1
|
Sicurella M, De Chiara M, Neri LM. Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death. Cells 2025; 14:269. [PMID: 39996741 PMCID: PMC11853774 DOI: 10.3390/cells14040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These pathways are often dysregulated in leukemia cells, leading to increased cell growth, survival, and drug resistance while also impairing mechanisms of cell death. In leukemia, the Hh pathway can be abnormally activated by genetic mutations. Additionally, the PI3K/Akt/mTOR pathway is frequently overactive due to genetic changes. A key aspect of these pathways is their interaction: activation of the PI3K/Akt pathway can trigger a non-canonical activation of the Hh pathway, which further promotes leukemia cell growth and survival. Targeted inhibitors of these pathways, such as Gli inhibitors and PI3K/mTOR inhibitors, have shown promise in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Marica De Chiara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- LTTA-Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Yang S, Liu Y, Zhang B, Li J, Xu F, Yu M, Chen Y, Li C, Liu T, Zhao Y, Zhao Q, Zhang J. GRHPR, Targeted by miR-138-5p, Inhibits the Proliferation and Metastasis of Hepatocellular Carcinoma Through PI3K/AKT Signaling Pathway. Cancer Biother Radiopharm 2024; 39:733-744. [PMID: 38934120 DOI: 10.1089/cbr.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly aggressive cancer. This study elucidates the role of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR) in HCC proliferation and metastasis, along with its molecular mechanism, and identifies miRNAs targeting GRHPR. Materials and Methods: Expression levels of GRHPR and miR-138-5p were assessed using real-time fluorescent quantitative polymerase chain reaction and Western blot techniques. Bioinformatic analysis was employed to identify miRNAs targeting GRHPR, and the results were confirmed via dual-luciferase reporter assays. HCC cell lines overexpressing GRHPR were established to investigate its roles in cell proliferation, migration, and invasion. The biological function of miR-138-5p targeting GRHPR in HCC cells was also evaluated. Furthermore, a xenograft mouse model was utilized to examine the in vivo functions of GRHPR. Results: GRHPR expression was downregulated in HCC, whereas miR-138-5p was upregulated. Overexpression of GRHPR suppressed HCC cell proliferation, migration, and invasion. Conversely, inhibition of GRHPR by miR-138-5p promoted HCC cell proliferation and invasive properties. MiR-138-5p was found to regulate Phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) phosphorylation levels by inhibiting GRHPR expression. Conclusion: This study highlights GRHPR's role as a tumor suppressor in HCC, with its function being regulated by miR-138-5p.
Collapse
Affiliation(s)
- Shuangshuang Yang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yixian Liu
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Bushi Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxia Li
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Xu
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Mengdan Yu
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Chen
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Chenglong Li
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Liu
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Zhao
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianwei Zhao
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Jintao Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
4
|
Wang R, Liao Z, Liu C, Yu S, Xiang K, Wu T, Feng J, Ding S, Yu T, Cheng G, Li S. CRABP2 promotes cell migration and invasion by activating PI3K/AKT and MAPK signalling pathways via upregulating LAMB3 in prostate cancer. J Biochem 2024; 176:313-324. [PMID: 39038078 DOI: 10.1093/jb/mvae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Prostate cancer (PCa) has become a worldwide health burden among men. Previous studies have suggested that cellular retinoic acid binding protein 2 (CRABP2) significantly affects the regulation of cell proliferation, motility and apoptosis in multiple cancers; however, the effect of CRABP2 on PCa is poorly reported. CRABP2 expression in different PCa cell lines and its effect on different cellular functions varied. While CRABP2 promotes cell migration and invasion, it appears to inhibit cell proliferation specifically in PC-3 cells. However, the proliferation of DU145 and 22RV1 cells did not appear to be significantly affected by CRABP2. Additionally, CRABP2 had no influence on the cell cycle distribution of PCa cells. The RNA-seq assay showed that overexpressing CRABP2 upregulated laminin subunit beta-3 (LAMB3) mRNA expression, and the enrichment analyses revealed that the differentially expressed genes were enriched in the phosphoinositide 3-kinase (PI3K)/activated protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signalling pathways. The following western blot experiments also confirmed the upregulated LAMB3 protein level and the activation of the PI3K/AKT and MAPK signalling pathways. Moreover, overexpressing CRABP2 significantly inhibited tumour growth in vivo. In conclusion, CRABP2 facilitates cell migration and invasion by activating PI3K/AKT and MAPK signalling pathways through upregulating LAMB3 in PCa.
Collapse
Affiliation(s)
- Rui Wang
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Zhaoping Liao
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Chunhua Liu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Shifang Yu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Kaihua Xiang
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Ting Wu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Jie Feng
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Senjuan Ding
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Tingao Yu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Gang Cheng
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Sanlian Li
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
5
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol 2024; 12:1461278. [PMID: 39239563 PMCID: PMC11374643 DOI: 10.3389/fcell.2024.1461278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer continues to be a deadly disease because of its delayed diagnosis and aggressive tumor biology. Oncogenes and risk factors are being reported to influence the signaling pathways involved in pancreatic embryogenesis leading to pancreatic cancer genesis. Although studies using rodent models have yielded insightful information, the scarcity of human pancreatic tissue has made it difficult to comprehend how the human pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS, Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are directing pancreatic organogenesis. Any derangements in the above pathways may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes, and the mutations in TP53 and somatic loss of CDKN2A are the drivers of pancreatic cancer. This review clarifies the complex signaling mechanism involved in pancreatic cancer, the same signaling pathways in pancreas development, the current therapeutic approach targeting signaling molecules, and the mechanism of action of risk factors in promoting pancreatic cancer.
