1
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Cheraghi-Shavi T, Jalal R, Minuchehr Z. TGM2, HMGA2, FXYD3, and LGALS4 genes as biomarkers in acquired oxaliplatin resistance of human colorectal cancer: A systems biology approach. PLoS One 2023; 18:e0289535. [PMID: 37535601 PMCID: PMC10399784 DOI: 10.1371/journal.pone.0289535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Acquired resistance to oxaliplatin is considered as the primary reason for failure in colorectal cancer (CRC) therapy. Identifying the underlying resistance mechanisms may improve CRC treatment. The present study aims to identify the key genes involved in acquired oxaliplatin-resistant in CRC by confirming the oxaliplatin resistance index (OX-RI). To this aim, two public microarray datasets regarding oxaliplatin-resistant CRC cells with different OX-RI, GSE42387, and GSE76092 were downloaded from GEO database to identify differentially expressed genes (DEGs). The results indicated that the OX-RI affects the gene expression pattern significantly. Then, 54 common DEGs in both datasets including 18 up- and 36 down-regulated genes were identified. Protein-protein interaction (PPI) analysis revealed 13 up- (MAGEA6, TGM2, MAGEA4, SCHIP1, ECI2, CD33, AKAP12, MAGEA12, CALD1, WFDC2, VSNL1, HMGA2, and MAGEA2B) and 12 down-regulated (PDZK1IP1, FXYD3, ALDH2, CEACAM6, QPRT, GRB10, TM4SF4, LGALS4, ALDH3A1, USH1C, KCNE3, and CA12) hub genes. In the next step, two novel up-regulated hub genes including ECI2 and SCHIP1 were identified to be related to oxaliplatin resistance. Functional enrichment and pathway analysis indicated that metabolic pathways, proliferation, and epithelial-mesenchymal transition may play dominant roles in CRC progression and oxaliplatin resistance. In the next procedure, two in vitro oxaliplatin-resistant sub-lines including HCT116/OX-R4.3 and HCT116/OX-R10 cells with OX-IR 3.93 and 10.06 were established, respectively. The results indicated the up-regulation of TGM2 and HMGA2 in HCT116/OX-R10 cells with high OX-RI and down-regulation of FXYD3, LGALS4, and ECI2 in both cell types. Based on the results, TGM2, HMGA2, FXYD3, and LGALS4 genes are related to oxaliplatin-resistant CRC and may serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Tayebeh Cheraghi-Shavi
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Razieh Jalal
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biotechnology, Novel Diagnostics and Therapeutics Research Group, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
4
|
Gherman A, Balacescu L, Popa C, Cainap C, Vlad C, Cainap SS, Balacescu O. Baseline Expression of Exosomal miR-92a-3p and miR-221-3p Could Predict the Response to First-Line Chemotherapy and Survival in Metastatic Colorectal Cancer. Int J Mol Sci 2023; 24:10622. [PMID: 37445798 DOI: 10.3390/ijms241310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The status of predictive biomarkers in metastatic colorectal cancer is currently underdeveloped. Our study aimed to investigate the predictive value of six circulating exosomal miRNAs derived from plasma (miR-92a-3p, miR-143-3p, miR-146a-5p, miR-221-3p, miR-484, and miR-486-5p) for chemosensitivity, resistance patterns, and survival. Thirty-one metastatic colorectal cancer patients were selected before receiving first-line irinotecan- or oxaliplatin-based chemotherapy. Blood samples were harvested at baseline and 4-6 months after the initiation of chemotherapy. The levels of exosomal expression for each miRNA were analyzed by qPCR. Our results for patients receiving first-line FOLFOX showed significantly higher baseline levels of miR-92a-3p (p = 0.007 **), miR-146a-5p (p = 0.036 *), miR-221-3p (p = 0.047 *), and miR-484 (p = 0.009 **) in non-responders (NR) vs. responders (R). Of these, miR-92a-3p (AUC = 0.735), miR-221-3p (AUC = 0.774), and miR-484 (AUC = 0.725) demonstrated a predictive ability to discriminate responses from non-responses, regardless of the therapy used. Moreover, Cox regression analysis indicated that higher expression levels of miR-92a-3p (p = 0.008 **), miR-143-3p (p = 0.009 **), miR-221-3p (p = 0.016 *), and miR-486-5p (p = 0.019 *) at baseline were associated with worse overall survival, while patients expressing higher baseline miR-92a-3p (p = 0.003 **) and miR-486-5p (p = 0.003 **) had lower rates of progression-free survival. No predictive values for candidate microRNAs were found for the post-chemotherapy period. In line with these findings, we conclude that the increased baseline exosomal expression of miR-92a-3p and miR-221-3p seems to predict a lack of response to chemotherapy and lower OS. However, further prospective studies on more patients are needed before drawing practice-changing conclusions.
Collapse
Affiliation(s)
- Alexandra Gherman
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Calin Popa
- "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Surgery, Surgery Unit No 3, University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Simona S Cainap
- Department of Mother and Child, Pediatric Cardiology, University of Medicine and Pharmacy "Iuliu Hatieganu", 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Paediatric Cardiology, Pediatric Clinic No 2, Emergency County Hospital for Children, 68 Motilor Street, 400370 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Murakami K, Furuya H, Hokutan K, Goodison S, Pagano I, Chen R, Shen CH, Chan MWY, Ng CF, Kobayashi T, Ogawa O, Miyake M, Thornquist M, Shimizu Y, Hayashi K, Wang Z, Yu H, Rosser CJ. Association of SNPs in the PAI1 Gene with Disease Recurrence and Clinical Outcome in Bladder Cancer. Int J Mol Sci 2023; 24:4943. [PMID: 36902377 PMCID: PMC10003630 DOI: 10.3390/ijms24054943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE Bladder cancer (BCa) is one of the most common cancer types worldwide and is characterized by a high rate of recurrence. In previous studies, we and others have described the functional influence of plasminogen activator inhibitor-1 (PAI1) in bladder cancer development. While polymorphisms in PAI1 have been associated with increased risk and worsened prognosis in some cancers, the mutational status of PAI1 in human bladder tumors has not been well defined. METHODS In this study, we evaluated the mutational status of PAI1 in a series of independent cohorts, comprised of a total of 660 subjects. RESULTS Sequencing analyses identified two clinically relevant 3' untranslated region (UTR) single nucleotide polymorphisms (SNPs) in PAI1 (rs7242; rs1050813). Somatic SNP rs7242 was present in human BCa cohorts (overall incidence of 72%; 62% in Caucasians and 72% in Asians). In contrast, the overall incidence of germline SNP rs1050813 was 18% (39% in Caucasians and 6% in Asians). Furthermore, Caucasian patients with at least one of the described SNPs had worse recurrence-free survival and overall survival (p = 0.03 and p = 0.03, respectively). In vitro functional studies demonstrated that SNP rs7242 increased the anti-apoptotic effect of PAI1, and SNP rs1050813 was related to a loss of contact inhibition associated with cellular proliferation when compared to wild type. CONCLUSION Further investigation of the prevalence and potential downstream influence of these SNPs in bladder cancer is warranted.
