1
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
2
|
Sommer B, González-Ávila G, Flores-Soto E, Montaño LM, Solís-Chagoyán H, Romero-Martínez BS. Phytoestrogen-Based Hormonal Replacement Therapy Could Benefit Women Suffering Late-Onset Asthma. Int J Mol Sci 2023; 24:15335. [PMID: 37895016 PMCID: PMC10607548 DOI: 10.3390/ijms242015335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.
Collapse
Affiliation(s)
- Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City CP 14080, Mexico
| | - Georgina González-Ávila
- Laboratorio de Oncología Biomédica, Departamento de Enfermedades Crónico Degenerativas, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Mexico City CP 14080, Mexico;
| | - Edgar Flores-Soto
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Luis M. Montaño
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca CP 62209, Morelos, Mexico;
| | - Bianca S. Romero-Martínez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| |
Collapse
|
3
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
4
|
Hojnik M, Sinreih M, Anko M, Hevir-Kene N, Knific T, Pirš B, Grazio SF, Rižner TL. The Co-Expression of Estrogen Receptors ERα, ERβ, and GPER in Endometrial Cancer. Int J Mol Sci 2023; 24:3009. [PMID: 36769338 PMCID: PMC9918160 DOI: 10.3390/ijms24033009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Estrogens have important roles in endometrial cancer (EC) and exert biological effects through the classical estrogen receptors (ERs) ERα and ERβ, and the G-protein-coupled ER, GPER. So far, the co-expression of these three types of ERs has not been studied in EC. We investigated ERα, ERβ, GPER mRNA and protein levels, and their intracellular protein distributions in EC tissue and in adjacent control endometrial tissue. Compared to control endometrial tissue, immunoreactivity for ERα in EC tissue was weaker for nuclei with minor, but unchanged, cytoplasmic staining; mRNA and protein levels showed decreased patterns for ERα in EC tissue. For ERβ, across both tissue types, the immunoreactivity was unchanged for nuclei and cytoplasm, although EC tissues again showed lower mRNA and protein levels compared to adjacent control endometrial tissue. The immunoreactivity of GPER as well as mRNA levels of GPER were unchanged across cancer and control endometrial tissues, while protein levels were lower in EC tissue. Statistically significant correlations of estrogen receptor α (ESR1) versus estrogen receptor β (ESR2) and GPER variant 3,4 versus ESR1 and ESR2 was seen at the mRNA level. At the protein level studied with Western blotting, there was significant correlation of ERα versus GPER, and ERβ versus GPER. While in clinical practice the expression of ERα is routinely tested in EC tissue, ERβ and GPER need to be further studied to examine their potential as prognostic markers, provided that specific and validated antibodies are available.
Collapse
Affiliation(s)
- Marko Hojnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Pathology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Maša Sinreih
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Anko
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neli Hevir-Kene
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tamara Knific
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Boštjan Pirš
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Gynecology, University Medical Centre, 1000 Ljubljana, Slovenia
| | | | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Hanusek K, Karczmarski J, Litwiniuk A, Urbańska K, Ambrozkiewicz F, Kwiatkowski A, Martyńska L, Domańska A, Bik W, Paziewska A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int J Mol Sci 2022; 23:ijms232415683. [PMID: 36555323 PMCID: PMC9779381 DOI: 10.3390/ijms232415683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common cancer diagnosed among women in the world, with an ever-increasing incidence rate. Due to the dynamic increase in the occurrence of risk factors, including obesity and related metabolic disorders, the search for new regulatory mechanisms is necessary. This will help a complete understanding of the pathogenesis of breast cancer. The review presents the mechanisms of obesity as a factor that increases the risk of developing breast cancer and that even initiates the cancer process in the female population. The mechanisms presented in the paper relate to the inflammatory process resulting from current or progressive obesity leading to cell metabolism disorders and disturbed hormonal metabolism. All these processes are widely regulated by the action of microRNAs (miRNAs), which may constitute potential biomarkers influencing the pathogenesis of breast cancer and may be a promising target of anti-cancer therapies.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Urbańska
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Andrzej Kwiatkowski
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Faculty of Medical and Health Sciences, Institute of Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Correspondence:
| |
Collapse
|
7
|
Hanlon C, Ziezold CJ, Bédécarrats GY. The Diverse Roles of 17β-Estradiol in Non-Gonadal Tissues and Its Consequential Impact on Reproduction in Laying and Broiler Breeder Hens. Front Physiol 2022; 13:942790. [PMID: 35846017 PMCID: PMC9283702 DOI: 10.3389/fphys.2022.942790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Estradiol-17β (E2) has long been studied as the primary estrogen involved in sexual maturation of hens. Due to the oviparous nature of avian species, ovarian production of E2 has been indicated as the key steroid responsible for activating the formation of the eggshell and internal egg components in hens. This involves the integration and coordination between ovarian follicular development, liver metabolism and bone physiology to produce the follicle, yolk and albumen, and shell, respectively. However, the ability of E2 to be synthesized by non-gonadal tissues such as the skin, heart, muscle, liver, brain, adipose tissue, pancreas, and adrenal glands demonstrates the capability of this hormone to influence a variety of physiological processes. Thus, in this review, we intend to re-establish the role of E2 within these tissues and identify direct and indirect integration between the control of reproduction, metabolism, and bone physiology. Specifically, the sources of E2 and its activity in these tissues via the estrogen receptors (ERα, ERβ, GPR30) is described. This is followed by an update on the role of E2 during sexual differentiation of the embryo and maturation of the hen. We then also consider the implications of the recent discovery of additional E2 elevations during an extended laying cycle. Next, the specific roles of E2 in yolk formation and skeletal development are outlined. Finally, the consequences of altered E2 production in mature hens and the associated disorders are discussed. While these areas of study have been previously independently considered, this comprehensive review intends to highlight the critical roles played by E2 to alter and coordinate physiological processes in preparation for the laying cycle.