Collapse
Affiliation(s)
- Sashikanta Swain
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ravi Kant Narayan
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | | |
Collapse
|
7
|
Huang L, Sun J, Ma Y, Chen H, Tian C, Dong M. MSI2 regulates NLK-mediated EMT and PI3K/AKT/mTOR pathway to promote pancreatic cancer progression. Cancer Cell Int 2024; 24:273. [PMID: 39097735 PMCID: PMC11297748 DOI: 10.1186/s12935-024-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND The incidence of pancreatic cancer is increasing by years, and the 5-year survival rate is very low. Our team have revealed that Musashi2 (MSI2) could promote aggressive behaviors in pancreatic cancer by downregulating Numb and p53. MSI2 also facilitates EMT in pancreatic cancer induced by EGF through the ZEB1-ERK/MAPK signaling pathway. This study aims to further explore the molecular mechanisms of MSI2-regulated downstream pathways in pancreatic cancer. METHODS In vitro and in vivo experiments were conducted to investigate the role and mechanism of MSI2 in promoting malignant behaviors of pancreatic cancer through regulation of NLK. RESULTS Genes closely related to MSI2 were screened from the GEPIA and TCGA databases. We found that NLK showed the most significant changes in mRNA levels with consistent changes following MSI2 interference and overexpression. The high correlation between MSI2 and NLK was also observed at the protein level. Multivariate analysis revealed that both MSI2 and NLK were independent adverse indicators of survival in pancreatic cancer patients, as well as join together. In vitro, silencing or overexpressing NLK altered cell invasion and migration, by regulating EMT and the PI3K-AKT-mTOR pathway. Silencing MSI2 reduced protein expression in the EMT and PI3K-AKT-mTOR pathways, leading to decreased cell invasion and migration abilities, while these effects could be reversed by overexpression of NLK. In vivo, MSI2 silencing inhibited liver metastasis, which could be reversed by overexpressing NLK. Mechanistically, MSI2 directly binds to the translation regulatory region of NLK mRNA at positions 79-87 nt, enhancing its transcriptional activity and exerting post-transcriptional regulatory roles. The analysis of molecular docking showed the close relationship between MSI2 and NLK in pancreatic cancer patients. CONCLUSIONS Our findings elucidate the regulatory mechanisms of the MSI2-NLK axis in modulating aggressive behaviors of pancreatic cancer cells, which providing new evidence for therapeutic strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Longping Huang
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
- Department of Gastroenterology and Hepatology, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - He Chen
- Department of Gastroenterology and Hepatology, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Chen Tian
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Golivi Y, Kumari S, Farran B, Alam A, Peela S, Nagaraju GP. Small molecular inhibitors: Therapeutic strategies for pancreatic cancer. Drug Discov Today 2024; 29:104053. [PMID: 38849028 DOI: 10.1016/j.drudis.2024.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Pancreatic cancer (PC), a disease with high heterogeneity and a dense stromal microenvironment, presents significant challenges and a bleak prognosis. Recent breakthroughs have illuminated the crucial interplay among RAS, epidermal growth factor receptor (EGFR), and hedgehog pathways in PC progression. Small molecular inhibitors have emerged as a potential solution with their advantages of oral administration and the ability to target intracellular and extracellular sites effectively. However, despite the US FDA approving over 100 small-molecule targeted antitumor drugs, challenges such as low response rates and drug resistance persist. This review delves into the possibility of using small molecules to treat persistent or spreading PC, highlighting the challenges and the urgent need for a diverse selection of inhibitors to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Yuvasri Golivi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India
| | - Batoul Farran
- Department of Hematology and Oncology, Henry Ford Health, Detroit, MI 48202, USA
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B. R. Ambedkar University, Srikakulam, Andhra Pradesh, 532001, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
9
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Zheng Y, Xiong Q, Yang Y, Ma Y, Zhu Q. Identified γ-glutamyl cyclotransferase (GGCT) as a novel regulator in the progression and immunotherapy of pancreatic ductal adenocarcinoma through multi-omics analysis and experiments. J Cancer Res Clin Oncol 2024; 150:318. [PMID: 38914714 PMCID: PMC11196309 DOI: 10.1007/s00432-024-05789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is renowned for its formidable and lethal nature, earning it a notorious reputation among malignant tumors. Due to its challenging early diagnosis, high malignancy, and resistance to chemotherapy drugs, the treatment of pancreatic cancer has long been exceedingly difficult in the realm of oncology. γ-Glutamyl cyclotransferase (GGCT), a vital enzyme in glutathione metabolism, has been implicated in the proliferation and progression of several tumor types, while the biological function of GGCT in pancreatic ductal adenocarcinoma remains unknown. METHODS The expression profile of GGCT was validated through western blotting, immunohistochemistry, and RT-qPCR in both pancreatic cancer tissue samples and cell lines. Functional enrichment analyses including GSVA, ssGSEA, GO, and KEGG were conducted to explore the biological role of GGCT. Additionally, CCK8, Edu, colony formation, migration, and invasion assays were employed to evaluate the impact of GGCT on the proliferation and migration abilities of pancreatic cancer cells. Furthermore, the LASSO machine learning algorithm was utilized to develop a prognostic model associated with GGCT. RESULTS Our study revealed heightened expression of GGCT in pancreatic cancer tissues and cells, suggesting an association with poorer patient prognosis. Additionally, we explored the immunomodulatory effects of GGCT in both pan-cancer and pancreatic cancer contexts, found that GGCT may be associated with immunosuppressive regulation in various types of tumors. Specifically, in patients with high expression of GGCT in pancreatic cancer, there is a reduction in the infiltration of various immune cells, leading to poorer responsiveness to immunotherapy and worse survival rates. In vivo and in vitro assays indicate that downregulation of GGCT markedly suppresses the proliferation and metastasis of pancreatic cancer cells. Moreover, this inhibitory effect appears to be linked to the regulation of GGCT on c-Myc. A prognostic model was constructed based on genes derived from GGCT, demonstrating robust predictive ability for favorable survival prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Chen S, Zhou B, Huang W, Li Q, Yu Y, Kuang X, Huang H, Wang W, Xie P. The deubiquitinating enzyme USP44 suppresses hepatocellular carcinoma progression by inhibiting Hedgehog signaling and PDL1 expression. Cell Death Dis 2023; 14:830. [PMID: 38097536 PMCID: PMC10721641 DOI: 10.1038/s41419-023-06358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignancies in the world. Research into the key genes that maintain the malignant behavior of cancer cells is crucial for the treatment of HCC. Here, we identified ubiquitin-specific peptidase 44 (USP44), a member of the deubiquitinase family, as a novel regulator of HCC progression. The tumor suppressive function of USP44 was evaluated in a series of in vitro and in vivo experiments. Through quantitative proteomics examination, we demonstrated that USP44 inhibits HCC PDL1 expression by downregulating the Hedgehog (Hh) signaling pathway. Mechanistically, we found that USP44 directly interacts with Itch, an E3 ligase involved in Hh signaling, and promotes the deubiquitination and stabilization of Itch. These events result in the proteasomal degradation of Gli1 and subsequent inactivation of Hh signaling, which ultimately suppresses PDL1 expression and the progression of HCC. Furthermore, the HCC tissue microarray was analyzed by immunohistochemistry to evaluate the pathological relevance of the USP44/Itch/Gli1/PDL1 axis. Finally, the Gli1 inhibitor GANT61 was found to act in synergy with anti-PDL1 therapy. Overall, USP44 can act as a suppressive gene in HCC by modulating Hh signaling, and co-inhibition of Gli1 and PDL1 might be an effective novel combination strategy for treating HCC patients.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Binghai Zhou