Collapse
Affiliation(s)
- Kaoru Murakami
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hideki Furuya
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kanani Hokutan
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Steve Goodison
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ian Pagano
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Runpu Chen
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chi Fai Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Nara 6348522, Japan
| | - Mark Thornquist
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yoshiko Shimizu
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Kazukuni Hayashi
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Zhangwei Wang
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Herbert Yu
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Charles J. Rosser
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Jayasinghe R, Jayarajah U, Seneviratne S. Circulating Biomarkers in Predicting Pathological Response to Neoadjuvant Therapy for Colorectal Cancer. Biomark Med 2022. [DOI: 10.2174/9789815040463122010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating biomarkers show promise in the management of many cancers.
They have become the novel non-invasive approach to complement the current
strategies in colorectal cancer (CRC) management. Their ability in guiding diagnosis,
evaluating response to treatment, screening and prognosis is phenomenal, especially
when it comes to their minimally invasive nature. These “liquid biopsies,” which show
potential for replacing invasive surgical biopsies, provide useful information on the
primary and metastatic disease by providing an insight into cancer biology. Analysis of
blood and body fluids for circulating tumour DNA (ctDNA), carcinoembryonic antigen
(CEA), circulating tumour cells (CTC), or circulating micro RNA (miRNA) shows
potential for improving CRC management. Recognizing a predictive model to assess
response to neoadjuvant chemotherapy would help in better patient selection. This
review was conducted with the aim of outlining the use of circulatory biomarkers in
current practice and their effectiveness in the management of patients having CRC with
a focus on response to neoadjuvant therapy.
Collapse
Affiliation(s)
- Ravindri Jayasinghe
- Department of Surgery, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Umesh Jayarajah
- Department of Surgery, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sanjeewa Seneviratne
- Department of Surgery, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
7
|
Moosavy SH, Koochakkhani S, Barazesh M, Mohammadi S, Ahmadi K, Inchehsablagh BR, Kavousipour S, Eftekhar E, Mokaram P. In silico Analysis of Single Nucleotide Polymorphisms Associated with MicroRNA
Regulating 5-fluorouracil Resistance in Colorectal Cancer. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210930161618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the broad influence and reversible nature of microRNA (miRNA) on the
expression and regulation of target genes, researchers suggest that miRNAs and single nucleotide polymorphisms
(SNPs) in miRNA genes interfere with 5-fluorouracil (5-FU) drug resistance in colorectal
cancer chemotherapy.
Methods:
Computational assessment and cataloging of miRNA gene polymorphisms that target mRNA
transcripts directly or indirectly through regulation of 5-FU chemoresistance in CRC were screened out
by applying various universally accessible datasets such as miRNA SNP3.0 software.
Results:
1255 SNPs in 85 miRNAs affecting 5-FU resistance (retrieved from literature) were detected.
Computational analysis showed that 167 from 1255 SNPs alter microRNA expression levels leading to
inadequate response to 5-FU resistance in CRC. Among these 167 SNPs, 39 were located in the seed
region of 25/85 miRNA and were more critical than other SNPs. Has-miR-320a-5p with 4 SNP in seed
region was miRNA with the most number of SNPs. On the other hand, it has been identified that proteoglycan
in cancer, adherents junction, ECM-receptor interaction, Hippo signaling pathway, TGF-beta signaling
cascade, biosynthesis of fatty acid, and fatty acid metabolism were the most important pathways
targeted by these 85 predicted miRNAs.
Conclusion:
Our data suggest 39 SNPs in the seed region of 25 miRNAs as catalog in miRNA genes that
control the 5-FU resistance in CRC. These data also identify the most important pathways regulated by
miRNA.
Collapse
Affiliation(s)
- Seyed Hamid Moosavy
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad,
Iran
| | - Khadijeh Ahmadi
- Infection and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical
Science, Bandar Abbas, Iran
| | - Behnaz Rahnama Inchehsablagh
- Department of Physiology and Student Research Committee, Hormozgan University of
Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
8
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Ruiz-Bañobre J, Goel A. Genomic and epigenomic biomarkers in colorectal cancer: From diagnosis to therapy. Adv Cancer Res 2021; 151:231-304. [PMID: 34148615 PMCID: PMC10338180 DOI: 10.1016/bs.acr.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States. Despite ongoing efforts aimed at increasing screening for CRC and early detection, and development of more effective therapeutic regimens, the overall morbidity and mortality from this malignancy remains a clinical challenge. Therefore, identifying and developing genomic and epigenomic biomarkers that can improve CRC diagnosis and help predict response to current therapies are of paramount importance for improving survival outcomes in CRC patients, sparing patients from toxicity associated with current regimens, and reducing the economic burden associated with these treatments. Although efforts to develop biomarkers over the past decades have achieved some success, the recent availability of high-throughput analytical tools, together with the use of machine learning algorithms, will likely hasten the development of more robust diagnostic biomarkers and improved guidance for clinical decision-making in the coming years. In this chapter, we provide a systematic and comprehensive overview on the current status of genomic and epigenomic biomarkers in CRC, and comment on their potential clinical significance in the management of patients with this fatal malignancy, including in the context of precision medicine.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), CIBERONC, Santiago de Compostela, Spain; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), CIBERONC, Santiago de Compostela, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| |
Collapse
|
10
|
Duan L, Yang W, Feng W, Cao L, Wang X, Niu L, Li Y, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920947342. [PMID: 32922521 PMCID: PMC7450467 DOI: 10.1177/1758835920947342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic chemotherapy is identified as a curative approach to prolong the survival time of patients with colorectal cancer (CRC). Although great progress in therapeutic approaches has been achieved during the last decades, drug resistance still extensively persists and serves as a major hurdle to effective anticancer therapy for CRC. The mechanism of multidrug resistance remains unclear. Recently, mounting evidence suggests that a great number of microRNAs (miRNAs) may contribute to drug resistance in CRC. Certain of these miRNAs may thus be used as promising biomarkers for predicting drug response to chemotherapy or serve as potential targets to develop personalized therapy for patients with CRC. This review mainly summarizes recent advances in miRNAs and the molecular mechanisms underlying miRNA-mediated chemoresistance in CRC. We also discuss the potential role of drug resistance-related miRNAs as potential biomarkers (diagnostic and prognostic value) and envisage the future orientation and challenges in translating the findings on miRNA-mediated chemoresistance of CRC into clinical applications.