Collapse
|
8
|
Burlacu CC, Neag MA, Mitre AO, Sirbu AC, Badulescu AV, Buzoianu AD. The Role of miRNAs in Dexmedetomidine's Neuroprotective Effects against Brain Disorders. Int J Mol Sci 2022; 23:5452. [PMID: 35628263 PMCID: PMC9141783 DOI: 10.3390/ijms23105452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, homing peptides, and nanoparticles-mediated agents, all aiming to significantly provide neuroprotection in experimental and clinical studies. Dexmedetomidine (DEX), an α2 agonist commonly used as an anesthetic adjuvant for sedation and as an opioid-sparing medication, stands out in this context due to its well-established neuroprotective effects. Emerging evidence from preclinical and clinical studies suggested that DEX could be used to protect against cerebral ischemia, traumatic brain injury (TBI), spinal cord injury, neurodegenerative diseases, and postoperative cognitive disorders. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level, inhibiting the translation of mRNA into functional proteins. In vivo and in vitro studies deciphered brain-related miRNAs and dysregulated miRNA profiles after several brain disorders, including TBI, ischemic stroke, Alzheimer's disease, and multiple sclerosis, providing emerging new perspectives in neuroprotective therapy by modulating these miRNAs. Experimental studies revealed that some of the neuroprotective effects of DEX are mediated by various miRNAs, counteracting multiple mechanisms in several disease models, such as lipopolysaccharides induced neuroinflammation, β-amyloid induced dysfunction, brain ischemic-reperfusion injury, and anesthesia-induced neurotoxicity models. This review aims to outline the neuroprotective mechanisms of DEX in brain disorders by modulating miRNAs. We address the neuroprotective effects of DEX by targeting miRNAs in modulating ischemic brain injury, ameliorating the neurotoxicity of anesthetics, reducing postoperative cognitive dysfunction, and improving the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru-Constantin Sirbu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Vlad Badulescu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Ren J, Tian W, Jiang K, Wang Z, Wang D, Li Z, Yan F, Wang Y, Tian Y, Ou K, Wang H, Kang X, Li H, Liu X. Global investigation of estrogen-responsive genes regulating lipid metabolism in the liver of laying hens. BMC Genomics 2021; 22:428. [PMID: 34107898 PMCID: PMC8190866 DOI: 10.1186/s12864-021-07679-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Estrogen plays an essential role in female development and reproductive function. In chickens, estrogen is critical for lipid metabolism in the liver. The regulatory molecular network of estrogen in chicken liver is poorly understood. To identify estrogen-responsive genes and estrogen functional sites on a genome-wide scale, we determined expression profiles of mRNAs, lncRNAs, and miRNAs in estrogen-treated ((17β-estradiol)) and control chicken livers using RNA-Sequencing (RNA-Seq) and studied the estrogen receptor α binding sites by ChIP-Sequencing (ChIP-Seq). RESULTS We identified a total of 990 estrogen-responsive genes, including 962 protein-coding genes, 11 miRNAs, and 17 lncRNAs. Functional enrichment analyses showed that the estrogen-responsive genes were highly enriched in lipid metabolism and biological processes. Integrated analysis of the data of RNA-Seq and ChIP-Seq, identified 191 genes directly targeted by estrogen, including 185 protein-coding genes, 4 miRNAs, and 2 lncRNAs. In vivo and in vitro experiments showed that estrogen decreased the mRNA expression of PPARGC1B, which had been reported to be linked with lipid metabolism, by directly increasing the expression of miR-144-3p. CONCLUSIONS These results increase our understanding of the functional network of estrogen in chicken liver and also reveal aspects of the molecular mechanism of estrogen-related lipid metabolism.
Collapse
Affiliation(s)
- Junxiao Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kepeng Ou
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hongjun Wang
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
GPER1 and microRNA: Two Players in Breast Cancer Progression. Int J Mol Sci 2020; 22:ijms22010098. [PMID: 33374170 PMCID: PMC7795792 DOI: 10.3390/ijms22010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the main cause of morbidity and mortality in women worldwide. However, the molecular pathogenesis of breast cancer remains poorly defined due to its heterogeneity. Several studies have reported that G Protein-Coupled Estrogen Receptor 1 (GPER1) plays a crucial role in breast cancer progression, by binding to estrogens or synthetic agonists, like G-1, thus modulating genes involved in diverse biological events, such as cell proliferation, migration, apoptosis, and metastasis. In addition, it has been established that the dysregulation of short sequences of non-coding RNA, named microRNAs (miRNAs), is involved in various pathophysiological conditions, including breast cancer. Recent evidence has indicated that estrogens may regulate miRNA expression and therefore modulate the levels of their target genes, not only through the classical estrogen receptors (ERs), but also activating GPER1 signalling, hence suggesting an alternative molecular pathway involved in breast tumor progression. Here, the current knowledge about GPER1 and miRNA action in breast cancer is recapitulated, reporting recent evidence on the liaison of these two players in triggering breast tumorogenic effects. Elucidating the role of GPER1 and miRNAs in breast cancer might provide new tools for innovative approaches in anti-cancer therapy.
