15b-5b in the progression of prostate cancer. Methods We employed RT-qPCR assay to analyze the transcriptional level of miR-15b-5b in cell lines including PC-3, prostate cancer tissues as well as normal prostate tissues. The protein level of large tumor suppressor factor 2 (LATS2) was detected by Western blot in similar specimens. Bioinformatic analysis was used to predict the targets of miR-15b-5p, and dual-luciferase assay was performed to confirm the relationship of miR-15b-5p with LATS2. Cell proliferation assay and colony formation assay were used to assess the effects of miR-15b-5b on the proliferation of PC-3 cells. Multivariate analysis was performed to identify factors associated with overall survival using the Cox proportional hazards model. Results MiR-15b-5b was up-regulated in prostate cancer tissues as well as cell lines, and increased expression of miR-15b-5b was highly correlated with the poor prognosis of patients with prostate cancer. Ectopic expression of miR-15b-5b promoted the proliferation of PC-3 cells. Reciprocally, silence of miR-15b-5b elicited opposite effects on cell proliferation. Mechanistically, we identified LATS2 as the target of miR-15b-5b, which in turn limited LATS2 expression in PC-3 cells. Furthermore, the stimulatory effects of miR-15b-5b on cell proliferation can be attenuated by overexpression of LATS2. Conversely, inhibition of LATS2 promoted the proliferation of PC-3 cells induced by miR-15b-5b. Our data thus demonstrate that dysregulation of miR-15b-5b exacerbates prostate cancer progression via suppression of LATS2. Conclusion The identification of the oncogenic role of miR-15b-5b in prostate cancer thus proposes that miR-15b-5p might be a new therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhi-Jie Liu
- Department of Urology, Hanting District People's Hospital of Weifang, Weifang, Shandong 261100, People's Republic of China
| | - Shi-Hui Liu
- Department of Urology, Hanting District People's Hospital of Weifang, Weifang, Shandong 261100, People's Republic of China
| | - Jun-Ru Li
- Department of Urology, Hanting District People's Hospital of Weifang, Weifang, Shandong 261100, People's Republic of China
| | - Xiao-Chuan Bie
- Department of Urology, Hanting District People's Hospital of Weifang, Weifang, Shandong 261100, People's Republic of China
| | - Yang Zhou
- Department of Urology, Hanting District People's Hospital of Weifang, Weifang, Shandong 261100, People's Republic of China
| |
Collapse
|
19
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
20
|
Xue BZ, Xiang W, Zhang Q, Wang YH, Wang HF, Yi DY, Xiong NX, Jiang XB, Zhao HY, Fu P. Roles of long non-coding RNAs in the hallmarks of glioma. Oncol Lett 2020; 20:83. [PMID: 32863916 PMCID: PMC7436925 DOI: 10.3892/ol.2020.11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common types of tumor of the central nervous system. Due to the aggressiveness and invasiveness of high-level gliomas, the survival time of patients with these tumors is short, at ~15 months, even after combined treatment with surgery, radiotherapy and/or chemotherapy. Recently, a number of studies have demonstrated that long non-coding RNA (lncRNAs) serve crucial roles in the multistep development of human gliomas. Gliomas acquire numerous biological abilities during multistep development that collectively constitute the hallmarks of glioma. Thus, in this review, the roles of lncRNAs associated with glioma hallmarks and the current and future prospects for their development are summarized.
Collapse
Affiliation(s)
- Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
21
|
Romualdo GR, Prata GB, da Silva TC, Evangelista AF, Reis RM, Vinken M, Moreno FS, Cogliati B, Barbisan LF. The combination of coffee compounds attenuates early fibrosis-associated hepatocarcinogenesis in mice: involvement of miRNA profile modulation. J Nutr Biochem 2020; 85:108479. [PMID: 32795656 DOI: 10.1016/j.jnutbio.2020.108479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Aberrant microRNA expression implicates on hepatocellular carcinoma (HCC) development. Conversely, coffee consumption reduces by ~40% the risk for fibrosis/cirrhosis and HCC, while decaffeinated coffee does not. It is currently unknown whether these protective effects are related to caffeine (CAF), or to its combination with other common and/or highly bioavailable coffee compounds, such as trigonelline (TRI) and chlorogenic acid (CGA). We evaluated whether CAF individually or combined with TRI and/or CGA alleviates fibrosis-associated hepatocarcinogenesis, examining the involvement of miRNA profile modulation. Then, male C3H/HeJ mice were submitted to a diethylnitrosamine/carbon tetrachloride-induced model. Animals received CAF (50 mg/kg), CAF+TRI (50 and 25 mg/kg), CAF+CGA (50 and 25 mg/kg) or CAF+TRI+CGA (50, 25 and 25 mg/kg), intragastrically, 5×/week, for 10 weeks. Only CAF+TRI+CGA combination reduced the incidence, number and proliferation (Ki-67) of hepatocellular preneoplastic foci while enhanced apoptosis (cleaved caspase-3) in adjacent parenchyma. CAF+TRI+CGA treatment also decreased hepatic oxidative stress and enhanced the antioxidant Nrf2 axis. CAF+TRI+CGA had the most pronounced effects on decreasing hepatic pro-inflammatory IL-17 and NFκB, contributing to reduce CD68-positive macrophage number, stellate cell activation, and collagen deposition. In agreement, CAF+TRI+CGA upregulated tumor suppressors miR-144-3p, miR-376a-3p and antifibrotic miR-15b-5p, frequently deregulated in human HCC. CAF+TRI+CGA reduced the hepatic protein levels of pro-proliferative EGFR (miR-144-3p target), antiapoptotic Bcl-2 family members (miR-15b-5p targets), and the number of PCNA (miR-376a-3p target) positive hepatocytes in preneoplastic foci. Our results suggest that the combination of most common and highly bioavailable coffee compounds, rather than CAF individually, attenuates fibrosis-associated hepatocarcinogenesis by modulating miRNA expression profile.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, - SP, Brazil
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, - SP, Brazil
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, - SP, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, - SP, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, - SP, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, - SP, Brazil
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, - SP, Brazil.