Collapse
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Cao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Nabipoorashrafi SA, Shomali N, Sadat-Hatamnezhad L, Mahami-Oskouei M, Mahmoudi J, Sandoghchian Shotorbani B, Akbari M, Xu H, Sandoghchian Shotorbani S. miR-143 acts as an inhibitor of migration and proliferation as well as an inducer of apoptosis in melanoma cancer cells in vitro. IUBMB Life 2020; 72:2034-2044. [PMID: 32687246 DOI: 10.1002/iub.2345] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Melanoma is a serious form of skin cancers begins in the melanocyte. Micro-RNAs are small noncoding RNA with 19 to 25 nucleotides in length involves in the regulation of a wide range of biological processes. MicroRNAs are affected by an aberrant epigenetic alteration in the tumors that may lead to their dysregulation and formation of cancer. Recently, dysregulation of numerous microRNAs has been reported in different types of cancer. The present study focused on the role of miR-143 in carcinogenesis of melanoma cancer. Here, we evaluated the expression level of miR-143 in three melanoma cell lines in comparison with the normal human epidermal melanocyte cell line. Then, miR-143 gene plasmid transfected into the WM115 cell line, for having the lowest expression of miR-143. In addition, the effect of miR-143 transfection on mRNA and protein levels of metastasis-related genes was performed along with MTT assay, wound healing assay, and flow cytometry. The results showed that mRNA and protein expression levels of metastasis-related genes including MMP-9, E-cadherin, Vimentin, and CXCR4 have been reduced following transfection of miR-143. Moreover, the results of the scratch test showed that miR-143 re-expression inhibited cell migration. Also, the role of miR-143 in the induction of apoptosis and inhibition of proliferation by flow cytometry and MTT was confirmed. As a result, the present study showed that miR-143 was involved in metastatic and apoptotic pathways, suggesting that miR-143 acts as a tumor-suppressor microRNA in melanoma cancer.
Collapse
Affiliation(s)
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| |
Collapse
|
12
|
Xu B, Wang C, Wang YL, Chen SQ, Wu JP, Zhu WD, Wang CY, Guan H, Guan C, You ZH, Chen M. miR-143 inhibits renal cell carcinoma cells metastatic potential by suppressing ABL2. Kaohsiung J Med Sci 2020; 36:592-598. [PMID: 32196963 DOI: 10.1002/kjm2.12207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/23/2020] [Indexed: 01/10/2023] Open
Abstract
Although micro RNA (miRNA) expression profiles are widely investigated in renal cell carcinoma (RCC), their potential roles for affecting RCC initiation and progression remain largely unknown. Here, we examined the aberrant expression profiles of miRNAs inhuman metastatic RCC tissues based on Gene Expression Omnibus (GSE37989). We further validated them iRNAs expression data in the largest clinical dataset: The Cancer Genome Atlas (TCGA). And cell adhesion and migration abilities and epithelial me senchymal transition (EMT) related proteins were assessed in both normal and tumor RCC cell lines. We suggest that hsa-miR-143 is a potential tumor suppressor in RCC as its down regulation positively correlated with adverse prognosis. Biologically, cell adhesion, migration, and EMT were dramatically inhibited by miR-143. Mechanistically, we found that miR-143 targets ABL proto-oncogene 2 (ABL2), which was also found to be an indicator for poor survival in TCGA database. Our results have important implications in understanding functions of miRNAs in metastatic RCC and will provide a basis for further clinical application.
Collapse
Affiliation(s)
- Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Can Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ya-Li Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shu-Qiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jian-Ping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wei-Dong Zhu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Chun-Ying Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chao Guan
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zong-Hao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
13
|
Withers SB, Dewhurst T, Hammond C, Topham CH. MiRNAs as Novel Adipokines: Obesity-Related Circulating MiRNAs Influence Chemosensitivity in Cancer Patients. Noncoding RNA 2020; 6:ncrna6010005. [PMID: 31979312 PMCID: PMC7151601 DOI: 10.3390/ncrna6010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is an endocrine organ, capable of regulating distant physiological processes in other tissues via the release of adipokines into the bloodstream. Recently, circulating adipose-derived microRNAs (miRNAs) have been proposed as a novel class of adipokine, due to their capacity to regulate gene expression in tissues other than fat. Circulating levels of adipokines are known to be altered in obese individuals compared with typical weight individuals and are linked to poorer health outcomes. For example, obese individuals are known to be more prone to the development of some cancers, and less likely to achieve event-free survival following chemotherapy. The purpose of this review was twofold; first to identify circulating miRNAs which are reproducibly altered in obesity, and secondly to identify mechanisms by which these obesity-linked miRNAs might influence the sensitivity of tumors to treatment. We identified 8 candidate circulating miRNAs with altered levels in obese individuals (6 increased, 2 decreased). A second literature review was then performed to investigate if these candidates might have a role in mediating resistance to cancer treatment. All of the circulating miRNAs identified were capable of mediating responses to cancer treatment at the cellular level, and so this review provides novel insights which can be used by future studies which aim to improve obese patient outcomes.
Collapse
Affiliation(s)
- Sarah B. Withers
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
- Salford Royal Foundation Trust, Clinical Sciences Building, Stott Lane, Salford M6 8HD, UK
| | - Toni Dewhurst
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
| | - Chloe Hammond
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
| | - Caroline H. Topham
- Biomedical Research Centre, School of Science, Engineering and Environment, Peel Building, University of Salford, Salford M5 4WT, UK; (S.B.W.); (T.D.); (C.H.)