Collapse
|
11
|
Chevalier N, Hinault C, Clavel S, Paul-Bellon R, Fenichel P. GPER and Testicular Germ Cell Cancer. Front Endocrinol (Lausanne) 2020; 11:600404. [PMID: 33574796 PMCID: PMC7870790 DOI: 10.3389/fendo.2020.600404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17β-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERβ). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group. Clinical and experimental studies suggested that estrogens participate in the physiological and pathological control of male germ cell proliferation. In human seminoma cell line, while 17β-estradiol (E2) inhibits in vitro cell proliferation through an ERβ-dependent mechanism, an impermeable E2 conjugate (E2 coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein kinase A through a membrane GPCR that we further identified as GPER/GPR30. The same effect was observed with low but environmentally relevant doses of BPA, an estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically overexpressed in seminomas but not in non-seminomas and this overexpression is correlated with an ERβ-downregulation. This GPER/GPR30 overexpression could be linked to some genetic variations, as single nucleotide polymorphisms, which was also reported in other hormone-dependent cancers. We will review here the implication of GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30 as a potential therapeutic target in humans.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
- *Correspondence: Nicolas Chevalier, ;
| | - Charlotte Hinault
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| | | | | | - Patrick Fenichel
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| |
Collapse
|
12
|
Wang JJ, Huang YQ, Song W, Li YF, Wang H, Wang WJ, Huang M. Comprehensive analysis of the lncRNA‑associated competing endogenous RNA network in breast cancer. Oncol Rep 2019; 42:2572-2582. [PMID: 31638237 PMCID: PMC6826329 DOI: 10.3892/or.2019.7374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to be potential prognostic markers in a variety of cancers and to interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate target gene expression. However, the role of lncRNA‑mediated ceRNAs in breast cancer (BC) remains unclear. In the present study, a ceRNA network was generated to explore their role in BC. The expression profiles of mRNAs, miRNAs and lncRNAs in 1,109 BC tissues and 113 normal breast tissues were obtained from The Cancer Genome Atlas database (TCGA). A total of 3,198 differentially expressed (DE) mRNAs, 150 differentially DEmiRNAs and 1,043 DElncRNAs were identified between BC and normal tissues. A lncRNA‑miRNA‑mRNA network associated with BC was successfully constructed based on the combined data obtained from RNA databases, and comprised 97 lncRNA nodes, 24 miRNA nodes and 74 mRNA nodes. The biological functions of the 74 DEmRNAs were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results demonstrated that the DEmRNAs were significantly enriched in two GO biological process categories; the main biological process enriched term was 'positive regulation of GTPase activity'. By KEGG analysis, four key enriched pathways were obtained, including the 'MAPK signaling pathway', the 'Ras signaling pathway', 'prostate cancer', and the 'FoxO signaling pathway'. Kaplan‑Meier survival analysis revealed that six DElncRNAs (INC AC112721.1, LINC00536, MIR7‑3HG, ADAMTS9‑AS1, AL356479.1 and LINC00466), nine DEmRNAs (KPNA2, RACGAP1, SHCBP1, ZNF367, NTRK2, ORS1, PTGS2, RASGRP1 and SFRP1) and two DEmiRNAs (hsa‑miR‑301b and hsa‑miR‑204) had significant effects on overall survival in BC. The present results demonstrated the aberrant expression of INC AC112721.1, AL356479.1, LINC00466 and MIR7‑3HG in BC, indicating their potential prognostic role in patients with BC.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Yue-Qing Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Wei Song
- Department of Intervention and Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong 272000, P.R. China
| | - Wen-Jie Wang
- Department of Radio‑Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Min Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
13
|
Jung J. Role of G Protein-Coupled Estrogen Receptor in Cancer Progression. Toxicol Res 2019; 35:209-214. [PMID: 31341549 PMCID: PMC6629442 DOI: 10.5487/tr.2019.35.3.209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. In cancer progression, sex hormones and their receptors are thought to be major factors. Many studies have reported the effects of estrogen and estrogen receptors (ERs) in cancer development and progression. Among them, G protein-coupled estrogen receptor (GPER), a G proteincoupled receptor, has been identified as an estrogen membrane receptor unrelated to nuclear ER. The mechanism of GPER, including its biological action, function, and role, has been studied in various cancer types. In this review, we discuss the relation between GPER and estrogen or estrogen agonists/antagonists and cancer progression.