| |
Collapse
|
22
|
Zou J, Qian J, Fu H, Yin F, Zhao W, Xu L. MicroRNA‑15b‑5p exerts its tumor repressive role via targeting GDI2: A novel insight into the pathogenesis of thyroid carcinoma. Mol Med Rep 2020; 22:2723-2732. [PMID: 32945458 PMCID: PMC7453593 DOI: 10.3892/mmr.2020.11343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid carcinoma (THCA) is a malignant tumor of the endocrine system. Previous studies have revealed the vital roles of microRNAs (miRNAs/miRs) in THCA procession. The present study aimed to explore the effects of miR-15b-5p on the progression of THCA and its targeting mechanism. The data of THCA and healthy samples were firstly collected from starbase2.0 and used to analyze the relationship of miR-15b-5p with THCA. Dual-luciferase assay was performed to detect the direct interaction between miR-15b-5p and the predicted target gene GDP dissociation inhibitor 2 (GDI2). The effects of miR-15b-5p and GDI2 on the overall survival of patients with THCA were analyzed using Kaplan-Meier analysis with log rank test. Cell Counting Kit-8 and Transwell assays were conducted to assess the impacts of miR-15b-5p and GDI2 on the proliferation and invasion of THCA cells. Reverse transcription-quantitative PCR and western blot analyses were performed to analyze the expression levels of the related miRNAs and proteins, respectively. miR-15b-5p was found to be downregulated both in THCA tissues and cells, and the low expression of miR-15b-5p was associated with the short overall survival time of patients. Moreover, the upregulation or downregulation of miR-15b-5p could inhibit or enhance the proliferation and invasion of THCA cells, respectively. miR-15b-5p reduced the protein expression levels of matrix metalloproteinase (MMP)2 and MMP9, which were related to cell invasion. Furthermore, GDI2, which was enhanced in THCA and related to the poor prognosis of patients with THCA, was identified as the target gene of miR-15b-5p and negatively regulated by miR-15b-5p. Additional experiments demonstrated that GDI2 overexpression could significantly reduce the antitumor effect of miR-15b-5p and its inhibitory action on the expression levels of MMP2 and MMP9. Thus, the results indicated a potential tumor suppressive role of miR-15b-5p in THCA, which was mainly exerted by targeting GDI2 and modulating MMP2 and MMP9. These findings will increase the understanding on the pathogenesis of THCA and provide novel candidates for THCA therapy.
Collapse
Affiliation(s)
- Jidong Zou
- Thyroid Diseases Department, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Jiantong Qian
- Otolaryngology Department, Traditional Chinese Medicine Hospital of Juxian, Rizhao, Shandong 276599, P.R. China
| | - Haiyan Fu
- Pathology Department, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Fawen Yin
- Thyroid Diseases Department, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Wanjun Zhao
- Thyroid Diseases Department, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Liang Xu
- Thyroid Diseases Department, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
23
|
Li Z, Li Y, Jia Y, Ding B, Yu J. Rab1A knockdown represses proliferation and promotes apoptosis in gastric cancer cells by inhibition of mTOR/p70S6K pathway. Arch Biochem Biophys 2020; 685:108352. [PMID: 32240637 DOI: 10.1016/j.abb.2020.108352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Rab1A, a member of the Ras-like protein in rat brain (Rab) family, acts as an oncogene in a variety of malignant tumors. Previous studies reported that Rab1A was highly expressed in GC tissues. However, the function and molecular mechanism of Rab1A in gastric cancer (GC) development remain far from being addressed. Rab1A mRNA and protein levels were detected by qRT-PCR and western blot, respectively. Cell proliferation was evaluated by CCK-8 and BrdU incorporation assays. Apoptosis was estimated by flow cytometry analysis and western blot analysis of B cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), Bcl-2 associated X (Bax), and Bcl-2 homologous antagonist/killer (Bak) expression. Alteration of the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) signaling pathway was detected by western blot. We found that Rab1A expression at both mRNA and protein was upregulated in GC cells. Rab1A knockdown significantly inhibited cell proliferation and induced apoptosis in GC cells. Rab1A overexpression promoted proliferation, inhibited cisplatin-induced apoptosis, and increased xenograft growth. In addition, we found that Rab1A knockdown suppressed the mTOR/p70S6K pathway in GC cells. Moreover, activation of mTOR/p70S6K pathway by MHY1485 abolished the effects of Rab1A knockdown on cell proliferation and apoptosis. In conclusion, Rab1A knockdown repressed proliferation and promoted apoptosis in GC cells by inhibition of the mTOR/p70S6K pathway.
Collapse
Affiliation(s)
- Zhong Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Yuan Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Jinsong Yu
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China.
| |
Collapse
|
24
|
Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P. Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020259. [PMID: 31973201 PMCID: PMC7072214 DOI: 10.3390/cancers12020259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Eleanor A. Woodward
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Nathan J. Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
25
|
Shao X, Cheng Z, Xu M, Tan Z, Gao L, Wang J, Zhou C. Pooled analysis of prognostic value and clinical significance of Rab1A expression in human solid tumors. Medicine (Baltimore) 2019; 98:e18370. [PMID: 31852145 PMCID: PMC6922505 DOI: 10.1097/md.0000000000018370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aims to assess the relationship between Rab1A expression and clinicopathological parameters and prognosis of patients with human solid cancer by summarizing the studies included. METHODS PubMed, EMBASE, The Cochrane Library, and other sources were searched for relative studies. The risk ratios (RRs) and confidence interval (CI) were used to assess association between Rab1A expression and clinical parameters and prognosis in solid cancer patients. RESULTS Eight studies were included in the final analysis with 800 patients. The results revealed that expression of Rab1A was significantly related with differentiation (RR = 0.883, 95%CI = 0.782-0.997, P = .044), lymph node metastasis (RR = 0.835, 95%CI = 0.753-0.926, P = .001), tumor-lymph node-metastasis (TNM) stage (RR = 1.190, 95%CI = 1.071-1.322, P < .001) and tumor size (RR = 0.818, 95%CI = 0.730-0.915, P < .001). What is more, no significant difference was seen in 1-year survival between high and low expression of Rab1A in multiple malignancies (RR = 0.855, 95%CI = 0.697-1.050, P = .136). However, increased Rab1A revealed poorer prognosis with 2-year survival (RR = 0.760, 95%CI = 0.701-0.824, P < .001), 3-year survival (RR = 0.669, 95%CI = 0.604-0.742, P < .001), 4-year survival (RR = 0.622, 95%CI = 0.554-0.698, P < .001) and 5-year survival (RR = 0.525, 95%CI = 0.458-0.698, P < .001). Expression of Rab1A was increased obviously in solid cancer tissues compared with the adjacent normal tissue (RR = 4.78, 95%CI 4.05-5.63, P = .015). CONCLUSION This study revealed Rab1A expression links closely with tumor size, differentiation, lymph node metastasis, TNM stage and poor prognosis of human solid cancer patients. It may act as a biomarker of prognosis and a novel therapeutic target in solid cancer.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu
| | - Zhuqing Tan
- Department of Medicine, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College
| | - Chunli Zhou
- Department of gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou
| |
Collapse
|
26
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
27
|
Liu Z, Lü Y, Jiang Q, Yang Y, Dang C, Sun R. miR-491 inhibits BGC-823 cell migration via targeting HMGA2. Int J Biol Markers 2019; 34:364-372. [PMID: 31668113 DOI: 10.1177/1724600819874488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE miR-491 functions as a tumor suppressor in several types of cancer. However, its function and mechanism in gastric cancer proliferation and metastasis have not been well defined. The aim of this study was to explore the role and regulatory mechanism of miR-491 in cell proliferation and migration in gastric cancer. METHODS Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the expression pattern of miR-491 in gastric cancer tissues. miR-491 overexpression vector, miR-491 inhibitor, and siHMGA2 were used; and MTT, wound healing, and transwell assays were employed to examine proliferation and migration for BGC-823 cells. A dual-luciferase reporter gene was used to measure the target relationship between miR-491 and HMGA2. RESULTS Most gastric cancer patients exhibit decreased miR-491 expression. miR-491 overexpression inhibited cell proliferation and migration, whereas miR-491 inhibitor treatment produced the opposite effect. Mechanistically, HMGA2 was identified as a direct target of miR-491. Moreover, HMGA2 knockdown inhibited cell proliferation and migration, which was similar to the effect of miR-491 overexpression. HMGA2 was decreased after transfection of the miR-491 vector and increased after transfection of the miR-491 inhibitor. CONCLUSION Our results suggest that miR-491 suppressed cell proliferation and cell motility in gastric cancer by targeting HMGA2. Silencing HMGA2 produced a similar effect to miR-491 overexpression on cell proliferation and migration. miR-491/HMGA2 signaling may be a potential therapeutic target for gastric cancer patients with decreased miR-491 expression.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yun Lü
- Pharmacy Intravenous Admixture Services, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yang Yang
- School of Public Health, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
28
|
Liu L, Li X. Downregulation of miR-320 Alleviates Endoplasmic Reticulum Stress and Inflammatory Response in 3T3-L1 Adipocytes. Exp Clin Endocrinol Diabetes 2019; 129:131-137. [PMID: 31634961 DOI: 10.1055/a-1012-8420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE MicroRNAs serve important roles in the regulation of endoplasmic reticulum stress (ERs). This study aimed to investigate the role of microRNA-320 (miR-320) in the development of ERs and the inflammatory response in 3T3-L1 adipocytes. MATERIALS AND METHODS The adipose tissue expression levels of miR-320 and ERs markers (GRP78, GRP94, Derlin-1 and CHOP) and the serum concentration of inflammatory cytokines (TNF-α, NF-κB and IL-6) in obese patients were evaluated using quantitative real-time RT-PCR or enzyme-linked immunosorbent assay. The correlation of miR-320 with genes involved in ERs and inflammation was analyzed. The effects of miR-320 on ERs and inflammation were explored using mature 3T3-L1 adipocytes, which were pretreated with palmitic acid (PA). RESULTS ERs markers and inflammatory cytokines were all upregulated in obese patients. Adipose tissue miR-320 expression was also increased in obese patients, and had positive correlations with the levels of ERs markers and inflammatory cytokines. After PA treatment, the levels of ERs markers and inflammatory cytokines were elevated significantly in 3T3-L1 adipocytes. Moreover, miR-320 expression was increased in the cells under ERs status. The upregulation of miR-320 could enhance the expression of ERs markers and inflammatory cytokines, but the downregulation of miR-320 resulted in the opposite results. CONCLUSION The data of this study indicate that miR-320 expression is upregulated in ERs status, and the downregulation of miR-320 ameliorates ERs and the inflammatory response in 3T3-L1 adipocytes. We consider that the approaches to decrease miR-320 expression may be novel therapeutic strategies for the treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| |
Collapse
|
29
|
Duan XL, Ma CC, Hua J, Xiao TW, Luan J. Benzyl butyl phthalate (BBP) triggers the malignancy of acute myeloid leukemia cells via upregulation of PDK4. Toxicol In Vitro 2019; 62:104693. [PMID: 31629899 DOI: 10.1016/j.tiv.2019.104693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022]
Abstract
Acute Myeloid Leukemia (AML) is a cancer of hematopoietic stem cells with a rapid progression. Recent studies indicated that endocrine disruptor chemicals (EDCs) are potential risk factors for AML progression. Our present data showed that an industrial endocrine disrupting chemical, Benzyl butyl phthalate (BBP), can promote the proliferation of AML cells and decrease their sensitivity to daunorubicin (DNR) and cytarabine (Ara-C) treatments. Further, BBP can increase the glucose consumption, lactate generation, and ATP levels of AML cells. Among the measured glycolysis-related genes, BBP can increase the expression of pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4), a mitochondrial protein that regulates the tricarboxylic acid cycle (TCA) cycle. The inhibitor of PDK4 or its specific siRNA can attenuate BBP-induced cell proliferation and ATP generation, which suggested the essential roles of PDK4 in BBP-induced glycolysis and proliferation. Further, BBP can increase the mRNA stability of PDK4, while had no effect on its transcription and protein stability. miR-15b-5p can bind with the 3'UTR of PDK4 to decrease its mRNA stability, while BBP can decrease the expression of miR-15b-5p in AML cells. Collectively, our data showed that BBP can trigger the malignancy of AML cells via regulation of miR-15b-5p/PDK4 signals.