- Correspondence: ; Tel.: +44-(0)-161-295-4292
| |
Collapse
|
14
|
Taieb J, Jung A, Sartore-Bianchi A, Peeters M, Seligmann J, Zaanan A, Burdon P, Montagut C, Laurent-Puig P. The Evolving Biomarker Landscape for Treatment Selection in Metastatic Colorectal Cancer. Drugs 2019; 79:1375-1394. [PMID: 31347092 PMCID: PMC6728290 DOI: 10.1007/s40265-019-01165-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The approval of targeted therapies for metastatic colorectal cancer (mCRC) has led to important improvements in patient outcomes. However, it is still necessary to increase individualisation of treatments based on tumour genetic profiles to optimise efficacy, while minimising toxicity. As such, there is currently great focus on the discovery and validation of further biomarkers in mCRC, with many new potential prognostic and predictive markers being identified alongside developments in patient molecular profiling technologies. Here, we review data for validated and emerging biomarkers impacting treatment strategies in mCRC. We completed a structured literature search of the PubMed database to identify relevant publications, limiting for English-language publications published between 1 January 2014 and 11 July 2018. In addition, we performed a manual search of the key general oncology and CRC-focused congresses to identify abstracts reporting emerging mCRC biomarker data, and of ClinicalTrials.gov to identify ongoing clinical trials investigating emerging biomarkers in mCRC and/or molecular-guided clinical trials. There is solid evidence supporting the use of BRAF status as a prognostic biomarker and DYPD, UGT1A1, RAS, and microsatellite instability as predictive biomarkers in mCRC. There are a number of emerging biomarkers that may prove to be clinically relevant in the future to have prognostic (HPP1 methylation), predictive (HER3, microRNAs, anti-angiogenic markers, and CRC intrinsic subtypes), or both prognostic and predictive values (HER2, CpG island methylator phenotype, tumour mutational load, gene fusions, and consensus molecular subtypes). As such, new biomarker-led treatment strategies in addition to anti-epidermal growth factor receptor and anti-angiogenetic treatments are being explored. Biomarkers that are not recommended to be tested in clinical practice or are unlikely to be imminently clinically relevant for mCRC include thymidylate transferase, ERCC1, PIK3CA, and PTEN. We highlight the clinical utility of existing and emerging biomarkers in mCRC and provide recommended treatment strategies according to the biomarker status. An update on ongoing molecular-guided clinical trials is also provided.
Collapse
Affiliation(s)
- Julien Taieb
- Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France.
| | - Andreas Jung
- Pathology Institute, Ludwig Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marc Peeters
- Department of Oncology, Antwerp University Hospital/Antwerp University, Edegem, Belgium
| | - Jenny Seligmann
- Division of Cancer Studies and Pathology, St James's Institute of Oncology, Leeds, UK
| | - Aziz Zaanan
- Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France
| | - Peter Burdon
- European Medical, Amgen (Europe) GmbH, Rotkreuz, Switzerland
| | - Clara Montagut
- Medical Oncology Department, Hospital del Mar-IMIM, CIBERONC, HM Delfos, Barcelona, Spain
| | - Pierre Laurent-Puig
- Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
15
|
Moradi Marjaneh R, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. MicroRNAs as potential therapeutic targets to predict responses to oxaliplatin in colorectal cancer: From basic evidence to therapeutic implication. IUBMB Life 2019; 71:1428-1441. [PMID: 31322820 DOI: 10.1002/iub.2108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with poor prognosis. Oxaliplatin-based chemotherapy is an important treatment for CRC; however, the cells develop resistance to therapy. The mechanisms underlying oxaliplatin resistance are complex and unclear. There is increasing evidence that microRNAs (miRNAs) (i.e., miR-34a, miR-143, miR-153, miR-27a, miR-218, and miR-520) play an essential role in tumorigenesis and chemotherapy resistance, by targeting various cellular and molecular pathways (i.e., PI3K/Akt/Wnt, EMT, p53, p21, and ATM) that are involved in the pathogenesis of CRC. Identifying the miRNAs that are involved in chemo-resistance, and their function, may help as a potential therapeutic option for treatment of CRC or as potential prognostic biomarker. Here, we summarized the clinical impact of miRNAs that have critical roles in the development of resistance to oxaliplatin in CRC.
Collapse
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Perso Falmer, Brighton, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Ruiz-Bañobre J, Kandimalla R, Goel A. Predictive Biomarkers in Metastatic Colorectal Cancer: A Systematic Review. JCO Precis Oncol 2019; 3:PO.18.00260. [PMID: 32914007 PMCID: PMC7446314 DOI: 10.1200/po.18.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The development and use of predictive biomarkers to guide treatment decisions are paramount not only for improving survival in patients with metastatic colorectal cancer (mCRC), but also for sparing them from unnecessary toxicity and reducing the economic burden of expensive treatments. We conducted a systematic review of published studies and evaluated the predictive biomarker landscape in the mCRC setting from a molecular and clinical viewpoint. METHODS Studies analyzing predictive biomarkers for approved therapies in patients with mCRC were identified systematically using electronic databases. Preclinical studies and those providing no relevant information were excluded. RESULTS A total of 173 studies comprising 148 biomarkers were selected for final analysis. Of all the biomarkers analyzed, 1.4% (two of 148) were explored in a prospective manner, whereas 98.6% (146 of 148) were evaluated in retrospective studies. Of the latter group, 78.8% (115 of 146) were not tested in subsequent phases, 9.6% (14 of 146) were tested in other retrospective cohorts, 8.9% (13 of 146) were retrospectively tested in at least one or more randomized cohorts, and only 2.7% (four of 146) were prospectively tested in a clinical trial. Finally, only 1.4% (two of 148) were validated sufficiently and are recognized as biomarkers for guiding treatment decision making in patients with mCRC. These markers were RAS mutational status for anti-EGFR antibodies and microsatellite instability status for anti-programmed cell death-1 drugs. CONCLUSION Despite notable efforts to identify predictive biomarkers for various therapies used in the mCRC setting, because of a lack of data beyond retrospective studies and successful biomarker-driven approaches, only two molecular biomarkers have thus far found their translation into the clinic, highlighting the imperative need for implementing novel strategies and additional research in this clinically important field.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Arquitecto Marcide University Hospital, Ferrol, Spain
- Baylor University Medical Center, Dallas, TX
- ONCOMET, University Clinical Hospital of Santiago de Compostela, CIBERONC, Santiago de Compostela, Spain
| | | | - Ajay Goel
- Baylor University Medical Center, Dallas, TX
| |
Collapse
|
18
|
Hernández R, Sánchez-Jiménez E, Melguizo C, Prados J, Rama AR. Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives. BMB Rep 2019. [PMID: 30158023 PMCID: PMC6283029 DOI: 10.5483/bmbrep.2018.51.11.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones. [BMB Reports 2018; 51(11): 563-571].