Collapse
Affiliation(s)
- Joohee Jung
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
14
|
Wu Q, Li J, Li Z, Sun S, Zhu S, Wang L, Wu J, Yuan J, Zhang Y, Sun S, Wang C. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:223. [PMID: 31138258 PMCID: PMC6537177 DOI: 10.1186/s13046-019-1210-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Emerging evidence supports the pivotal roles of adipocytes in breast cancer progression. Tumour induced beige/brown adipose tissue differentiation contributes to the hypermetabolic state of the breast cancer. However, the mediators and mechanisms remain unclear. METHODS Survival probabilities were estimated using the Kaplan-Meier method based on immunohistochemistry results. Biochemical studies were performed to characterize the novel interrelation between breast cancer cells and adipocytes. RESULTS We show that tumour-surrounding adipocytes exhibit an altered phenotype in terms of upregulated beige/brown characteristics and increased catabolism associated with an activated state characterized by the release of metabolites, including free fatty acids, pyruvate, lactate and ketone bodies. Likewise, tumour cells cocultivated with mature adipocytes exhibit metabolic adaptation and an aggressive phenotype in vitro and in vivo. Mechanistically, we show that tumour cells induce beige/brown differentiation and remodel metabolism in resident adipocytes by exosomes from the co-culture system that carry high levels of miRNA-144 and miRNA-126. miRNA-144 promotes beige/brown adipocyte characteristics by downregulating the MAP3K8/ERK1/2/PPARγ axis, and exosomal miRNA-126 remodels metabolism by disrupting IRS/Glut-4 signalling, activating the AMPK/autophagy pathway and stabilizing HIF1α expression in imminent adipocytes. In vivo inhibition of miRNA-144 or miRNA-126 decreases adipocyte-induced tumour growth. CONCLUSIONS These results demonstrate that by inducing beige/brown differentiation and enhancing catabolism in recipient adipocytes, exosomal miRNA-144 and miRNA-126 from the tumour-adipocyte interaction reprogram systemic energy metabolism to facilitate tumour progression.
Collapse
Affiliation(s)
- Qi Wu
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Juanjuan Li
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Zhiyu Li
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Si Sun
- 0000 0004 1758 2270grid.412632.0Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Shan Zhu
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Lijun Wang
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Juan Wu
- 0000 0004 1758 2270grid.412632.0Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Jingping Yuan
- 0000 0004 1758 2270grid.412632.0Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Yimin Zhang
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Shengrong Sun
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Changhua Wang
- 0000 0001 2331 6153grid.49470.3eDepartment of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430060 Hubei Province People’s Republic of China
| |
Collapse
|
15
|
Vivacqua A, Muoio MG, Miglietta AM, Maggiolini M. Differential MicroRNA Landscape Triggered by Estrogens in Cancer Associated Fibroblasts (CAFs) of Primary and Metastatic Breast Tumors. Cancers (Basel) 2019; 11:cancers11030412. [PMID: 30909585 PMCID: PMC6468788 DOI: 10.3390/cancers11030412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/22/2023] Open
Abstract
Cancer associated fibroblasts (CAFs) play a main role in breast cancer progression and metastasis. Estrogens modulate in breast CAFs the expression of microRNAs (miRNAs) that are involved in the development of many tumors. In order to provide novel insights on the regulation of miRNAs by estrogens in breast cancer, we analyzed the expression of 754 miRNAs in CAFs obtained from primary mammary tumors and CAFs derived from a cutaneous breast cancer metastasis. Using the TaqMan™ Human MicroRNA Array, we found that 17β-estradiol (E2) modulates numerous peculiar and common miRNAs in CAFs derived from primary and the metastatic malignancies. In particular, we assessed that E2 modulates 133 miRNAs (41 up and 92 downregulated) in CAFs derived from primary breast tumors, whereas E2 modulates 415 miRNAs (399 up and 16 downregulated) in CAFs derived from a cutaneous metastasis of breast carcinoma. Therefore, a number of miRNAs three times higher in metastatic CAFs with respect to primary breast CAFs was found modulated by E2. Our findings shed new light on the cumulative regulation of miRNAs by E2 in the main players of the tumor microenvironment as CAFs. Moreover, our data may be taken into consideration that is useful toward innovative prognostic and therapeutic approaches in breast cancer progression.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Maria Grazia Muoio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | | | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
16
|
G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Mol Sci 2019; 20:ijms20020306. [PMID: 30646517 PMCID: PMC6359026 DOI: 10.3390/ijms20020306] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled estrogen receptor (GPER), an alternate estrogen receptor (ER) with a structure distinct from the two canonical ERs, being ERα, and ERβ, is expressed in 50% to 60% of breast cancer tissues and has been presumed to be associated with the development of tamoxifen resistance in ERα positive breast cancer. On the other hand, triple-negative breast cancer (TNBC) constitutes 15% to 20% of breast cancers and frequently displays a more aggressive behavior. GPER is prevalent and involved in TNBC and can be a therapeutic target. However, contradictory results exist regarding the function of GPER in breast cancer, proliferative or pro-apoptotic. A better understanding of the GPER, its role in breast cancer, and the interactions with the ER and epidermal growth factor receptor will be beneficial for the disease management and prevention in the future.
Collapse
|
17
|
miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs). Cells 2018; 7:cells7110203. [PMID: 30423928 PMCID: PMC6262471 DOI: 10.3390/cells7110203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. By METABRIC database analysis we ascertained that miR-338-3p positively correlates with overall survival in breast cancer patients, according to previous studies showing that miR-338-3p may suppress the growth and invasion of different cancer cells. Well-fitting with these data, a miR-338-3p mimic sequence decreased and a miR-338-3p inhibitor sequence rescued the expression of genes and the proliferative effects induced by E2 through GPER in SkBr3 cancer cells and CAFs. Altogether, our results provide novel evidence on the molecular mechanisms by which E2 may regulate miR-338-3p toward breast cancer progression.