Collapse
Affiliation(s)
- Xian-Liang Duan
- Department of Hematology, Liaocheng People's Hospital, Shandong 252000, China
| | - Cong-Cong Ma
- Department of Hematology, Liaocheng People's Hospital, Shandong 252000, China
| | - Jing Hua
- Department of Hematology, Liaocheng People's Hospital, Shandong 252000, China
| | - Tai-Wu Xiao
- Department of Hematology, Liaocheng People's Hospital, Shandong 252000, China
| | - Jing Luan
- Department of Hematology, Liaocheng People's Hospital, Shandong 252000, China.
| |
Collapse
|
30
|
Expression analysis and implication of Rab1A in gastrointestinal relevant tumor. Sci Rep 2019; 9:13384. [PMID: 31527621 PMCID: PMC6746845 DOI: 10.1038/s41598-019-49786-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/31/2019] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal cancers have become increasingly prevalent worldwide. Previous studies have reported an oncogenic function of Rab1A in colorectal cancer and hepatocellular carcinomas via the mTOR pathway. However, the exact role of Rab1A in gastrointestinal cancers remains elusive. We detected significantly higher expression of Rab1A in the gastrointestinal tumor tissues compared to that in other cancer types following an in silico analysis of TGCA and GTEX databases. Furthermore, Rab1A was overexpressed in the gastrointestinal tumor tissues compared to the para-tumor tissues. Although Rab1A expression levels were not associated with the tumor-lymph node-metastasis (TNM) stage, Rab1A overexpression in the tumor tissues of a gastric cancer (GC) cohort was strongly correlated with poor prognosis in the patients. In addition, Rab1A knockdown significantly inhibited the in vitro proliferation and migration abilities of GC cells, as well as the growth of GC xenografts in vivo. Furthermore, a positive correlation was observed between Rab1A expression levels and that of different upstream/downstream mTOR targets. Taken together, Rab1A regulates the PI3K-AKT-mTORC1 pathway through the mTORC1 complex consisting of mTORC1, Rheb and Rab1A, and is a promising therapeutic target in GC.
Collapse
|
31
|
Ahmad P, Sana J, Slavik M, Gurin D, Radova L, Gablo NA, Kazda T, Smilek P, Horakova Z, Gal B, Hermanova M, Slampa P, Slaby O. MicroRNA-15b-5p Predicts Locoregional Relapse in Head and Neck Carcinoma Patients Treated With Intensity-modulated Radiotherapy. Cancer Genomics Proteomics 2019; 16:139-146. [PMID: 30850365 DOI: 10.21873/cgp.20119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIM Head and neck cancers are a heterogenous group of epithelial tumors represented mainly by squamous cell carcinomas (HNSCC), which are the sixth most common type of cancer worldwide. Surgery together with radiotherapy (RT) is among the basic treatment modalities for most HNSCC patients. Various biomarkers aiming to predict patients' response to RT are currently investigated. The reason behind this effort is, on one hand, to distinguish radioresistant patients that show weak benefit from RT and, on the other hand, reduce the ionizing radiation dose in less aggressive radiosensitive HNSCC with possibly less acute or late toxicity. MATERIALS AND METHODS A total of 94 HNSCC patients treated by definitive intensity-modulated radiotherapy were included in our retrospective study. We used a global expression analysis of microRNAs (miRNAs) in 43 tumor samples and validated a series of selected miRNAs in an independent set of 51 tumors. RESULTS We identified miR-15b-5p to be differentially expressed between patients with short and long time of locoregional control (LRC). Kaplan-Meier analysis confirmed that HNSCC patients with higher expression of miR-15b-5p reach a significantly longer locoregional relapse-free survival compared to patients expressing low levels. Finally, multivariable Cox regression analysis revealed that miR-15b-5p is an independent predictive biomarker of LRC in HNSCC patients (HR=0.25; 95% CI=0.05-0.78; p<0.016). CONCLUSION miR-15b-5p represents a potentially helpful biomarker for individualized treatment decisions concerning the management of HNSCC patients.
Collapse
Affiliation(s)
- Parwez Ahmad
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marek Slavik
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Dominik Gurin
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Natalia Anna Gablo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Pavel Smilek
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Bretislav Gal
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Marketa Hermanova
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic .,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
32
|
Babini G, Tanno B, De Stefano I, Giardullo P, Leonardi S, Pasquali E, Baiocco G, Ottolenghi A, Mancuso M. BIOINFORMATIC ANALYSIS OF DOSE- AND TIME-DEPENDENT miRNome RESPONSES. RADIATION PROTECTION DOSIMETRY 2019; 183:151-155. [PMID: 30520994 DOI: 10.1093/rpd/ncy215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The advent of new 'omics' techniques determined a massive boost in the measurement of the whole spectra of molecules within cells, favoring promising new radiobiological studies at low doses. The main aim of this work was to assess the radiation-induced perturbations of miRNA profiles and their temporal dynamics. Human Umbilical Vein Endothelial Cells were irradiated with low doses of γ-rays. At different time points post-irradiation, cells were harvested and miRNAs isolated. A full mapping of the miRNA sequences via Next-Generation-Sequencing analysis was performed followed by bioinformatic analyses. Pathway enrichment analyses on the differentially expressed miRNAs focused both on the averaged effects of different doses over the 24-h experiment and on the altered temporal dynamics of the miRNA profiles. These complementary analyses provided a picture of the dose- and time-dependent miRNAs responses, allowing to better explore the candidate biomarkers linked to radiation exposures and their corresponding pathways and functions.
Collapse
Affiliation(s)
- G Babini
- Physics Department, University of Pavia, Pavia, Italy
| | - B Tanno
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - I De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - P Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - G Baiocco
- Physics Department, University of Pavia, Pavia, Italy
| | - A Ottolenghi
- Physics Department, University of Pavia, Pavia, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
33
|
Shao B, He L. Hsa_circ_0001742 promotes tongue squamous cell carcinoma progression via modulating miR-634 expression. Biochem Biophys Res Commun 2019; 513:135-140. [DOI: 10.1016/j.bbrc.2019.03.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
|
34
|
Shen H, Fang K, Guo H, Wang G. High Glucose-Induced Apoptosis in Human Kidney Cells Was Alleviated by miR-15b-5p Mimics. Biol Pharm Bull 2019; 42:758-763. [PMID: 30842352 DOI: 10.1248/bpb.b18-00951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs were involved in a wide range of biological processes of diabetic nephropathy (DN). It is reported that miR-15b-5p was downregulated in the patients with DN. However, the mechanisms underlying the regulatory effects of miR-15b-5p on patients with diabetes remain unclear. Thus, this study aimed to investigate the role of miR-15b-5p during high glucose (HG)-induced apoptosis in human kidney cells. Quantitative real-time (qRT)-PCR was used to detect the level of miR-15b-5p. CCK-8 assay, EdU staining assays and flow cytometry were used to detect cell proliferation, apoptosis respectively in vitro. In addition, Western blotting was used to determine active caspase-3, cleaved poly(ADP-ribose) polymerase (PARP), phosphorylated (p)-AKT, p-mammalian target of rapamycin (mTOR), p-S6, p-c-Jun N terminal kinase (JNK), p-p38 and p-extracellular signal-regulated kinase (ERK) proteins levels. The expression of miR-15b-5p in patients with DN were dramatically decreased compared with health persons. Similarly, HG down-regulated the expression of miR-15b-5p in HK-2 cells. In contrast, miR-15b-5p mimics alleviated HG-induced apoptosis in HK-2 cells via decreasing the expressions of active caspase 3 and cleaved PARP. EdU detection further confirmed that miR-15b-5p mimics attenuated the anti-proliferation effect of HG in HK-2 cells. Furthermore, HG-induced Akt/mTOR pathway downregulation and JNK upregulation were markedly reversed by miR-15b-5p mimics in cells. The data suggested that miR-15b-5p mimics protects HK-2 cells from HG-induced apoptosis. The anti-apoptotic effects of miR-15b-5p may due to the activation of the Akt/mTOR pathway as well as inactivation of JNK. Taken together, miR-15b-5p might be a potential therapeutic target for the treatment of patients with DN.