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Ye Yu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xiuqing Kuang
- Department of Physical Examination, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Huabin Huang
- Department of Medical Imaging, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Wei Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
13
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Roy SK, Srivastava S, Hancock A, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Inhibition of ribosome assembly factor PNO1 by CRISPR/Cas9 technique suppresses lung adenocarcinoma and Notch pathway: Clinical application. J Cell Mol Med 2023; 27:365-378. [PMID: 36625087 PMCID: PMC9889701 DOI: 10.1111/jcmm.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial-mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
| | | | - Andrew Hancock
- Department of Molecular and Cellular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Rakesh K. Srivastava
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
15
|
Yan X, Jia H, Zhao J. LncRNA MEG3 attenuates the malignancy of retinoblastoma cells through inactivating PI3K /Akt/mTOR signaling pathway. Exp Eye Res 2023; 226:109340. [PMID: 36476400 DOI: 10.1016/j.exer.2022.109340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Retinoblastoma (RB) is the most common neoplasm found in the eye of children. There are increasing interests to develop targeted gene therapy for this disease. This study was performed to investigate the impact of long non-coding RNA (lncRNA) MEG3 on the biological features of RB cells. Vector overexpressing MEG3 was constructed and introduced into two RB cell lines. Transfected RB cells were assessed for proliferation, apoptosis, migration ability, expression levels of important genes in the PI3K/Akt/mTOR signaling pathway using qRT-PCR and Western blot analysis. Xenograft mouse models were constructed to determine the tumorigenicity of RB cells overexpressing MEG3. MEG3 mRNA level was significantly lower in RB cells than in non-cancer cells (p < 0.01). Overexpressing MEG3 resulted in significant reduction in cell proliferation (p < 0.05), migration (p < 0.01) and significant increase in apoptosis (p < 0.01). After overexpressing MEG3, p-PI3K, p-Akt and p-mTOR levels were significantly downregulated (p < 0.01). Furthermore, in the xenograft model, RB cells overexpressing MEG3 generated significantly smaller tumors as compared to RB cells that did not overexpress MEG3 (p < 0.05). Our data suggest that MEG3 increases apoptosis and reduces tumorigenicity of RB cells through inactivating the PI3K/Akt/mTOR pathway. Therefore, MEG3 could be further investigated as a potential new therapeutic agent and target for RB therapy.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Ophthalmology, Handan Central Hospital, Handan, China
| | - Haibo Jia
- Department of Neurosurgery, Handan Central Hospital, Handan, China.
| | - Junbo Zhao
- Department of Ophthalmology, Handan Central Hospital, Handan, China
| |
Collapse
|
16
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
17
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
18
|
Garg R, Melstrom L, Chen J, He C, Goel A. Targeting FTO Suppresses Pancreatic Carcinogenesis via Regulating Stem Cell Maintenance and EMT Pathway. Cancers (Basel) 2022; 14:cancers14235919. [PMID: 36497402 PMCID: PMC9737034 DOI: 10.3390/cancers14235919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification regulating cancer self-renewal. However, despite its functional importance and prognostic implication in tumorigenesis, the relevance of FTO, an m6A eraser, in pancreatic cancer (PC) remains elusive. Here, we establish the oncogenic role played by FTO overexpression in PC. FTO is upregulated in PC cells compared to normal human pancreatic ductal epithelial (HPDE) cells. Both RNAi depletion and CS1-mediated pharmacological inhibition of FTO caused a diminution of PC cell proliferation via cell cycle arrest in the G1 phase and p21cip1 and p27kip1 induction. While HPDE cells remain insensitive to CS1 treatment, FTO overexpression confers enhancements in growth, motility, and EMT transition, thereby inculcating tumorigenic properties in HPDE cells. Notably, shRNA-mediated FTO depletion in PC cells impairs their mobility and invasiveness, leading to EMT reversal. Mechanistically, this was associated with impaired tumorsphere formation and reduced expression of CSCs markers. Furthermore, FTO depletion in PC cells weakened their tumor-forming capabilities in nude mice; those tumors had increased apoptosis, decreased proliferation markers, and MET conversion. Collectively, our study demonstrates the functional importance of FTO in PC and the maintenance of CSCs via EMT regulation. Thus, FTO may represent an attractive therapeutic target for PC.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Monrovia, CA 91010, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91010, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Monrovia, CA 91010, USA
- Correspondence:
| |
Collapse
|
19
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|
20
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
21
|
MYH9 is a novel cancer stem cell marker and prognostic indicator in esophageal cancer that promotes oncogenesis through the PI3K/AKT/mTOR axis. Cell Biol Int 2022; 46:2085-2094. [DOI: 10.1002/cbin.11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
|
22
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Fath MK, Ebrahimi M, Nourbakhsh E, Hazara AZ, Mirzaei A, Shafieyari S, Salehi A, Hoseinzadeh M, Payandeh Z, Barati G. PI3K/Akt/mTOR Signaling Pathway in Cancer Stem Cells. Pathol Res Pract 2022; 237:154010. [DOI: 10.1016/j.prp.2022.154010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
|
24
|
Zi D, Li Q, Xu CX, Zhou ZW, Song GB, Hu CB, Wen F, Yang HL, Nie L, Zhao X, Tan J, Zhou SF, He ZX. CXCR4 knockdown enhances sensitivity of paclitaxel via the PI3K/Akt/mTOR pathway in ovarian carcinoma. Aging (Albany NY) 2022; 14:4673-4698. [PMID: 35681259 PMCID: PMC9217704 DOI: 10.18632/aging.203241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy. EOC control remains difficult, and EOC patients show poor prognosis regarding metastasis and chemotherapy resistance. The aim of this study was to estimate the effect of CXCR4 knockdown-mediated reduction of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) stemness and enhancement of chemotherapy sensitivity in EOC. Mechanisms contributing to these effects were also explored. Our data showed distinct contribution of CXCR4 overexpression by dependent PI3K/Akt/mTOR signaling pathway in EOC development. CXCR4 knockdown resulted in a reduction in CSCs and EMT formation and enhancement of chemotherapy sensitivity in tumor cells, which was further advanced by blocking CXCR4-PI3K/Akt/mTOR signaling. This study also documented the critical role of silencing CXCR4 in sensitizing ovarian CSCs to chemotherapy. Thus, targeting CXCR4 to suppress EOC progression, specifically in combination with paclitaxel (PTX) treatment, may have clinical application value.