Collapse
Affiliation(s)
- Rosa Hernández
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada 18100; Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada 18100, Spain
| | - Ester Sánchez-Jiménez
- Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research, Barcelona 08036, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada 18100; Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada 18100; Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada 18100, Spain
| | - Ana Rosa Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Department of Health Science, University of Jaén, Jaén 23071, Spain
| |
Collapse
|
19
|
Gan Z, Zou Q, Lin Y, Xu Z, Huang Z, Chen Z, Lv Y. Identification of a 13-gene-based classifier as a potential biomarker to predict the effects of fluorouracil-based chemotherapy in colorectal cancer. Oncol Lett 2019; 17:5057-5063. [PMID: 31186717 PMCID: PMC6507297 DOI: 10.3892/ol.2019.10159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the current study was to develop a predictor classifier for response to fluorouracil-based chemotherapy in patients with advanced colorectal cancer (CRC) using microarray gene expression profiles of primary CRC tissues. Using two expression profiles downloaded from the Gene Expression Omnibus database, differentially expressed genes (DEGs) between responders and non-responders to fluorouracil-based chemotherapy were identified. A total of 791 DEGs, including 303 that were upregulated and 488 that were downregulated in responders, were identified. Functional enrichment analysis revealed that the DEGs were primarily involved in ‘cell mitosis’, ‘DNA replication’ and ‘cell cycle’ signaling pathways. Following feature selection using two methods, a random forest classifier for response to fluorouracil-based chemotherapy with 13 DEGs was constructed. The accuracy of the 13-gene classifier was 0.930 in the training set and 0.810 in the validation set. The receiver operating characteristic curve analysis revealed that the area under the curve was 1.000 in the training set and 0.873 in the validation set (P=0.227). The 13-gene-based classifier described in the current study may be used as a potential biomarker to predict the effects of fluorouracil-based chemotherapy in patients with CRC.
Collapse
Affiliation(s)
- Zuhuan Gan
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiyuan Zou
- Department of Medicine, Affiliated Langdong Hospital of Guangxi Medical University, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zihai Xu
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhong Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhichao Chen
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Guangxi Medical University Kaiyuan Langdong Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
20
|
Li C, Yan G, Yin L, Liu T, Li C, Wang L. Prognostic roles of microRNA 143 and microRNA 145 in colorectal cancer: A meta-analysis. Int J Biol Markers 2019; 34:6-14. [PMID: 30854930 DOI: 10.1177/1724600818807492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: A systematic analysis was conducted to clarify the relationship between miR-143/145 and the prognosis of colorectal cancer. Materials and methods: We searched four databases: PubMed, EMBASE, Web of Science, and the Cochrane Library. We extracted and estimated the hazard ratios for survival outcomes, which compared low and high expression levels of miR-143/145 in colorectal cancer patients in the available studies. Each individual hazard ratio was used to calculate the pooled hazard ratio. Results: A total of 17 articles including 5128 patients were ultimately included. The results showed that there was no significant difference between low expression and high expression of miR-143 in the overall survival of colon cancer patients. However, low expression of miR-143 was significantly associated with high event-free survival (hazard ratio (HR) 0.6; 95% confidence interval (CI) 0.40, 0.88). Low expression of miR-145 was associated with poor prognosis of patients (HR 1.92; 95% CI 1.45, 2.54); those with low expression of miR-145 were at 1.92-fold higher risk for short-term overall survival than those with high expression of miR-145. MiR-145 was an unfavorable factor for the prognosis of colorectal cancer. There were no significant differences between low expression of miR-145 and high expression of miR-143 in event-free survival. Conclusion: miR-143 and miR-145 have promising prognostic value for colorectal cancer. Low expression of miR-143 can predict high event-free survival, and low expression of miR-145 can predict poor overall survival.
Collapse
Affiliation(s)
- Chenyao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Jilin, P.R. China
| | - Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Jilin, P.R. China
| | - Libin Yin
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Jilin, P.R. China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Jilin, P.R. China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Jilin, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Jilin, P.R. China
| |
Collapse
|
21
|
Deng YW, Hao WJ, Li YW, Li YX, Zhao BC, Lu D. Hsa-miRNA-143-3p Reverses Multidrug Resistance of Triple-Negative Breast Cancer by Inhibiting the Expression of Its Target Protein Cytokine-Induced Apoptosis Inhibitor 1 In Vivo. J Breast Cancer 2018; 21:251-258. [PMID: 30275853 PMCID: PMC6158160 DOI: 10.4048/jbc.2018.21.e40] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Multidrug resistance (MDR) remains a major obstacle in the treatment of triple-negative breast cancer (TNBC) with conventional chemotherapeutic agents. A previous study demonstrated that hsa-miRNA-143-3p plays a vital role in drug resistance of TNBC. Downregulation of hsa-miRNA-143-3p upregulated the expression of its target protein cytokine-induced apoptosis inhibitor 1 (CIAPIN1) in order to activate MDR, while upregulation of hsa-miRNA-143-3p effectively enhances the sensitivity of drug-resistant TNBC cells to chemotherapeutics. The present study aimed to further verify these findings in vivo. METHODS We established a hypodermic tumor nude mice model using paclitaxel-resistant TNBC cells. We expressed ectopic hsa-miRNA-143-3p under the control of a breast cancer-specific human mammaglobin promoter that guided the efficient expression of exogenous hsa-miRNA-143-3p only in breast cancer cells. Thereafter, we overexpressed hsa-miRNA-143-3p in xenografts using a recombinant virus system and quantified the expression of hsa-miRNA-143-3p, CIAPIN1 protein, and proteins encoded by related functional genes by western blot. RESULTS We successfully completed the prospective exploration of the intravenous virus injection pattern from extensive expression to targeted expression. The overexpression of hsa-miRNA-143-3p significantly alleviated chemoresistance of TNBC by inhibiting viability. In addition, we observed that the expression of CIAPIN1 as a hsa-miRNA-143-3p target protein was remarkably decreased. CONCLUSION We partly illustrated the mechanism underlying the hsa-miRNA-143-3p/CIAPIN1 drug resistance pathway. HsamiRNA-143-3p as a tumor suppressive microRNA may be a novel target to effectively reverse MDR of TNBC in vivo.