Collapse
Affiliation(s)
- Hua Shen
- Department of Anesthesiology, No. 454 Hospital of the PLA
| | - Kaikai Fang
- Department of Anesthesiology, No. 454 Hospital of the PLA
| | - Haifeng Guo
- Department of Anesthesiology, No. 454 Hospital of the PLA
| | - Guojun Wang
- Department of Anesthesiology, No. 454 Hospital of the PLA
| |
Collapse
|
35
|
Sun R, Liu Z, Han L, Yang Y, Wu F, Jiang Q, Zhang H, Ma R, Miao J, He K, Wang X, Zhou D, Huang C. miR‐22 and miR‐214 targeting BCL9L inhibit proliferation, metastasis, and epithelial‐mesenchymal transition by down‐regulating Wnt signaling in colon cancer. FASEB J 2019; 33:5411-5424. [DOI: 10.1096/fj.201801798rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruifang Sun
- Department of PathologyXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Zhigang Liu
- Department of Thoracic SurgeryShaanxi Provincial Tumor Hospital Xi'an China
| | - Lin Han
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
- School of Public HealthXi'an Jiaotong University Xi'an China
| | - Fei Wu
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Qiuyu Jiang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | | | - Ruili Ma
- School of Basic Medical ScienceXi'an Medical University Xi'an China
| | - Jiyu Miao
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Kang He
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
- Department of PeriodontologyStomatology HospitalXi'an Jiaotong University Xi'an China
| | - Xiaofei Wang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Dangxia Zhou
- Department of PathologyXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Chen Huang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University Xi'an China
| |
Collapse
|
36
|
Shahabi A, Naghili B, Ansarin K, Zarghami N. The relationship between microRNAs and Rab family GTPases in human cancers. J Cell Physiol 2019; 234:12341-12352. [PMID: 30609026 DOI: 10.1002/jcp.28038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), as a group of noncoding RNAs, posttranscriptionally control gene expression by binding to 3'-untranslated region (3'-UTR). Ras-associated binding (Rab) proteins function as molecular switches for regulating vesicular transport, which mainly have oncogenic roles in cancer development and preventing the efficacy of chemotherapies. Increased evidence supported that miRNAs/Rabs interaction have been determined as potential therapeutics for cancer therapy. Nevertheless, instability and cross-targeting of miRNAs are main limitations of using miRNA-based therapeutic. The mutual interplay between Rabs and miRNAs has been poorly understood. In the present review, we focused on the essence and activity of these molecules in cancer pathogenesis. Also, numerous hindrances and potential methods in the expansion of miRNA as an anticancer therapeutics are mentioned.
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Lin HW, Hsieh MJ, Yeh CB, Hsueh KC, Hsieh YH, Yang SF. Coronarin D induces apoptotic cell death through the JNK pathway in human hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2018; 33:946-954. [PMID: 29968959 DOI: 10.1002/tox.22579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Coronarin D, a diterpene derived from the rhizomes of Hedychium coronarium, has been used to treat inflammatory diseases. Coronarin D can exert strong anticancer effects through cell growth prevention and cell cycle arrest in many cancer cells. In this study, we investigated the molecular mechanism through which coronarin D suppresses cell proliferation and triggers cell death in human hepatocellular carcinoma (HCC) cells. Treatment of Huh7 and Sk-hep-1 cells with coronarin D resulted in a significantly increased loss of mitochondrial membrane potential, leading to the cleavage and activation of caspase-9, caspase-8, and caspase-3 and changes in Bax, Bcl-2, and Bcl-xL protein levels. Coronarin D significantly induced autophagy by increasing the expression of Beclin-1 and LC3-II and reducing the expression of p62. Moreover, Huh7 and Sk-hep-1 cells exposed to coronarin D had decreased expression of phosphorylated AKT, p38, and ERK and increased expression of phosphorylated JNK. Exposure of cells to the JNK-specific inhibitor SP600125 attenuated the apoptotic effects of coronarin D. Taken together, this is the first study to report that coronarin D may effectively inhibit cell growth through apoptosis. We have provided evidence indicating that coronarin D induces cell death through the upregulation of JNK mitogen-activated protein kinases in human HCC cells.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Chun Hsueh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of General Surgery, Department of Surgery, Tungs' Taichung MetroHarbour Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Hou P, Kang Y, Luo J. Hypoxia-mediated miR-212-3p downregulation enhances progression of intrahepatic cholangiocarcinoma through upregulation of Rab1a. Cancer Biol Ther 2018; 19:984-993. [PMID: 29672195 DOI: 10.1080/15384047.2018.1456608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rab1a, a member RAS oncogene family, has been reported playing important role in tumor proliferation and migration. However, the role of Rab1a in intrahepatic cholangiocarcinoma (ICC) is not clear. In this study, we found Rab1a was overexpressed in ICC tissues both in mRNA and protein level. Kaplan-meier analysis showed that high expression of Rab1a was associated with poor prognosis of ICC patients. Suppression of Rab1a led to lower proliferation rate and migration ability both in vitro and in vivo by inhibiting process of cell cycle and Epithelial-Mesenchymal Transition (EMT). Further study showed that Rab1a was targeting regulated by miR-212-3p.In addition, expression of Rab1a was increased while miR-212-3p was decreased under hypoxia condition. In conclusion, these findings extend our understanding of Rab1a in progression of ICC, and we found hypoxia/miR-212-3p/Rab1a pathway played important role for progression of ICC. This newly identified pathway should promote the development of novel therapeutic biomarker for ICC.