Collapse
Affiliation(s)
- Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Endemic and Ethnic Diseases and Key Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Yuzhong 40042, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Cheng-xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Yuzhong 40042, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guan-Bin Song
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Bin Hu
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Fang Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Han-Lin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Lei Nie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases and Key Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Zhi-Xu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
25
|
Liu Y, Wang R, Han H, Li L. Tubastatin A suppresses the proliferation of fibroblasts in epidural fibrosis through phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway. J Pharm Pharmacol 2022; 74:rgab106. [PMID: 35230444 DOI: 10.1093/jpp/rgab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES This study was designed to explore the effect of tubastatin A (Tub A) on epidural fibrosis and the underlying mechanism. METHODS Histone deacetylase 6 (HDAC6)-overexpressed fibroblasts were constructed, and the effect of Tub A on the proliferation of activated fibroblasts was detected by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU) and cell cycle assay. Besides, 20 Sprague-Dawley rats were subjected to animal laminectomy model construction and then randomly treated with 4% dimethyl sulfoxide (DMSO) (diluted in 0.9% saline) or Tub A (10 mg/kg/day), separately. The expression of HDAC6 and phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway-related proteins was measured in epidural fibrosis tissues. KEY FINDINGS HDAC6 was overexpressed in activated fibroblasts and epidural scar tissues of rat models. Cell proliferation was remarkably elevated in HDAC6-overexpressed fibroblasts, which was reflected by cell viability, EdU and flow cytometry-based cell cycle assay, and paralleled with the increased expression of phosphorylated PI3K, AKT and mTOR, which was remarkably reversed following Tub A treatment. 740Y-P activator addition significantly reversed the declined fibroblast proliferation induced by Tub A. The expressions of PI3K/AKT/mTOR pathway-related proteins were also reduced in epidural tissues in rat models with Tub A treatment. CONCLUSION Tub A could prevent epidural fibrosis formation by inhibiting fibroblast proliferation through mediating PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Ruihong Wang
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Huimin Han
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Li Li
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
26
|
Tang X, Sui X, Weng L, Liu Y. SNAIL1: Linking Tumor Metastasis to Immune Evasion. Front Immunol 2021; 12:724200. [PMID: 34917071 PMCID: PMC8669501 DOI: 10.3389/fimmu.2021.724200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Snail1, a key inducer of epithelial-mesenchymal transition (EMT), plays a critical role in tumor metastasis. Its stability is strictly controlled by multiple intracellular signal transduction pathways and the ubiquitin-proteasome system (UPS). Increasing evidence indicates that methylation and acetylation of Snail1 also affects tumor metastasis. More importantly, Snail1 is involved in tumor immunosuppression by inducing chemokines and immunosuppressive cells into the tumor microenvironment (TME). In addition, some immune checkpoints potentiate Snail1 expression, such as programmed death ligand 1 (PD-L1) and T cell immunoglobulin 3 (TIM-3). This mini review highlights the pathways and molecules involved in maintenance of Snail1 level and the significance of Snail1 in tumor immune evasion. Due to the crucial role of EMT in tumor metastasis and tumor immunosuppression, comprehensive understanding of Snail1 function may contribute to the development of novel therapeutics for cancer.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Xue Sui
- Department of Laboratory Medicine, Binzhou Medical University, Binzhou, China
| | - Liang Weng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Institute of Gerontological Cancer Research, National Clinical Research Center for Gerontology, Changsha, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yongshuo Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China.,Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
28
|
Singh D, Mohapatra P, Kumar S, Behera S, Dixit A, Sahoo SK. Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells. Toxicol In Vitro 2021; 79:105293. [PMID: 34883246 DOI: 10.1016/j.tiv.2021.105293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis and remains highly aggressive despite current advancements in therapies. Chemoresistance and high metastatic nature of PDAC is attributed to a small subset of stem-like cells within the tumor known as Cancer Stem Cells (CSCs). Here, we developed a strategy for targeting pancreatic CSCs through forceful induction of mesenchymal-to-epithelial transition driven by encapsulating a phytochemical Nimbolide in nanoparticles. Binding of Nimbolide with the key regulator proteins of CSCs were studied through molecular docking and molecular dynamic simulation studies, which revealed that it binds to AKT and mTOR with high affinity. Further, in vitro studies revealed that Nim NPs are capable of inducing forceful mesenchymal-to-epithelial transition of pancreatospheres that leads to loss of multidrug resistance and self-renewal properties of pancreatospheres. Our study gives a proof of concept that encapsulation of Nim in PLGA nanoparticles increases its therapeutic effect on pancreatospheres. Further, binding of Nim to AKT and mTOR negatively regulates their activity that ultimately leads to mesenchymal-to-epithelial transition of pancreatic CSCs.
Collapse
Affiliation(s)
- Deepika Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India; Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Sugandh Kumar
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Somalisa Behera
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Anshuman Dixit
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
29
|
Basu M, Philipp LM, Baines JF, Sebens S. The Microbiome Tumor Axis: How the Microbiome Could Contribute to Clonal Heterogeneity and Disease Outcome in Pancreatic Cancer. Front Oncol 2021; 11:740606. [PMID: 34631577 PMCID: PMC8495218 DOI: 10.3389/fonc.2021.740606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by a poor prognosis with a 5-year survival rate of only around 10% and an ongoing increase in death rate. Due to the lack of early and specific symptoms, most patients are diagnosed at an advanced or even metastasized stage, essentially limiting curative treatment options. However, even curative resection of the primary tumor and adjuvant therapy often fails to provide a long-term survival benefit. One reason for this dismal situation can be seen in the evolution of therapy resistances. Furthermore, PDAC is characterized by high intratumor heterogeneity, pointing towards an abundance of cancer stem cells (CSCs), which are regarded as essential for tumor initiation and drug resistance. Additionally, it was shown that the gut microbiome is altered in PDAC patients, promotes Epithelial-Mesenchymal-Transition (EMT), determines responses towards chemotherapy, and affects survival in PDAC patients. Given the established links between CSCs and EMT as well as drug resistance, and the emerging role of the microbiome in PDAC, we postulate that the composition of the microbiome of PDAC patients is a critical determinant for the abundance and plasticity of CSC populations and thus tumor heterogeneity in PDAC. Unravelling this complex interplay might pave the way for novel treatment strategies.