Collapse
Affiliation(s)
- Yu Wei Deng
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Jing Hao
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Wen Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xin Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chen Zhao
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lu
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Cui J, Wei C, Deng L, Kuang X, Zhang Z, Pierides C, Chi J, Wang L. MicroRNA‑143 increases cell apoptosis in myelodysplastic syndrome through the Fas/FasL pathway both in vitro and in vivo. Int J Oncol 2018; 53:2191-2199. [PMID: 30132510 DOI: 10.3892/ijo.2018.4534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/14/2018] [Indexed: 11/06/2022] Open
Abstract
Whilst the role of microRNA‑143 (miR‑143) in myelodysplastic syndrome (MDS) remains unclear, abnormally expressed microRNA‑143 has been detected in many types of cancer tissues. In this study, we describe a cohort study for the verification of miR‑143 expression, as well as the investigation of the molecular mechanisms of miR‑143 in MDS/acute myeloid leukaemia (AML). In a series of experiments, miR‑143 recombinant lentiviral vectors transformed into SKM‑1 cells were either overexpressed or knocked down, and the results illustrated that the overexpression of miR‑143 inhibited SKM‑1 cell growth, arrested the SKM‑1 cells in the G0/G1 phase, interfered with cell proliferation and induced cell apoptosis via the Fas/FasL pathway. Conversely, miR‑143 knockdown induced a decrease in the apoptosis and promoted the proliferation of SKM‑1 cells. Moreover, miR‑143 was shown to suppress MLLT3/AF9 expression by binding to its 3'‑UTR. Taken together, the findings of this study indicate that miR‑143 may be a critical regulator of MDS/AML cell carcinogenesis, acting as a potent antitumour molecular target for the diagnosis or treatment of cancers associated with the abnormal expression of MLLT3/AF9, hence facilitating the development of potential therapeutics against MDS/AML.
Collapse
Affiliation(s)
- Jiaqi Cui
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunmei Wei
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Linli Deng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xingyi Kuang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zengtie Zhang
- Department of Pathology, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Chryso Pierides
- Center for the Study of Haematological Malignancies, Karaiskakio Foundation, 2032 Nicosia, Cyprus
| | - Jianxiang Chi
- Center for the Study of Haematological Malignancies, Karaiskakio Foundation, 2032 Nicosia, Cyprus
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
23
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|
24
|
Ying HQ, Peng HX, He BS, Pan YQ, Wang F, Sun HL, Liu X, Chen J, Lin K, Wang SK. MiR-608, pre-miR-124-1 and pre-miR26a-1 polymorphisms modify susceptibility and recurrence-free survival in surgically resected CRC individuals. Oncotarget 2018; 7:75865-75873. [PMID: 27713147 PMCID: PMC5342784 DOI: 10.18632/oncotarget.12422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 09/25/2016] [Indexed: 01/22/2023] Open
Abstract
Genetic variation within microRNA (miRNA) may result in its abnormal folding or aberrant expression, contributing to colorectal turmorigenesis and metastasis. However, the association of six polymorphisms (miR-608 rs4919510, miR-499a rs3746444, miR-146a rs2910164, pre-miR-143 rs41291957, pre-miR-124-1 rs531564 and pre-miR-26a-1 rs7372209) with colorectal cancer (CRC) risk, therapeutic response and survival remains unclear. A retrospective study was carried out to investigate the association in 1358 0-III stage resected CRC patients and 1079 healthy controls using Sequenom's MassARRAY platform. The results showed that rs4919510 was significantly associated with a decreased susceptibility to CRC in co-dominant, allele and recessive genetic models, and the protective role of rs4919510 allele G and genotype GG was more pronounced among stage 0-II cases; significant association between rs531564 and poor RFS was observed in cases undergoing adjuvant chemo-radiotherapy in co-dominant, allele and dominant models; moreover, there was a positive association between rs7372209 and recurrence-free survival in stage II cases in co-dominant and over-dominant models; additionally, a cumulative effect of rs531564 and rs7372209 at-risk genotypes with hazard ratio at 1.30 and 1.95 for one and two at-risk genotypes was examined in stage II cases, respectively. Our findings indicated that rs4919510 allele G and genotype GG were protective factors for 0-II stage CRC, rs7372209 and rs531564 could decrease RFS in II stage individuals and resected CRC patients receiving adjuvant chemo-radiology.
Collapse
Affiliation(s)
- Hou-Qun Ying
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Hong-Xin Peng
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China.,Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bang-Shun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yu-Qin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Feng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.,Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Hui-Ling Sun
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xian Liu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Jie Chen
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kang Lin
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shu-Kui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| |
Collapse
|
25
|
Zhou N, Cheng W, Peng C, Liu Y, Jiang B. Decreased expression of hsa‑miR‑372 predicts poor prognosis in patients with gallbladder cancer by affecting chloride intracellular channel 1. Mol Med Rep 2017; 16:7848-7854. [PMID: 28944858 DOI: 10.3892/mmr.2017.7520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
It has been reported that hsa‑microRNA (miRNA/miR)‑372 functions as a tumor suppressor or oncogene in various digestive system tumors, however, its roles in gallbladder cancer (GBC) are yet to be established. The present study aimed to determine the expression and clinical relevance of hsa‑miR‑372 in GBC. The expression of hsa‑miR‑372 in 80 pairs of human GBC tissues and adjacent normal gallbladder tissues was measured by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the associations between hsa‑miR‑372 expression levels and the clinicopathological characteristics of patients with GBC were determined using χ2 test. Furthermore, Kaplan‑Meier method and Cox regression analysis were performed to evaluate the association between hsa‑miR‑372 expression and the prognosis of patients with GBC. Furthermore, a dual‑luciferase reporter assay and western blot analysis were performed to predict and verify the target gene of hsa‑miR‑372. The results demonstrated that markedly lower hsa‑miR‑372 expression was observed in GBC tissues, which was associated with poor prognosis in patients with GBC. Downregulated expression of hsa‑miR‑372 was negatively associated with tumor histological grade, tumor‑node‑metastasis stage, lymph node metastasis and distant metastasis, however, no association was observed between reduced hsa‑miR‑372 expression and patient gender, age, tumor size and gallbladder stones. Multivariate Cox regression analysis revealed that hsa‑miR‑372 expression, histological grade and lymph node metastasis were independent prognostic factors for overall survival in patients with GBC. Chloride intracellular channel 1 (CLIC1) was previously reported to be an effective biomarker for predicting the prognosis of GBC. Notably, the results of the present study indicated that CLIC1 may be a direct target gene of hsa‑miR‑372. In conclusion, the current study provides the first statistically convincing evidence that downregulation of hsa‑miR‑372 may occur in GBC tissues, which may be associated with aggressive and progressive tumor behavior by affecting CLIC1 expression.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Yi Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
26
|
Singh MP, Rai S, Suyal S, Singh SK, Singh NK, Agarwal A, Srivastava S. Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert Rev Mol Diagn 2017; 17:665-685. [PMID: 28562109 DOI: 10.1080/14737159.2017.1337511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.