Collapse
|
18
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
19
|
Santolla MF, Lappano R, Cirillo F, Rigiracciolo DC, Sebastiani A, Abonante S, Tassone P, Tagliaferri P, Di Martino MT, Maggiolini M, Vivacqua A. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:94. [PMID: 29716623 PMCID: PMC5930435 DOI: 10.1186/s13046-018-0767-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023]
Abstract
Background MicroRNA (miRNAs) are non-coding small RNA molecules that regulate gene expression by inhibiting the translation of target mRNAs. Among several dysregulated miRNAs in human cancer, the up-regulation of miR-221 has been associated with development of a variety of hematologic and solid malignancies. In this study, we investigated the involvement of miR-221 in breast cancer. Methods TaqMan microRNA assay was used to detect the miR-221 levels in normal cells and in MDA-MB 231 and SkBr3 breast cancer cells as well as in main players of the tumor microenvironment, namely cancer-associated fibroblasts (CAFs). miR-221 mimic sequence and locked nucleic acid (LNA)-i-miR-221 construct were used to induce or inhibit, respectively, the miR-221 expression in cells used. Quantitative PCR and western blotting analysis were performed to evaluate the levels of the miR-221 target gene A20 (TNFAIP3), as well as the member of the NF-kB complex namely c-Rel and the connective tissue growth factor (CTGF). Chromatin immunoprecipitation (ChIP) assay was performed to ascertain the recruitment of c-Rel to the CTFG promoter. Finally, the cell growth and migration in the presence of LNA-i-miR-221 or silencing c-Rel and CTGF by specific short hairpin were assessed by cell count, colony formation and boyden chambers assays. Statistical analysis was performed by ANOVA. Results We first demonstrated that LNA-i-miR-221 inhibits both endogenous and ectopic expression of miR-221 in our experimental models. Next, we found that the A20 down-regulation, as well as the up-regulation of c-Rel induced by miR-221 were no longer evident using LNA-i-miR-221. Moreover, we established that the miR-221 dependent recruitment of c-Rel to the NF-kB binding site located within the CTGF promoter region is prevented by using LNA-i-miR-221. Furthermore, we determined that the up-regulation of CTGF mRNA and protein levels by miR-221 is no longer evident using LNA-i-miR221 and silencing c-Rel. Finally, we assessed that cell growth and migration induced by miR-221 in MDA-MB 231 and SkBr3 breast cancer cells as well as in CAFs are abolished by LNAi-miR-221 and silencing c-Rel or CTGF. Conclusions Overall, these data provide novel insights into the stimulatory action of miR-221 in breast cancer cells and CAFs, suggesting that its inhibition may be considered toward targeted therapeutic approaches in breast cancer patients.
Collapse
Affiliation(s)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Anna Sebastiani
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
20
|
Zhang L, Zhao Y, Guo L. 17β-estradiol protects INS-1 insulinoma cells from mitophagy via G protein-coupled estrogen receptors and the PI3K/Akt signaling pathway. Int J Mol Med 2018; 41:2839-2846. [PMID: 29436590 DOI: 10.3892/ijmm.2018.3470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/29/2017] [Indexed: 11/06/2022] Open
Abstract
17β-estradiol (17β-E2) is a steroid hormone that is known to exert effects on blood glucose homeostasis. The G protein‑coupled estrogen receptor (GPER) has been identified as a non-genomic estrogenic receptor, and is involved in numerous physiological processes, including cell survival, energy provision and metabolism. 17β-E2 may decrease apoptosis by binding to the GPER. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is involved in physiological and pathological functions such as autophagy. The purpose of the present study was to investigate the role of the PI3K/Akt signaling pathway in the mediation of the effects of GPERs, and the effects of 17β-E2 on mitophagy in INS-1 cells, a rat insulin‑secreting β-cell line. In vitro, INS-1 cells were treated with different concentrations of 17β-E2 with and without pretreatment with a GPER antagonist (G15) or PI3K antagonist (LY294002) and compared with a negative control. An immunofluorescence assay demonstrated that GPERs are expressed in INS-1 cells. Western blot assays demonstrated that 17β-E2 increased GPER levels and the phosphorylation of Akt. Transmission electronic microscopy revealed that 17β-E2 reduced the formation of mitophagosomes and autophagosomes in INS-1 cells. An immunofluorescence staining assay indicated that the co-localization of translocase of mitochondrial outer membrane complex 20 (TOM20) with lysosomal-associated membrane protein 2 (LAMP2) was decreased in INS-1 cells treated with 17β-E2 alone. Western blotting demonstrated that 17β-E2 reduced the protein levels of activated microtubule-associated protein-1 light chain 3, and increased those of TOM20 and mitochondrial heat-shock protein 60. Notably, the protective effects of 17β-E2 were significantly diminished by G15 or LY294002. In conclusion, the present study suggests that 17β-E2 activates the PI3K/Akt pathway via the GPER in INS-1 cells. Furthermore, 17β-E2 may be involved in mitophagy by the regulating the GPER/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Endocrinology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuyan Zhao
- Department of Endocrinology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Guo
- Department of Orthopedic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
21
|
Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 2018; 176:49-56. [PMID: 28249728 DOI: 10.1016/j.jsbmb.2017.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The aggressiveness of breast tumors is deeply influenced by the surrounding stroma. In this regard, the functional crosstalk between cancer cells and the tumor microenvironment has received considerable attention in recent years. Cancer-associated fibroblasts (CAFs) are active components of the tumor stroma as they play a main role in the initiation, progression, metastasis and recurrence of breast malignancy. Hence, a better understanding of the mechanisms through which host stroma may contribute to cancer development would lead to novel therapeutic approaches aimed to target both tumor cells and the adjacent microenvironment. The G protein estrogen receptor (GPER/GPR30) has been involved in estrogenic signaling in normal and malignant cells, including breast cancer. It is noteworthy that the potential of GPER to mediate stimulatory effects of estrogens has been also shown in CAFs derived from patients with breast tumors, suggesting that GPER may act at the cross-road between cancer cells and these important components of the tumor microenvironment. This review recapitulates recent findings underlying the breast tumor-promoting action of CAFs, in particular their functional liaison with breast cancer cells via GPER toward the occurrence of malignant features.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
22
|
Lappano R, Malaguarnera R, Belfiore A, Maggiolini M. Recent advances on the stimulatory effects of metals in breast cancer. Mol Cell Endocrinol 2017; 457:49-56. [PMID: 27765682 DOI: 10.1016/j.mce.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
Certain environmental chemicals may accumulate in human serum and tissues eliciting estrogenic and/or carcinogenic effects. Therefore, there is heightened interest in determining whether environmental chemicals may increase the risk for endocrine-related tumors like breast cancer. For instance, metals as cadmium, zinc, copper, iron, nickel and aluminum have been shown to mimic estrogen action. Moreover, the exposure to these chemicals has been reported to stimulate diverse malignancies including breast cancer, which is the most common tumor in women worldwide. In this review, we summarize the epidemiologic and experimental evidence regarding the association between the exposure to some trace elements and breast cancer risk. We also address recent insights on the molecular mechanisms involved by metals in breast tumorigenesis.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
23
|
Hong D, Messier TL, Tye CE, Dobson JR, Fritz AJ, Sikora KR, Browne G, Stein JL, Lian JB, Stein GS. Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget 2017; 8:17610-17627. [PMID: 28407681 PMCID: PMC5392273 DOI: 10.18632/oncotarget.15381] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 11/28/2022] Open
Abstract
Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFβ signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFβ and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.
Collapse
Affiliation(s)
- Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.,Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terri L Messier
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jason R Dobson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kenneth R Sikora
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Gillian Browne
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
24
|
GPER-novel membrane oestrogen receptor. Clin Sci (Lond) 2017; 130:1005-16. [PMID: 27154744 DOI: 10.1042/cs20160114] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
The recent discovery of the G protein-coupled oestrogen receptor (GPER) presents new challenges and opportunities for understanding the physiology, pathophysiology and pharmacology of many diseases. This review will focus on the expression and function of GPER in hypertension, kidney disease, atherosclerosis, vascular remodelling, heart failure, reproduction, metabolic disorders, cancer, environmental health and menopause. Furthermore, this review will highlight the potential of GPER as a therapeutic target.
Collapse
|
25
|
Yu T, Yang G, Hou Y, Tang X, Wu C, Wu XA, Guo L, Zhu Q, Luo H, Du YE, Wen S, Xu L, Yin J, Tu G, Liu M. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 2017; 36:2131-2145. [PMID: 27721408 DOI: 10.1038/onc.2016.370] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
Multiple drug resistance is a challenging issue in the clinic. There is growing evidence that the G-protein-coupled estrogen receptor (GPER) is a novel mediator in the development of multidrug resistance in both estrogen receptor (ER)-positive and -negative breast cancers, and that cancer-associated fibroblasts (CAFs) in the tumor microenvironment may be a new agent that promotes drug resistance in tumor cells. However, the role of cytoplasmic GPER of CAFs on tumor therapy remains unclear. Here we first show that the breast tumor cell-activated PI3K/AKT (phosphoinositide 3-kinase/AKT) signaling pathway induces the cytoplasmic GPER translocation of CAFs in a CRM1-dependent pattern, and leads to the activation of a novel estrogen/GPER/cAMP/PKA/CREB signaling axis that triggers the aerobic glycolysis switch in CAFs. The glycolytic CAFs feed the extra pyruvate and lactate to tumor cells for augmentation of mitochondrial activity, and this energy metabolically coupled in a 'host-parasite relationship' between catabolic CAFs and anabolic cancer cells confers the tumor cells with multiple drug resistance to several conventional clinical treatments including endocrine therapy (tamoxifen), Her-2-targeted therapy (herceptin) and chemotherapy (epirubicin). Moreover, the clinical data from 18F-fluorodeoxyglucose positron emission tomography/computed tomography further present a strong association between the GPER/cAMP/PKA/CREB pathway of stromal fibroblasts with tumor metabolic activity and clinical treatment, suggesting that targeting cytoplasmic GPER in CAFs may rescue the drug sensitivity in patients with breast cancer. Thus, our data define novel insights into the stromal GPER-mediated multiple drug resistance from the point of reprogramming of tumor energy metabolism and provide the rationale for CAFs as a promising target for clinical therapy.