Collapse
Affiliation(s)
- Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
30
|
Yang YS, Yang S, Li D, Li W. Vitamin D affects the Warburg effect and stemness maintenance of non-small-cell lung cancer cells by regulating PI3K/AKT/mTOR signaling pathway. Curr Cancer Drug Targets 2021; 22:86-95. [PMID: 34325639 DOI: 10.2174/1568009621666210729100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most prevalent form of lung cancer, accounting for approximately 85% of all lung cancer cases and resulting in high morbidity and mortality. Previous studies have demonstrated that 1,25-dihydroxy-vitamin-D3 (vitamin D) exhibited anti-cancer activity against breast and prostate cancer. OBJECTIVES The aim of the current study is to investigate the effect of vitamin D on NSCLC and its underlying mechanism. METHODS The effects of vitamin D on stemness maintenance and the Warburg effect in NSCLC cells were investigated both in vitro and in vivo. RESULTS & DISCUSSION In vitro experiments revealed that vitamin D inhibited glycolysis and stemness maintenance in A549 and NCI-H1975 cells. Both in vitro and in vivo experiments indicated that vitamin D attenuated the expression of metabolism-related enzymes associated with the Warburg effect (GLUT1, LDHA, HK2, and PKM2). In addition, vitamin D down-regulated the expression of stemness-related genes (Oct-4, SOX-2, and Nanog) and the expression of PI3K, AKT, and mTOR. CONCLUSION Overall, these findings suggest that vitamin D suppresses the Warburg effect and stemness maintenance in NSCLC cells via the inactivation of PI3K/AKT/mTOR signaling, thereby inhibiting the progression of NSCLC. The current study indicates that vitamin D is a potential candidate in therapeutic strategies against NSCLC.
Collapse
Affiliation(s)
- Yiyan Song Yang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyisha Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
31
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
32
|
Li L, Feng Y, Hu S, Du Y, Xu X, Zhang M, Peng X, Chen F. ZEB1 serves as an oncogene in acute myeloid leukaemia via regulating the PTEN/PI3K/AKT signalling pathway by combining with P53. J Cell Mol Med 2021; 25:5295-5304. [PMID: 33960640 PMCID: PMC8178252 DOI: 10.1111/jcmm.16539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukaemia is a complex, highly aggressive hematopoietic disorder. Currently, in spite of great advances in radiotherapy and chemotherapy, the prognosis for AML patients with initial treatment failure is still poor. Therefore, the need for novel and efficient therapies to improve AML treatment outcome has become desperately urgent. In this study, we identified the expression of ZEB1 (a transcription factor) and focused on its possible role and mechanisms in the progression of AML. According to the data provided by the Gene Expression Profiling Interactive Analysis (GEPIA), high expression of ZEB1 closely correlates with poor prognosis in AML patients. Additionally, the overexpression of ZEB1 was observed in both AML patients and cell lines. Further functional experiments showed that ZEB1 depletion can induce AML differentiation and inhibit AML proliferation in vitro and in vivo. Moreover, ZEB1 expression was negatively correlated with tumour suppressor P53 expression and ZEB1 can directly bind to P53. Our results also revealed that ZEB1 can regulate PTEN/PI3K/AKT signalling pathway. The inhibitory effect of ZEB1 silencing on PTEN/PI3K/AKT signalling pathway could be significantly reversed by P53 small interfering RNA treatment. Overall, the present data indicated that ZEB1 may be a promising therapeutic target for AML treatment or a potential biomarker for diagnosis and prognosis.
Collapse
Affiliation(s)
- Lanlan Li
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yubin Feng
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuang Hu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yan Du
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoling Xu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Meiju Zhang
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoqing Peng
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
33
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
34
|
Huang YS, Mao JX, Zhang L, Guo HW, Yan C, Chen M. Antiprostate Cancer Activity of Ineupatolide Isolated from Carpesium cernuum L. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515961. [PMID: 33996996 PMCID: PMC8105106 DOI: 10.1155/2021/5515961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the antiprostate cancer effects and mechanism of ineupatolide (T-21), a natural product isolated from the Compositae plant Carpesium cernuum L., on PC-3 human prostate cancer cells. METHODS The effect of T-21 on the proliferation of PC-3 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration, and invasion experiments; the morphology of cell apoptosis was observed by Hoechst-propidium iodide staining; the effects of T-21 on PC-3 cell apoptosis and the cell cycle were evaluated by flow cytometry; and the effect of T-21 on the expression levels of phosphorylated protein kinase B (p-AKT), AKT, X-linked inhibitor of apoptosis protein (xlAP), procaspase-3, and poly (ADP-ribose) polymerase (PARP) in PC-3 cells was measured by western blotting. RESULTS T-21 significantly inhibited the proliferation of cells, and its half-maximal inhibitory concentrations at 12, 24, and 48 h were 38.46 ± 1.01, 24.63 ± 0.70, and 7.36 ± 0.58 μM, respectively. T-21 may promote cell apoptosis in a concentration-dependent manner and block the cell cycle in the G2 and S phases. In addition, T-21 significantly reduced the protein expression levels of p-AKT, AKT, xlAP, procaspase-3, and PARP. CONCLUSION T-21 exhibits antiproliferation effects on PC-3 cells by promoting apoptosis and arresting the cell cycle in the G2 and S phases. The possible mechanism underlying its potential therapeutic effects against prostate cancer is related to the AKT/xlAP pathway.
Collapse
Affiliation(s)
- Yuan-she Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Anshun College, Anshun Guizhou 561000, China
| | - Jing-xin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lai Zhang
- Anshun College, Anshun Guizhou 561000, China
| | - Hong-wei Guo
- An Shun City People's Hospital, Anshun 561000, China
| | - Chen Yan
- An Shun City People's Hospital, Anshun 561000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, Feng JQ, Zhao Z, Wu Y, Wang J. The vital role of Gli1 + mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol 2021; 236:6077-6089. [PMID: 33533019 DOI: 10.1002/jcp.30310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Fang W, Ni M, Zhang M, Chen H. Prognostic value of OCT4 in colorectal cancer: analysis using immunohistochemistry and bioinformatics validation. Biomark Med 2020; 14:1473-1484. [PMID: 33185466 DOI: 10.2217/bmm-2020-0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: This study was first performed to investigate the role of octamer-binding transcription factor 4 (OCT4) in colorectal cancer (CRC). Methods: The electronic databases were searched for the eligible studies. Odds ratios and hazard ratios were calculated. Functional analysis of OCT4 was examined. Results: Eight studies with 1480 CRC cases were identified. OCT4 expression was correlated with advanced clinical stage, tumor grade, lymph node metastasis, lymphatic invasion, and distal metastasis. OCT4 was an independent prognostic biomarker for predicting worse disease-specific survival and overall survival in CRC. The functional analyses demonstrated that OCT4 was involved in multiple functions, such as cell adhesion, phosphoinositide 3-kinase/Akt signaling, and regulating pluripotency of stem cells. Conclusion: OCT4 may be correlated with disease progression and metastasis, and could predict prognosis in CRC.