Collapse
Affiliation(s)
- Manish Pratap Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sandhya Rai
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Shradha Suyal
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sunil Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Nand Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Akash Agarwal
- b Department of Surgical Oncology , Dr. Ram Manohar Lohia Institute of Medical Sciences (DRMLIMS) , Lucknow , India
| | - Sameer Srivastava
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| |
Collapse
|
27
|
Huang FT, Chen WY, Gu ZQ, Zhuang YY, Li CQ, Wang LY, Peng JF, Zhu Z, Luo X, Li YH, Yao HR, Zhang SN. The novel long intergenic noncoding RNA UCC promotes colorectal cancer progression by sponging miR-143. Cell Death Dis 2017; 8:e2778. [PMID: 28492554 PMCID: PMC5520712 DOI: 10.1038/cddis.2017.191] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 01/12/2023]
Abstract
The human genome contains thousands of long intergenic noncoding RNAs (lincRNAs). However, the functional roles of these transcripts and the mechanisms responsible for their deregulation in colorectal cancer (CRC) remain elusive. A novel lincRNA termed upregulated in CRC (UCC) was found to be highly expressed in human CRC tissues and cell lines. UCC levels correlated with lymph node metastasis, Dukes' stage, and patient outcomes. In SW480 and SW620 cells, knockdown of UCC inhibited proliferation, invasion, and cell cycle progression and induced apoptosis in vitro. Xenograft tumors grown from UCC-silenced SW620 cells had smaller mean volumes and formed more slowly than xenograft tumors grown from control cells. Inversely, overexpression of UCC in HCT116 promoted cell growth and invasion in vitro. Bioinformatics analysis, dual-luciferase reporter assays, and RNA immunoprecipitation assays showed that miR-143 can interact with UCC, and we found that UCC expression inversely correlates with miR-143 expression in CRC specimens. Moreover, mechanistic investigations showed that UCC may act as an endogenous sponge by competing for miR-143, thereby regulating the targets of this miRNA. Our results suggest that UCC and miR-143 may be promising molecular targets for CRC therapy.
Collapse
Affiliation(s)
- Feng-Ting Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Ying Chen
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Qiang Gu
- Department of Gastroenterology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yan-Yan Zhuang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chu-Qiang Li
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ling-Yun Wang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan-Fei Peng
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Xin Luo
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Hua Li
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - He-Rui Yao
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shi-Neng Zhang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
29
|
Quezada H, Guzmán-Ortiz AL, Díaz-Sánchez H, Valle-Rios R, Aguirre-Hernández J. Omics-based biomarkers: current status and potential use in the clinic. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bmhime.2017.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Omics-based biomarkers: current status and potential use in the clinic. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:219-226. [DOI: 10.1016/j.bmhimx.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
|
31
|
Hiyoshi Y, Akiyoshi T, Inoue R, Murofushi K, Yamamoto N, Fukunaga Y, Ueno M, Baba H, Mori S, Yamaguchi T. Serum miR-143 levels predict the pathological response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Oncotarget 2017; 8:79201-79211. [PMID: 29108299 PMCID: PMC5668032 DOI: 10.18632/oncotarget.16760] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, several circulating miRNAs have been reported as promising, minimally invasive biomarkers for the diagnosis or prediction of the prognosis in various types of cancer. However, the utility of circulating miRNAs as predictive markers of the cancer response to neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer is still unclear. To identify circulating serum miRNAs useful for predicting a pathological good response to nCRT, total 18 serum miRNAs of interest were analyzed by real-time polymerase chain reaction in 94 rectal cancer patients treated with nCRT and surgery. Pathological complete response (pCR; Dworak TRG4) and near-pCR (TRG3) were obtained in 12 (13%) and 9 (9%) patients respectively, and we regarded them as nCRT-responders. Of the 18 serum miRNAs, only the serum level of miR-143 was identified significantly associated with a pathological response to nCRT in 94 patients; the serum miR-143 level was significantly lower in nCRT-responders than in non-responders. A multivariate analysis incorporating other clinicopathological factors showed that only the serum miR-143 level was an independent predictor of a good pathological response. The circulating serum miR-143 level may be a novel, non-invasive predictive marker of a response to nCRT in locally advanced rectal cancer patients.
Collapse
Affiliation(s)
- Yukiharu Hiyoshi
- Gastroenterological Center, Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Akiyoshi
- Gastroenterological Center, Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ramu Inoue
- Clinical Research Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keiko Murofushi
- Department of Radiation Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yamamoto
- Division of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yosuke Fukunaga
- Gastroenterological Center, Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masashi Ueno
- Gastroenterological Center, Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshiharu Yamaguchi
- Gastroenterological Center, Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
32
|
Wang LL, Hu HF, Feng YQ. Suppressive effect of microRNA-143 in retinoblastoma. Int J Ophthalmol 2016; 9:1584-1590. [PMID: 27990360 DOI: 10.18240/ijo.2016.11.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate microRNA-143 expression and effect on suppression of retinoblastoma (RB) cells. METHODS The expression of microRNA-143 was investigated and compared in normal human retina tissue samples and in RB cell lines of Y79 and Weri1. The microRNA-143 mimics were transfected into the RB cell lines separately, and its effect on RB cell lines was detected using reverse-transcription quantitative polymerase chain reaction and Western blotting methods. RESULTS The microRNA-143 expression was significantly suppressed in RB cell lines. Overexpression of microRNA-143 significantly lowered cell viability and invasion of the RB cell lines, and increased the number of apoptotic cells. Meanwhile, the Bax expression was up-regulated and much higher in the microRNA-143 mimics transfected group than that in the negative control and the microRNA-143 inhibitor groups. CONCLUSION MicroRNA-143 exhibits suppressive effects in RB. The current study provides the perspective of a potential therapeutic treatment for RB.