Collapse
Affiliation(s)
- Panzhang Hou
- a Radiotherapy department , Henan Provicial people's Hospital , Zhengzhou , Henan province , China
| | - Yi Kang
- b Infectious Diseases department , Henan Provicial people's Hospital , Zhengzhou , China
| | - Jianchao Luo
- a Radiotherapy department , Henan Provicial people's Hospital , Zhengzhou , Henan province , China
| |
Collapse
|
39
|
Xu L, Dai W, Li J, He L, Wang F, Xia Y, Chen K, Li S, Liu T, Lu J, Zhou Y, Wang Y, Guo C. Methylation-regulated miR-124-1 suppresses tumorigenesis in hepatocellular carcinoma by targeting CASC3. Oncotarget 2018; 7:26027-41. [PMID: 27029030 PMCID: PMC5041962 DOI: 10.18632/oncotarget.8266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/08/2016] [Indexed: 12/27/2022] Open
Abstract
This study was to investigate the roles and mechanisms of miR-124-1 in hepatocellular carcinoma (HCC). We analyzed the expression of miR-124-1 in human HCC tissues and cell lines. Luciferase reporter assays were used to analyze the target of miR-124-1. Human HCC cell lines were transduced with lentiviruses expressing miR-124-1, and proliferation and colony formation were analyzed. The growth of human HCC cells overexpressing miR-124-1 was assessed in nude mice. The expression of p38-MAPK, JNK, ERK and related signaling molecules was detected by western blotting and immunohistochemistry. Our results showed that miR-124-1 levels were reduced in HCC tissues and cell lines compared with those in adjacent non-cancer tissues and normal liver cell lines respectively. Downregulation of miR-124-1 in HCC cell lines were attributed to hypermethylation of its promoter region. Overexpression of miR-124-1 inhibited HCC cell proliferation in vitro, whereas miR-124-1 was correlated with clinicopathological parameters of HCC patients. HCC cell-mediated overexpression of miR-124-1 in nude mice suppressed tumor growth. Cancer susceptibility candidate 3 (CASC3) was identified as a direct target of miR-124-1 by computational analysis and experimental assays. MiR-124-1-mediated downregulation of CASC3 resulted in the inactivation of p38-MAPK, JNK and ERK. Our findings provide potential new targets for the prevention or treatment of HCC.
Collapse
Affiliation(s)
- Ling Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - JingJing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lei He
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
40
|
LncRNA DANCR functions as a competing endogenous RNA to regulate RAB1A expression by sponging miR-634 in glioma. Biosci Rep 2018; 38:BSR20171664. [PMID: 29301870 PMCID: PMC5794498 DOI: 10.1042/bsr20171664] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/12/2023] Open
Abstract
Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) plays important regulatory roles in many solid tumors. However, the effect of DANCR in glioma progression and underlying molecular mechanisms were not entirely explored. In the present study, we determined the expression of DANCR in glioma tissues and cell lines using qRT-PCR and further defined the biological functions. Furthermore, we used luciferase reporter assay, Western blot, and RNA immunoprecipitation (RIP) to explore the underlying mechanism. Our results showed that DANCR was significantly up-regulated in glioma tissues and cell lines (U251, U118, LN229, and U87MG). High DANCR expression was correlated with advanced tumor grade. Inhibition of DANCR suppressed the glioma cells proliferation and induced cells arrested in the G0/G1 phase. In addition, we verified that DANCR could directly interact with miR-634 in glioma cells and this interaction resulted in the inhibition of downstream of RAB1A expression. The present study demonstrated that DANCR/miR-634/RAB1A axis plays crucial roles in the progression of glioma, and DANCR might potentially serve as a therapeutic target for the treatment of glioma patients.
Collapse
|
41
|
Chen R, Sheng L, Zhang HJ, Ji M, Qian WQ. miR-15b-5p facilitates the tumorigenicity by targeting RECK and predicts tumour recurrence in prostate cancer. J Cell Mol Med 2018; 22:1855-1863. [PMID: 29363862 PMCID: PMC5824417 DOI: 10.1111/jcmm.13469] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to participate in many biological behaviours of multiple malignancies. Recent studies have shown that miR‐15b‐5p (miR‐15b) exhibits dual roles by accelerating or blocking tumour progression. However, the molecular mechanisms by which miR‐15b contributes to prostate cancer (PCa) are still elusive. Here, miR‐15b expression was found significantly up‐regulated in PCa in comparison with the normal samples and was positively correlated with age and Gleason score in patients with PCa. Notably, PCa patients with miR‐15b high expression displayed a higher recurrence rate than those with miR‐15b low expression (P = 0.0058). Knockdown of miR‐15b suppressed cell growth and invasiveness in 22RV1 and PC3 cells, while overexpression of miR‐15b reversed these effects. Then, we validated that RECK acted as a direct target of miR‐15b by dual‐luciferase assay and revealed the negative correlation of RECK with miR‐15b expression in PCa tissues. Ectopic expression of RECK reduced cell proliferation and invasive potential and partially abrogated the tumour‐promoting effects caused by miR‐15b overexpression. Additionally, miR‐15b knockdown inhibited tumour growth activity in a mouse PCa xenograft model. Taken together, our findings indicate that miR‐15b promotes the progression of PCa cells by targeting RECK and represents a potential marker for patients with PCa.