Collapse
Affiliation(s)
- Wenjia Fang
- Department of Gastroenterology, Ningbo Yinzhou no. 2 Hospital, Ningbo, Zhejiang 315100, China
| | - Meilin Ni
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315000, China
| | - Mingming Zhang
- Department of Gastroenterology, Ningbo Yinzhou no. 2 Hospital, Ningbo, Zhejiang 315100, China
| | - Hanqing Chen
- Department of Gastroenterology, Ningbo Yinzhou no. 2 Hospital, Ningbo, Zhejiang 315100, China
| |
Collapse
|
38
|
Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020; 9:cells9102316. [PMID: 33081032 PMCID: PMC7603200 DOI: 10.3390/cells9102316] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling and mTOR signaling, essential for embryonic development and cellular metabolism, are both coordinated by the primary cilium. Observations from cancer cells strongly indicate crosstalk between Hh and mTOR signaling. This hypothesis is supported by several studies: Evidence points to a TGFβ-mediated crosstalk; Increased PI3K/AKT/mTOR activity leads to increased Hh signaling through regulation of the GLI transcription factors; increased Hh signaling regulates mTORC1 activity positively by upregulating NKX2.2, leading to downregulation of negative mTOR regulators; GSK3 and AMPK are, as members of both signaling pathways, potentially important links between Hh and mTORC1 signaling; The kinase DYRK2 regulates Hh positively and mTORC1 signaling negatively. In contrast, both positive and negative regulation of Hh has been observed for DYRK1A and DYRK1B, which both regulate mTORC1 signaling positively. Based on crosstalk observed between cilia, Hh, and mTORC1, we suggest that the interaction between Hh and mTORC1 is more widespread than it appears from our current knowledge. Although many studies focusing on crosstalk have been carried out, contradictory observations appear and the interplay involving multiple partners is far from solved.
Collapse
|
39
|
Safa AR. Epithelial-mesenchymal transition: a hallmark in pancreatic cancer stem cell migration, metastasis formation, and drug resistance. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:36. [PMID: 34841087 PMCID: PMC8623975 DOI: 10.20517/2394-4722.2020.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis, tumor progression, and chemoresistance are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). Tumor dissemination is associated with the activation of an epithelial-to-mesenchymal transition (EMT) process, a program by which epithelial cells lose their cell polarity and cell-to-cell adhesion, and acquire migratory and invasive abilities to become mesenchymal stem cells (MSC). These MSCs are multipotent stromal cells capable of differentiating into various cell types and trigger the phenotypic transition from an epithelial to a mesenchymal state. Therefore, EMT promotes migration and survival during cancer metastasis and confers stemness features to particular subsets of cells. Furthermore, a major problem limiting our ability to treat PDAC is the existence of rare populations of pancreatic cancer stem cells (PCSCs) or cancer-initiating cells in pancreatic tumors. PCSCs may represent sub-populations of tumor cells resistant to therapy which are most crucial for driving invasive tumor growth. These cells are capable of regenerating the cellular heterogeneity associated with the primary tumor when xenografted into mice. Therefore, the presence of PCSCs has prognostic relevance and influences the therapeutic response of tumors. PCSCs express markers of cancer stem cells (CSCs) including CD24, CD133, CD44, and epithelial specific antigen as well as the drug transporter ABCG2 grow as spheroids in a defined growth medium. A major difficulty in studying tumor cell dissemination and metastasis has been the identification of markers that distinguish metastatic cancer cells from cells that are normally circulating in the bloodstream or at sites where these cells metastasize. Evidence highlights a linkage between CSC and EMT. In this review, The current understanding of the PCSCs, signaling pathways regulating these cells, PDAC heterogeneity, EMT mechanism, and links between EMT and metastasis in PCSCs are summarised. This information may provide potential therapeutic strategies to prevent EMT and trigger CSC growth inhibition and cell death.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
40
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
41
|
Ramachandran S, Srivastava SK. Repurposing Pimavanserin, an Anti-Parkinson Drug for Pancreatic Cancer Therapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:19-32. [PMID: 33024816 PMCID: PMC7527685 DOI: 10.1016/j.omto.2020.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Despite major advances in cancer treatment, pancreatic cancer is still incurable and the treatment outcomes are limited. The aggressive and therapy-resistant nature of pancreatic cancer warrants the need for novel treatment options for pancreatic cancer management. Drug repurposing is emerging as an effectual strategy in the treatment of various diseases, including cancer. In the present study, we evaluated the anticancer effects of pimavanserin tartrate (PVT), an antipsychotic drug used for the treatment of Parkinson disease psychosis. PVT significantly suppressed the proliferation and induced apoptosis in various pancreatic cancer cells and gemcitabine-resistant cells with minimal effects on normal pancreatic epithelial cells and lung fibroblasts. Growth-suppressive and apoptotic effects of PVT were mediated by the inhibition of the Akt/Gli1 signaling axis. The oral administration of PVT suppressed subcutaneous and orthotopic pancreatic tumor xenografts by 51%–77%. The chronic administration of PVT did not demonstrate any general signs of toxicity or change in behavioral activity of mice. Our results indicate that pancreatic tumor growth suppression by PVT was orchestrated by the inhibition of Akt/Gli1 signaling. Since PVT is already available in the clinic with an established safety profile, our results will accelerate its clinical development for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
42
|