Collapse
Affiliation(s)
- Li-Lun Wang
- Department of Ophthalmology, Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi Province, China
| | - Hai-Feng Hu
- Department of Oncology, Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi Province, China
| | - Yan-Qin Feng
- Department of Ophthalmology, Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
33
|
Zhou Q, Zhu Y, Wei X, Zhou J, Chang L, Sui H, Han Y, Piao D, Sha R, Bai Y. MiR-590-5p inhibits colorectal cancer angiogenesis and metastasis by regulating nuclear factor 90/vascular endothelial growth factor A axis. Cell Death Dis 2016; 7:e2413. [PMID: 27735951 PMCID: PMC5133975 DOI: 10.1038/cddis.2016.306] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022]
Abstract
Altered expression of microRNA-590-5p (miR-590-5p) is involved in tumorigenesis, however, its role in colorectal cancer (CRC) remains to be determined. In this study, we focused on examining the effects of different expression levels of miR-590-5p in cancer cells and normal cells. Results showed that there are lower expression levels of miR-590-5p in human CRC cells and tissues than in normal control cells and tissues. Similarly, in our xenograft mouse model, knockdown of miR-590-5p promoted the progression of CRC. However, an overexpression of miR-590-5p in the mice inhibited angiogenesis, tumor growth, and lung metastasis. Nuclear factor 90 (NF90), a positive regulator of vascular endothelial growth factor (VEGF) mRNA stability and protein synthesis, was shown to be a direct target of miR-590-5p. The overexpression of NF90 restored VEGFA expression and rescued the loss of tumor angiogenesis caused by miR-590-5p. Conversely, the NF90-shRNA attenuated the increased tumor progression caused by the miR-590-5p inhibitor. Clinically, the levels of miR-590-5p were inversely correlated with those of NF90 and VEGFA in CRC tissues. Furthermore, knockdown of NF90 lead to a reduction of pri-miR-590 and an increase of mature miR-590-5p, suggesting a negative feedback loop between miR-590-5p and NF90. Collectively, these data establish miR-590-5p as an anti-onco-miR that inhibits CRC angiogenesis and metastasis through a new mechanism involving NF90/VEGFA signaling axis, highlighting the potential of miR-590-5p as a target for human CRC therapy.
Collapse
Affiliation(s)
- Qingxin Zhou
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Wei
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianhua Zhou
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Chang
- Department of Neurosurgery, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Sui
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Daxun Piao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruihua Sha
- Department of Digestive Disease, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Biasiotta A, D'Arcangelo D, Passarelli F, Nicodemi EM, Facchiano A. Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med 2016; 14:285. [PMID: 27716384 PMCID: PMC5050926 DOI: 10.1186/s12967-016-1038-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background Several cellular functions relate to ion-channels activity. Physiologically relevant chains of events leading to angiogenesis, cell cycle and different forms of cell death, require transmembrane voltage control. We hypothesized that the unordered angiogenesis occurring in solid cancers and vascular malformations might associate, at least in part, to ion-transport alteration. Methods The expression level of several ion-channels was analyzed in human solid tumor biopsies. Expression of 90 genes coding for ion-channels related proteins was investigated within the Oncomine database, in 25 independent patients-datasets referring to five histologically-different solid tumors (namely, bladder cancer, glioblastoma, melanoma, breast invasive-ductal cancer, lung carcinoma), in a total of 3673 patients (674 control-samples and 2999 cancer-samples). Furthermore, the ion-channel activity was directly assessed by measuring in vivo the electrical sympathetic skin responses (SSR) on the skin of 14 patients affected by the flat port-wine stains vascular malformation, i.e., a non-tumor vascular malformation clinical model. Results Several ion-channels showed significantly increased expression in tumors (p < 0.0005); nine genes (namely, CACNA1D, FXYD3, FXYD5, HTR3A, KCNE3, KCNE4, KCNN4, CLIC1, TRPM3) showed such significant modification in at least half of datasets investigated for each cancer type. Moreover, in vivo analyses in flat port-wine stains patients showed a significantly reduced SSR in the affected skin as compared to the contralateral healthy skin (p < 0.05), in both latency and amplitude measurements. Conclusions All together these data identify ion-channel genes showing significantly modified expression in different tumors and cancer-vessels, and indicate a relevant electrophysiological alteration in human vascular malformations. Such data suggest a possible role and a potential diagnostic application of the ion–electron transport in vascular disorders underlying tumor neo-angiogenesis and vascular malformations.
Collapse
Affiliation(s)
| | - Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Francesca Passarelli
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
35
|
Wang G, Gu J, Gao Y. MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer. Tumour Biol 2016; 37:13983-13993. [PMID: 27492459 DOI: 10.1007/s13277-016-5252-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 12/30/2022] Open
Abstract
Cysteine-rich protein 61 (CYR61) and metastasis associated in colon cancer (MACC1) protein promoted human colorectal cancer (CRC) cell metastasis and closely related to the patient's prognosis in colorectal cancer. The purpose of this article is to investigate whether CYR61 and MACC1 can serve as dual potential targets for gene therapy of human CRC. In this study, microRNA (miRNA) targeting for both CYR61 and MACC1 was used to investigate the mechanism and therapeutic effects for CRC cells and mice with CRC. We observed that silencing miRNA for CYR61 and MACC1 inhibited the epithelial-mesenchymal transition (EMT) process, and co-treatment strengthened this effect. MTT assay showed that the growth of colorectal tumor cells was decreased due to miRNA treatment. Apoptosis assay revealed that miRNA for CYR61 and MACC1 promoted CRC cells apoptotic. The animals' study results showed that the expression levels of CYR61 and MACC1 were significantly decreased after miRNA-100 and miRNA-143 treatment, respectively. The expression levels of apoptosis-promoting protein were increased significantly after treatment with miRNA-100 and miRNA-143, which suggested that both miRNA-100 and miRNA-143 may induce apoptosis by mitochondria-dependent pathway. In addition, metastasis and invasion assays showed that miRNA-100 and miRNA-143 treatment inhibited obviously migratory and invasive abilities of CRC cells. Furthermore, our data also showed that the tumor growth was significantly inhibited and survival rate of tumor-bearing mice was greatly improved by common treatments of miRNA-100 and miRNA-143. In conclusion, the abilities of apoptosis, metastasis, and invasion in CRC tumor cells were significantly suppressed by miRNA-100 and miRNA-143 targeting CYR61 and MACC1, respectively. As a result, CYR61 and MACC1 may serve as potential targets for gene therapy in human CRC treatments.
Collapse
Affiliation(s)
- Guiqi Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, China
| | - Jingfeng Gu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, China.
| | - Yingchao Gao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, China
| |
Collapse
|