Collapse
Affiliation(s)
- Ran Chen
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lu Sheng
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hao-Jie Zhang
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ming Ji
- Shanghai Dingdian Biotechnology Limited Company, Shanghai, China
| | - Wei-Qing Qian
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
42
|
Chen Y, Lian YJ, Ma YQ, Wu CJ, Zheng YK, Xie NC. LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 2017; 68:212-221. [PMID: 29217406 DOI: 10.1016/j.neuro.2017.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023]
Abstract
Numerous long non-coding RNAs (lncRNAs) have been identified as aberrantly expressed in Parkinson's disease (PD). However, limited knowledge is available concerning the roles of dysregulated lncRNAs and the underlying molecular regulatory mechanism in the pathological process of PD. In this study, we found that lncRNA small nucleolar RNA host gene 1 (SNHG1) and seven in absentia homolog 1 (SIAH1) were upregulated, but microRNA-15b-5p (miR-15b-5p) was downregulated in SH-SY5Y cells pretreated with MPP+, as well as in MPTP-induced mouse model of PD. Overexpression of SIAH1 enhanced cellular toxicity of α-synuclein in SH-SY5Y cells, as indicated by the reduction of cell viability and elevation of LDH release. The percentage of α-synuclein aggregate-positive cells and the number of α-synuclein aggregates per cell were increased in SH-SY5Y cells transfected with pcDNA-SIAH1, while decreased after transfection with short interfering RNA specific for SIAH1 (si-SIAH1). Bioinformatics and luciferase reporter assay revealed that SIAH1 was a direct target of miR-15b-5p. We also found that SNHG1 could directly bind to miR-15-5p and repress miR-15-5p expression. Upregulation of miR-15b-5p alleviated α-synuclein aggregation and apoptosis by targeting SIAH1 in SH-SY5Y cells overexpressing α-synuclein. Overexpression of SNHG1 enhanced, whereas SNHG1 knockdown inhibited α-synuclein aggregation and α-synuclein-induced apoptosis. Moreover, the neuroprotective effect of si-SNHG1 was abrogated by downregulation of miR-15b-5p. In summary, our data suggest that SNHG1, as a pathogenic factor, promotes α-synuclein aggregation and toxicity by targeting the miR-15b-5p/SIAH1 axis, contributing to a better understanding of the mechanisms of Lewy body formation and loss of dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Ya-Jun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Yun-Qing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Chuan-Jie Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Ya-Ke Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Nan-Chang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| |
Collapse
|
43
|
The multifunctional polydnavirus TnBVANK1 protein: impact on host apoptotic pathway. Sci Rep 2017; 7:11775. [PMID: 28924205 PMCID: PMC5603617 DOI: 10.1038/s41598-017-11939-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Toxoneuron nigriceps (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Lepidoptera, Noctuidae). The bracovirus associated with this wasp (TnBV) is currently being studied. Several genes expressed in parasitised host larvae have been isolated and their possible roles partly elucidated. TnBVank1 encodes an ankyrin motif protein similar to insect and mammalian IκB, an inhibitor of the transcription nuclear factor κB (NF-κB). Here we show that, when TnBVank1 was stably expressed in polyclonal Drosophila S2 cells, apoptosis is induced. Furthermore, we observed the same effects in haemocytes of H. virescens larvae, after TnBVank1 in vivo transient transfection, and in haemocytes of parasitised larvae. Coimmunoprecipitation experiments showed that TnBVANK1 binds to ALG-2 interacting protein X (Alix/AIP1), an interactor of apoptosis-linked gene protein 2 (ALG-2). Using double-immunofluorescence labeling, we observed the potential colocalization of TnBVANK1 and Alix proteins in the cytoplasm of polyclonal S2 cells. When Alix was silenced by RNA interference, TnBVANK1 was no longer able to cause apoptosis in both S2 cells and H. virescens haemocytes. Collectively, these results indicate that TnBVANK1 induces apoptosis by interacting with Alix, suggesting a role of TnBVANK1 in the suppression of host immune response observed after parasitisation by T. nigriceps.
Collapse
|
44
|
Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death Dis 2017; 8:e3017. [PMID: 28837142 PMCID: PMC5596578 DOI: 10.1038/cddis.2017.395] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/11/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
In HCC, tumor microenvironment, heavily influenced by the underlying chronic liver disease, etiology and stage of the tissue damage, affects tumor progression and determines the high heterogeneity of the tumor. Aim of this study was to identify the circulating and tissue components of the microenvironment immune-mediated response affecting the aggressiveness and the ensuing clinical outcome. We analyzed the baseline paired HCC and the surrounding tissue biopsies from a prospective cohort of 132 patients at the first diagnosis of HCC for immunolocalization of PD-1/PD-L1, FoxP3, E-cadherin, CLEC2 and for a panel of 82 microRNA associated with regulation of angiogenesis, cell proliferation, cell signaling, immune control and autophagy. Original microarray data were also explored. Serum samples were analyzed for a panel of 19 cytokines. Data were associated with biochemical data, histopathology and survival. Patients with a more aggressive disease and shorter survival, who we named fast-growing accordingly to the tumor doubling time, at presentation had significantly higher AFP levels, TGF-β1 and Cyphra 21-1 levels. Transcriptomic analysis evidenced a significant downregulation of CLEC2 and upregulation of several metalloproteinases. A marked local upregulation of both PD-1 and PD-L1, a concomitant FoxP3-positive lymphocytic infiltrate, a loss of E-cadherin, gain of epithelial–mesenchymal transition (EMT) phenotype and extreme poor differentiation at histology were also present. Upregulated microRNA in fast-growing HCCs are associated with TGF-β signaling, angiogenesis and inflammation. Our data show that fast HCCs are characterized not only by redundant neo-angiogenesis but also by unique features of distinctively immunosuppressed microenvironment, prominent EMT, and clear-cut activation of TGFβ1 signaling in a general background of long-standing and permanent inflammatory state.
Collapse
|
45
|
Li Y, Xia H, Chen L, Zhang X. Sevoflurane induces endoplasmic reticulum stress mediated apoptosis inmouse hippocampal neuronal HT22 cells via modulating miR-15b-5p/Rab1A signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8270-8280. [PMID: 31966678 PMCID: PMC6965408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/20/2017] [Indexed: 06/10/2023]
Abstract
Sevoflurane (Sev) is a widely used anaesthetic agent in clinical patients. Growing evidences indicated that Sev resulted in cognitive impairment via inducing endoplasmic reticulum (ER) stress mediated neurons apoptosis in vivo. However, the underlying molecular mechanisms have not yet fully understood. In this study, we found that Sev exposure suppresses cell viability, and induces apoptosis by activating caspase-3 apoptotic signaling pathway. Our results further verified that Sevtriggers ER stress via upregulating its markers glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), caspase-12 and cleaved-PARP proteins. Recently, microRNAs (miRNAs) have been proven to regulate ER stress in a variety of cells, especially neuronal cells. Therefore, we performed the microarray analysis to identified miRNA levels in HT22 cells after treatment with Sev. Our results showed that Sev induces miRNAs aberrant expression and miR-15b-5p was one of the miRNAs being most upregulated in HT22 cells. Furthermore, the Sev-induced apoptosis and ER stress were rescued by knockdown of miR-15b-5p. Additionally, we demonstrated that miR-15b-5p suppresses Rab1A, a regulator in inducing ER stress, by directly targeting its 3'-UTR in HT22 cells. These results suggested that Sev exposure induces ER stress mediated apoptosis in HT22 cells via regulating miR-15b-5p/Rab1A signaling pathway. These data may provide an important therapeutic strategy for fighting against Sev through ER stress mediated neuronal apoptosis in clinical patients.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Anesthesiology, The People's Hospital of Ruian (The Third Affiliated Hospital of Wenzhou Medical University) Ruian, Zhejiang, China
| | - Haijie Xia
- Department of Anesthesiology, The People's Hospital of Ruian (The Third Affiliated Hospital of Wenzhou Medical University) Ruian, Zhejiang, China
| | - Liangliang Chen
- Department of Anesthesiology, The People's Hospital of Ruian (The Third Affiliated Hospital of Wenzhou Medical University) Ruian, Zhejiang, China
| | - Xuzhong Zhang
- Department of Anesthesiology, The People's Hospital of Ruian (The Third Affiliated Hospital of Wenzhou Medical University) Ruian, Zhejiang, China
| |
Collapse
|
46
|
Luo H, Li Y, Liu B, Yang Y, Xu ZQD. MicroRNA-15b-5p targets ERK1 to regulate proliferation and apoptosis in rat PC12 cells. Biomed Pharmacother 2017; 92:1023-1029. [PMID: 28609839 DOI: 10.1016/j.biopha.2017.05.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in multiple biological processes, and many miRNAs have been shown to regulate cell proliferation and apoptosis. In this study, we investigated the role of miR-15b-5p in cell proliferation and apoptosis in PC12 cells. We found that overexpression of miR-15b-5p could decrease cell proliferation and induce apoptosis and cytotoxic activities in PC12 cells. Bioinformatics analysis and luciferase activities assays showed that miR-15b-5p might target extracellular signal-regulated kinase 1 (ERK1) by binding to its 3'-untranslated region (3'-UTR). Moreover, we also found that overexpression of ERK1 could attenuate the effects of miR-15b-5p in PC12 cells. Finally, our results suggest that miR-15b-5p might inhibit cell proliferation and induce apoptosis in PC12 cells by targeting ERK1.