Carr RM, Duma N, McCleary-Wheeler AL, Almada LL, Marks DL, Graham RP, Smyrk TC, Lowe V, Borad MJ, Kim G, Johnson GB, Allred JB, Yin J, Lim VS, Bekaii-Saab T, Ma WW, Erlichman C, Adjei AA, Fernandez-Zapico ME. Targeting of the Hedgehog/GLI and mTOR pathways in advanced pancreatic cancer, a phase 1 trial of Vismodegib and Sirolimus combination. Pancreatology 2020; 20:1115-1122. [PMID: 32778368 DOI: 10.1016/j.pan.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Preclinical data indicated a functional and molecular interaction between Hedgehog (HH)/GLI and PI3K-AKT-mTOR pathways promoting pancreatic ductal adenocarcinoma (PDAC). A phase I study was conducted of Vismodegib and Sirolimus combination to evaluate maximum tolerated dose (MTD) and preliminary anti-tumor efficacy. METHODS Cohort I included advanced solid tumors patients following a traditional 3 + 3 design. Vismodegib was orally administered at 150 mg daily with Sirolimus starting at 3 mg daily, increasing to 6 mg daily at dose level 2. Cohort II included only metastatic PDAC patients. Anti-tumor efficacy was evaluated every two cycles and target assessment at pre-treatment and after a single cycle. RESULTS Nine patient were enrolled in cohort I and 22 patients in cohort II. Twenty-eight patients were evaluated for dose-limiting toxicities (DLTs). One DLT was observed in each cohort, consisting of grade 2 mucositis and grade 3 thrombocytopenia. The MTD for Vismodegib and Sirolimus were 150 mg daily and 6 mg daily, respectively. The most common grade 3-4 toxicities were fatigue, thrombocytopenia, dehydration, and infections. A total of 6 patients had stable disease. No partial or complete responses were observed. Paired biopsy analysis before and after the first cycle in cohort II consistently demonstrated reduced GLI1 expression. Conversely, GLI and mTOR downstream targets were not significantly affected. CONCLUSIONS The combination of Vismodegib and Sirolimus was well tolerated. Clinical benefit was limited to stable disease in a subgroup of patients. Targeting efficacy demonstrated consistent partial decreases in HH/GLI signaling with limited impact on mTOR signaling. These findings conflict with pre-clinical models and warrant further investigations.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Narjust Duma
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine Pathology, Mayo Clinic, Rochester, MN, USA
| | - Thomas C Smyrk
- Department of Laboratory Medicine Pathology, Mayo Clinic, Rochester, MN, USA
| | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology-Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - George Kim
- Division of Hematology-Oncology, The George Washington University, Washington, DC, USA
| | | | - Jacob B Allred
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jun Yin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Vun-Sin Lim
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Tanios Bekaii-Saab
- Division of Hematology-Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Wen We Ma
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Charles Erlichman
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Alex A Adjei
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| |
Collapse
|
43
|
Chandra Boinpelly V, Verma RK, Srivastav S, Srivastava RK, Shankar S. α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. J Cell Mol Med 2020; 24:11343-11354. [PMID: 32830433 PMCID: PMC7576287 DOI: 10.1111/jcmm.15731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer‐related mortality. Recent studies have stated that Notch signalling is highly activated in cancer stem cells (CSCs) and plays an important role in the development and progression of CRC. Like normal colorectal epithelium, CRCs are organized hierarchically and include populations of CSCs. In order to enhance the biological activity of α‐mangostin, we formulated α‐mangostin‐encapsulated PLGA nanoparticles (Mang‐NPs) and examined the molecular mechanisms by which Mang‐NPs inhibit CRC cell viability, colony formation, epithelial‐mesenchymal transition (EMT) and induce apoptosis. Mang‐NPs inhibited cell viability, colony formation and induced apoptosis. Mang‐NPs also inhibited EMT by up‐regulating E‐cadherin and inhibiting N‐cadherin and transcription factors Snail, Slug and Zeb1. As dysregulated signalling through the Notch receptors promotes oncogenesis, we measured the effects of Mang‐NPs on Notch pathway. Mang‐NPs inhibited Notch signalling by suppressing the expression of Notch receptors (Notch1 and Notch2), their ligands (Jagged 1 and DLL4), γ‐secretase complex protein (Nicastrin) and downstream target (Hes‐1). Notch receptor signalling regulates cell fate determination in stem cell population. Finally, Mang‐NPs inhibited the self‐renewal capacity of CSCs, stem cell markers (CD133, CD44, Musashi and LGR5) and pluripotency maintaining factors (Oct4, Sox‐2, KLF‐4, c‐Myc and Nanog). Overall, our data suggest that Mang‐NPs can inhibit CRC growth, EMT and CSCs’ population by suppressing Notch pathway and its target. Therefore, Mang‐NPs can be used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
| | | | - Sudesh Srivastav
- Department of Biostatistics and Data ScienceSchool of Public Health and Tropical MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Rakesh K. Srivastava
- Kansas City VA Medical CenterKansas CityMOUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Sharmila Shankar
- Kansas City VA Medical CenterKansas CityMOUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
44
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
45
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
46
|
Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr Nephrol 2020; 35:725-731. [PMID: 30923969 DOI: 10.1007/s00467-019-04240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/20/2023]
Abstract
Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.
Collapse
|
47
|
Zhou J, Wang H, Che J, Xu L, Yang W, Li Y, Zhou W. Silencing of microRNA-135b inhibits invasion, migration, and stemness of CD24 +CD44 + pancreatic cancer stem cells through JADE-1-dependent AKT/mTOR pathway. Cancer Cell Int 2020; 20:134. [PMID: 32351328 PMCID: PMC7183669 DOI: 10.1186/s12935-020-01210-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies have emphasized determining the ability of microRNAs (miRNAs) as crucial regulators in the occurrence and development of pancreatic cancer (PC), which continues to be one of the deadliest malignancies with few effective therapies. The study aimed to investigate the functional role of miR-135b and its associated mechanism to unravel the biological characteristics of tumor growth in pancreatic cancer stem cells (PCSCs). Methods Microarray analyses were initially performed to identify the PC-related miRNAs and genes. The expression of miR-135b and PCSC markers in PC tissues and cells was determined by RT-qPCR and western blot analysis, respectively. The potential gene (JADE-1) that could bind to miR-135b was confirmed by the dual-luciferase reporter assay. To investigate the tumorigenicity, migration, invasion, and stemness of PC cells, several gain-of-function and loss-of-function genetic experiments were conducted. Finally, tumor formation in nude mice was conducted to confirm the results in vivo. Results miR-135b was highly-expressed in PC tissues and PCSCs, which was identified to specifically target JADE-1. The overexpression of miR-135b promoted proliferation, migration, and invasion of PCSC, inhibited cell apoptosis and increased the expression of stemness-related factors (Sox-2, Oct-4, Nanog, Aldh1, and Slug). Moreover, miR-135b could promote the expression of phosphorylated AKT and phosphorylated mTOR in the AKT/mTOR pathway. Additionally, miR-135b overexpression accelerated tumor growth in nude mice. Conclusions Taken together, the silencing of miR-135b promotes the JADE-1 expression, which inactivates the AKT/mTOR pathway and ultimately results in inhibition of self-renewal and tumor growth of PCSCs. Hence, this study contributes to understanding the role of miR-135 in PCSCs and its underlying molecular mechanisms to aid in the development of effective PC therapeutics.