Collapse
Affiliation(s)
- T Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - G Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y Hou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - X Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - C Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X-A Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - L Guo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Q Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - H Luo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y-E Du
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - S Wen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - L Xu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - J Yin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - G Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - M Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Wang Z, Tan Y, Yu W, Zheng S, Zhang S, Sun L, Ding K. Small role with big impact: miRNAs as communicators in the cross-talk between cancer-associated fibroblasts and cancer cells. Int J Biol Sci 2017; 13:339-348. [PMID: 28367098 PMCID: PMC5370441 DOI: 10.7150/ijbs.17680] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer microenvironment is composed of numerous components that can support cancer cell proliferation, promote cancer progression and contribute to cancer treatment resistance. The major components of caner microenvironment are fibroblasts, endothelial cells, immune cells as well as cytokines, chemokines, and extracellular matrix (ECM) all of which surround tumor cells as the core and cross talk with each other. Among them, cancer-associated fibroblasts (CAFs) play an important role in promoting cancer progression by secreting various pro-inflammatory factors. MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein expression both in cancer cell and normal stromal cells. Changes of miRNAs expression in cancer-associated fibroblasts can be induced both by cancer cells and other stromal cells. This change can arise through direct interaction or by secreted paracrine factors or even by secreted miRNAs. The desregulated miRNAs in cancer-associated fibroblasts then enhance the CAFs phenotype and assist their cancer promotion ability. Explore the regulatory function of miRNAs in the complex communication between cancer cells and cancer microenvironment is important to understand the process of tumor progression and may help to develop new therapeutic strategies. This review provides an updated content of latest research advances about the relevance of miRNAs in the interaction between cancer cells and the CAFs. We will describe miRNAs which are differential expressed by NFs and CAFs, their function in regulating fibroblasts activation as well as miRNAs expressed in CAFs as prognostic factors in cancer stroma in recent studies. We will also discuss miRNA as an important player in CAFs mediated regulation of cancer progression and metastasis, cancer metabolism, cancer stem cell property and chemoresistance.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Surgical Oncology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China.; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Yinuo Tan
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Wei Yu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Lifeng Sun
- Department of Surgical Oncology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China.; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Kefeng Ding
- Department of Surgical Oncology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China.; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
27
|
Wilson C, Brown H, Holen I. The endocrine influence on the bone microenvironment in early breast cancer. Endocr Relat Cancer 2016; 23:R567-R576. [PMID: 27687494 DOI: 10.1530/erc-16-0238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
Multiple factors influence the survival of disseminated breast tumour cells (DTCs) in bone. Whereas gene signature studies have identified genes that predict a propensity of tumours to metastasise to bone, the bone environment is key in determining the fate of these tumour cells. Breast cancer cells locate to specific niches within the bone that support their survival, regulated by host factors within the bone microenvironment including bone cells, cells of the bone micro vasculature, immune cells and the extracellular matrix. Reproductive endocrine hormones that affect bone and clinical studies across the menopausal transition have provided comprehensive understanding of the changes in the bone microenvironment during this time. Menopause is characterized by a decrease in ovarian oestradiol and inhibins, with an increase in pituitary follicle-stimulating hormone and this review will focus on the role of these three hormones in determining the fate of DTCs in bone. Both in vivo and clinical data suggest that premenopausal bone is a conducive environment for growth of breast cancer cells in bone. Adjuvant cancer treatment aims to reduce the risk of tumour recurrence by affecting DTCs. Drugs targeting the bone resorbing osteoclasts, such as bisphosphonates, have therefore been evaluated in this setting. Both preclinical and adjuvant clinical studies have shown that bisphosphonates' ability to decrease tumour growth in bone is influenced by the levels of endocrine hormones, with enhanced effects in a postmenopausal bone microenvironment. The challenge is to understand the molecular mechanisms behind this phenomenon and to evaluate if alternative adjuvant bone-targeted therapies may be effective in premenopausal women.
Collapse
Affiliation(s)
- Caroline Wilson
- Academic Unit of Clinical OncologyWeston Park Hospital, University of Sheffield, Sheffield, UK
| | - Hannah Brown
- Department of Oncology and MetabolismUniversity of Sheffield, Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and MetabolismUniversity of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget 2016; 7:94-111. [PMID: 26646587 PMCID: PMC4807985 DOI: 10.18632/oncotarget.6475] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022] Open
Abstract
Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.
Collapse
|
29
|
Onco-GPCR signaling and dysregulated expression of microRNAs in human cancer. J Hum Genet 2016; 62:87-96. [PMID: 27734836 DOI: 10.1038/jhg.2016.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
The G-protein-coupled receptor (GPCR) family is the largest family of cell-surface receptors involved in signal transduction. Aberrant expression of GPCRs and G proteins are frequently associated with prevalent human diseases, including cancer. In fact, GPCRs represent the therapeutic targets of more than a quarter of the clinical drugs currently on the market. MiRNAs (miRNAs) are also aberrantly expressed in many human cancers, and they have significant roles in the initiation, development and metastasis of human malignancies. Recent studies have revealed that dysregulation of miRNAs and their target genes expression are associated with cancer progression. The emerging information suggests that miRNAs play an important role in the fine tuning of many signaling pathways, including GPCR signaling. We summarize our current knowledge of the individual functions of miRNAs regulated by GPCRs and GPCR signaling-associated molecules, and miRNAs that regulate the expression and activity of GPCRs, their endogenous ligands and their coupled heterotrimeric G proteins in human cancer.