Collapse
Affiliation(s)
- Hanjiang Luo
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yueting Li
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Bo Liu
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yutao Yang
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
47
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
48
|
Sun R, Liu Z, Tong D, Yang Y, Guo B, Wang X, Zhao L, Huang C. miR-491-5p, mediated by Foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis 2017; 8:e2714. [PMID: 28358374 PMCID: PMC5386537 DOI: 10.1038/cddis.2017.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Accumulated evidence has suggested that microRNAs (miRNAs) have an important role in tumor development and progression by regulating diverse signaling pathways. However, the precise role of miRNAs in gastric cancer (GC) has not been elucidated. In this study, we describe the function and regulation network of miR-491-5p in GC. miR-491-5p is frequently downregulated in GC tissues compared with adjacent non-cancerous tissues. Forced expression of miR-491-5p significantly inhibits proliferation and colony formation, and promotes apoptosis in GC cells. Through bioinformatic analysis and luciferase assays, we confirm that miR-491-5p targets Wnt3a. Silencing Wnt3a inhibits cell proliferation and induces apoptosis. Similarly, restoration of Wnt3a counteracts the effects of miR-491-5p expression. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-491-5p is regulated by Foxi1, which binds to its promoter and activates miR-491-5p expression. In conclusion, to the best of our knowledge, our findings are the first to demonstrate that Foxi1 is a key player in the transcriptional control of miR-491-5p and that miR-491-5p acts as an anti-oncogene by targeting Wnt3a/β-catenin signaling in GC. Our study reveals that Foxi1/miR-491-5p/Wnt3a/β-catenin signaling is critical in the progression of GC. Targeting the pathway described in this study may open up new prospects to restrict the progression of GC.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Zhigang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Dongdong Tong
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Guo
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Lingyu Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
49
|
Upregulation of miR-665 promotes apoptosis and colitis in inflammatory bowel disease by repressing the endoplasmic reticulum stress components XBP1 and ORMDL3. Cell Death Dis 2017; 8:e2699. [PMID: 28333149 PMCID: PMC5386569 DOI: 10.1038/cddis.2017.76] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/15/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs are critical post-transcriptional regulators of gene expression and key mediators of pathophysiology of inflammatory bowel disease (IBD). This study is aimed to study the role of miR-665 in the progression of IBD. Real-time PCR analysis was used to determine miR-665 expression in 89 freshly isolated IBD samples and dextran sulfate sodium (DSS)-induced colonic mucosal tissues. The role of miR-665 in inducing apoptosis and colitis were examined by Annexin V, TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining, colony formation in vitro and DSS-induced colitis mice model in vivo. Moreover, luciferase reporter assay, western blot analysis and microribonucleoprotein immunoprecipitation were performed to determine that miR-665 directly repressed XBP1 (X-box-binding protein-1) and ORMDL3 expression. Herein, our results revealed that miR-665 was markedly upregulated in active colitis. Gain-of-function and loss-of-function studies showed that ectopic expression of miR-665 promoted apoptosis under different inflammatory stimuli. Importantly, delivery of miR-665 mimic promoted, while injection of antagomiR-665 markedly impaired DSS-induced colitis in vivo. Mechanistically, we demonstrated that miR-665 induced apoptosis by inhibiting XBP1 and ORMDL3. Taken together, our findings reveal a new regulatory mechanism for ER stress signaling and suggest that miR-665 might be a potential target in IBD therapy.
Collapse
|
50
|
Xu H, Qian M, Zhao B, Wu C, Maskey N, Song H, Li D, Song J, Hua K, Fang L. Inhibition of RAB1A suppresses epithelial-mesenchymal transition and proliferation of triple-negative breast cancer cells. Oncol Rep 2017; 37:1619-1626. [PMID: 28184936 DOI: 10.3892/or.2017.5404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/16/2017] [Indexed: 11/05/2022] Open
Abstract
RAB1A acts as an oncogene in various cancers, and emerging evidence has verified that RAB1A is an mTORC1 activator in hepatocellular and colorectal cancer, but the role of RAB1A in breast cancer remains unclear. In this investigation, RAB1A siRNA was successfully transfected in MDA-MB-231 and BT-549 human triple-negative breast cancer cells, and verified by real‑time quantitative polymerase chain reaction and western blotting. Then, MTT cell proliferation, colony formation, cell invasion and wound healing assays were performed to characterize the function of RAB1A in the breast cancer cell lines. Downregulation of RAB1A inhibited cellular growth, cell migration, cell invasion and cell epithelial-mesenchymal transition. Furthermore, compared with NC siRNA transfected cells, RAB1A siRNA transfected breast cancer cells inhibited the phosphorylation of S6K1, the effector molecular of mTORC1. Collectively, our data suggested that RAB1A acts as an oncogene by regulating cellular proliferation, growth, invasion and metastasis via activation of mTORC1 pathway in triple-negative breast cancer.
Collapse
Affiliation(s)
- Hui Xu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Mingping Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Bingkun Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Chenyang Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Niraj Maskey
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Jialu Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|