Collapse
Affiliation(s)
- Jingyang Zhou
- 1Class 182, Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Haihong Wang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Jinhui Che
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Lu Xu
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Weizhong Yang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Yunjiu Li
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Wuyuan Zhou
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| |
Collapse
|
48
|
Liu P, Chen H, Yan L, Sun Y. Laminin α5 modulates fibroblast proliferation in epidural fibrosis through the PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2020; 21:1491-1500. [PMID: 32016453 PMCID: PMC7003017 DOI: 10.3892/mmr.2020.10967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Lumbar laminectomy is commonly deemed as the most valid surgery for a series of lumbar illnesses, such as lumbar disc herniation, which could lead to spinal canal stenosis. However, epidural fibrosis is one of the most common complications that limits the application of lumbar laminectomy, which is mainly caused by proliferation of local fibroblasts. Laminins are glycoproteins that consist of α, β and γ chains, which serve a crucial role in biological cell behaviors, such as adhesion, differentiation, migration and proliferation, especially the isoform with the fifth α chain-laminin α5. The PI3K/AKT/mTOR signaling pathway was demonstrated to be associated with various biological functions in cells. The aim of the present study was to explore whether laminin α5 is an important factor in epidural fibrosis by modulating the proliferation of fibroblasts through the activation of PI3K/AKT/mTOR signaling pathway. In the animal model, the results of the hematoxylin-eosin staining, cell counting, Masson's trichrome staining and immunohistochemical staining showed laminin α5 to be positively associated with epidural fibrosis. Furthermore, to verify the assumption that laminin α5 could modulate fibroblast proliferation through the PI3K/AKT/mTOR signal pathway, fibroblasts were transfected with laminin α5-small interfering (si)RNA. The results of western blotting (proliferating cell nuclear antigen and cyclin D1), the Cell Counting Kit-8 and EdU incorporation assays indicated that the proliferative level of fibroblasts decreased, and the expression of phosphorylated (p)-focal adhesion kinase 1, p-AKT and p-mTOR was reduced. Subsequently, laminin α5 was overexpressed and the change in cell proliferation and expression of associated proteins contrasted with that observed in siRNA. The results demonstrated that laminin α5 could interfere the activation of the PI3K/AKT/mTOR signaling pathway. Finally, the inhibition of the PI3K/AKT/mTOR signaling pathway by LY294002 resulted in decreased fibroblast proliferation. In conclusion, laminin α5 could modulate fibroblast proliferation in epidural fibrosis through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Pengran Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012, P.R. China
| | - Hui Chen
- Department of Orthopedics, Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Lianqi Yan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
49
|
Hu X, Han T, Bian Y, Tong H, Wen X, Li Y, Wan X. Knockdown of SLCO4C1 inhibits cell proliferation and metastasis in endometrial cancer through inactivating the PI3K/Akt signaling pathway. Oncol Rep 2020; 43:919-929. [PMID: 32020231 PMCID: PMC7041124 DOI: 10.3892/or.2020.7478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is the second leading type of cancer among women, and its progression is dependent on several factors. The aim of the present study was to examine the effect of solute carrier organic anion transporter family member 4C1 (SLCO4C1) on human EC and determine the underlying molecular mechanism. A total of 57 differentially expressed genes associated with advanced stage and survival were identified in The Cancer Genome Atlas database. In addition, gene ontology analysis indicated that SLCO4C1 was highly expressed in cell differentiation and integral component of plasma membrane. High SLCO4C1 expression in EC tissues was verified by immunohistochemistry. The results demonstrated that the downregulation of SLCO4C1 could significantly suppress the viability, sphere formation, migration and invasion abilities of cells, but enhance apoptosis in EC cell lines. Furthermore, the present results demonstrated that SLCO4C1 had effects on the epithelial-mesenchymal transition (EMT) phenotype in EC cells and regulated the expression of EMT-related proteins. Mechanistically, the present study revealed that SLCO4C1 regulated the biological functions of EC cells by inactivating the PI3K/Akt signaling pathway. Collectively, it was demonstrated that the SLCO4C1/PI3K/Akt pathway may play an important role in EC progression and metastasis and serve as a potential biomarker and target for EC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Tong Han
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Yiding Bian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Huan Tong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Xiaoli Wen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
50
|
Liu Y, Lu C, Fan L, Wang J, Li T, Liu Z, Sheng J, Qian R, Duan A, Lu D. MiR-199a-5p Targets ZEB1 to Inhibit the Epithelial-Mesenchymal Transition of Ovarian Ectopic Endometrial Stromal Cells Via PI3K/Akt/mTOR Signal Pathway In Vitro and In Vivo. Reprod Sci 2020; 27:110-118. [PMID: 32046378 DOI: 10.1007/s43032-019-00016-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Endometriosis (Ems) is a common gynecological disease with the characteristics of infertility, pelvic pain, and sexual intercourse difficulty. Our present study aimed to investigate the effect of miR-199a-5p on cell mobility and epithelial-mesenchymal transition (EMT) in Ems. Ectopic endometrial stromal cells (EcSCs) and control endometrial stromal cells (CSCs) were isolated in our in vitro experiments. The level of miR-199a-5p in EcSCs was found much lower than that in CSCs. Besides, miR-199a-5p mimic suppressed the invasion and migration ability of EcSCs. At the same time, EMT was also found to be suppressed by miR-199a-5p mimic in EcSCs. Our further bioinformatics analysis and luciferase reporter assay revealed that ZEB1, a marker of EMT, was a direct target of miR-199a-5p. In addition, the combination of pcDNA3.1-ZEB1 weakened the inhibiting effect of miR-199a-5p mimic on the mobility and EMT of EcSCs. What is more, the PI3K/Akt/mTOR signal pathway was demonstrated to be inactivated by miR-199a-5p mimic. And then, the inducer of PI3K/Akt/mTOR signal pathway, IGF-1, abolished the effect of miR-199a-5p mimic on Ems progression. At last, an Ems rat model was established, and we found that miR-199a-5p agomir effectively suppressed the expression of vascular endothelial growth factor (VEGF) and EMT in vivo. The PI3K/Akt/mTOR signal pathway was also inactivated by miR-199a-5p agomir in our Ems rat model. Taken together, we concluded that miR-199a-5p targeted ZEB1 to inhibit the EMT of ovarian ectopic endometrial stromal cells via PI3K/Akt/mTOR signal pathway in vitro and in vivo, advancing our understanding of miR-199a-5p as regulators of Ems progression and making contribution to the treatment of Ems.
Collapse
Affiliation(s)
- Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jingxuan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jie Sheng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - RuiYa Qian
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Aihong Duan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|