Collapse
|
30
|
Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, De Marco P, Cirillo F, Cappello AR, Dolce V, Belfiore A, Maggiolini M, De Francesco EM. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget 2016; 6:34158-77. [PMID: 26415222 PMCID: PMC4741443 DOI: 10.18632/oncotarget.5779] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023] Open
Abstract
Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.
Collapse
Affiliation(s)
| | - Andrea Scarpelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Assunta Pisano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | |
Collapse
|
31
|
Jacenik D, Cygankiewicz AI, Krajewska WM. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation. Mol Cell Endocrinol 2016; 429:10-8. [PMID: 27107933 DOI: 10.1016/j.mce.2016.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Adam I Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
32
|
Nwaneri AC, McBeth L, Hinds TD. Sweet-P inhibition of glucocorticoid receptor β as a potential cancer therapy. CANCER CELL & MICROENVIRONMENT 2016; 3:e1362. [PMID: 27468424 PMCID: PMC4959805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The need for the development of new cancer therapies and push for the design of new targeting techniques is on the rise, and would be useful for cancers that are resistant to current drug treatments. The understanding of the genome has significantly advanced cancer therapy, as well as prevention and earlier detection. This research highlight discusses a potential new type of cancer-targeting molecule, Sweet-P, which is the first of its kind. Sweet-P specifically targets the microRNA-144 binding site in the 3' untranslated region (3' UTR) of the human glucocorticoid receptor β (GRβ), which has been demonstrated to increase expression. GRβ has been shown to be highly expressed in cells from solid tumors of uroepithelial carcinomas, gliomas, osteosarcomas, and hepatocellular carcinomas, as well as in liquid tumor cells from leukemia patients. In non-cancerous diseases, GRβ has been shown to be highly expressed in glucocorticoid-resistant asthma. These maladies brought the need for the development of the Sweet-P anti-GRβ molecule. Sweet-P was shown to repress the migration of bladder cancer cells, and may serve as a new therapeutic for GRβ-related diseases.
Collapse
|
33
|
Lappano R, Rosano C, Pisano A, Santolla MF, De Francesco EM, De Marco P, Dolce V, Ponassi M, Felli L, Cafeo G, Kohnke FH, Abonante S, Maggiolini M. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models. Dis Model Mech 2015; 8:1237-46. [PMID: 26183213 PMCID: PMC4610237 DOI: 10.1242/dmm.021071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Camillo Rosano
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Assunta Pisano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | | | - Paola De Marco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Vincenza Dolce
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Marco Ponassi
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Lamberto Felli
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Grazia Cafeo
- Department of Chemical Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Marcello Maggiolini
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| |
Collapse
|
34
|
Santolla MF, Avino S, Pellegrino M, De Francesco EM, De Marco P, Lappano R, Vivacqua A, Cirillo F, Rigiracciolo DC, Scarpelli A, Abonante S, Maggiolini M. SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis 2015. [PMID: 26225773 PMCID: PMC4650744 DOI: 10.1038/cddis.2015.201] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of tumors exhibit an altered expression of sirtuins, including NAD+-dependent histone deacetylase silent information regulator 1 (SIRT1) that may act as a tumor suppressor or tumor promoter mainly depending on the tumor types. For instance, in breast cancer cells SIRT1 was shown to exert an essential role toward the oncogenic signaling mediated by the estrogen receptor-α (ERα). In accordance with these findings, the suppression of SIRT1 led to the inhibition of the transduction pathway triggered by ERα. As the regulation of SIRT1 has not been investigated in cancer cells lacking ER, in the present study we ascertained the expression and function of SIRT1 by estrogens in ER-negative breast cancer cells and cancer-associated fibroblasts obtained from breast cancer patients. Our results show that 17β-estradiol (E2) and the selective ligand of GPER, namely G-1, induce the expression of SIRT1 through GPER and the subsequent activation of the EGFR/ERK/c-fos/AP-1 transduction pathway. Moreover, we demonstrate that SIRT1 is involved in the pro-survival effects elicited by E2 through GPER, like the prevention of cell cycle arrest and cell death induced by the DNA damaging agent etoposide. Interestingly, the aforementioned actions of estrogens were abolished silencing GPER or SIRT1, as well as using the SIRT1 inhibitor Sirtinol. In addition, we provide evidence regarding the involvement of SIRT1 in tumor growth stimulated by GPER ligands in breast cancer cells and xenograft models. Altogether, our data suggest that SIRT1 may be included in the transduction network activated by estrogens through GPER toward the breast cancer progression.
Collapse
Affiliation(s)
- M F Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - S Avino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - M Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - E M De Francesco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - P De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - R Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - A Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - F Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - D C Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - A Scarpelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - S Abonante
- Breast Cancer Unit, Regional Hospital, Cosenza, Italy
| | - M Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|