1
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
2
|
Bylicky MA, Shankavaram U, Aryankalayil MJ, Chopra S, Naz S, Sowers AL, Choudhuri R, Calvert V, Petricoin EF, Eke I, Mitchell JB, Coleman CN. Multiomic-Based Molecular Landscape of FaDu Xenograft Tumors in Mice after a Combinatorial Treatment with Radiation and an HSP90 Inhibitor Identifies Adaptation-Induced Targets of Resistance and Therapeutic Intervention. Mol Cancer Ther 2024; 23:577-588. [PMID: 38359816 PMCID: PMC10985469 DOI: 10.1158/1535-7163.mct-23-0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Treatments involving radiation and chemotherapy alone or in combination have improved patient survival and quality of life. However, cancers frequently evade these therapies due to adaptation and tumor evolution. Given the complexity of predicting response based solely on the initial genetic profile of a patient, a predetermined treatment course may miss critical adaptation that can cause resistance or induce new targets for drug and immunotherapy. To address the timescale for these evasive mechanisms, using a mouse xenograft tumor model, we investigated the rapidity of gene expression (mRNA), molecular pathway, and phosphoproteome changes after radiation, an HSP90 inhibitor, or combination. Animals received radiation, drug, or combination treatment for 1 or 2 weeks and were then euthanized along with a time-matched untreated group for comparison. Changes in gene expression occur as early as 1 week after treatment initiation. Apoptosis and cell death pathways were activated in irradiated tumor samples. For the HSP90 inhibitor and combination treatment at weeks 1 and 2 compared with Control Day 1, gene-expression changes induced inhibition of pathways including invasion of cells, vasculogenesis, and viral infection among others. The combination group included both drug-alone and radiation-alone changes. Our data demonstrate the rapidity of gene expression and functional pathway changes in the evolving tumor as it responds to treatment. Discovering these phenotypic adaptations may help elucidate the challenges in using sustained treatment regimens and could also define evolving targets for therapeutic efficacy.
Collapse
Affiliation(s)
- Michelle A. Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Molykutty J. Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sarwat Naz
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rajani Choudhuri
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Iris Eke
- Department of Radiation Oncology, Stanford University Medical School, Stanford, California
| | - James B. Mitchell
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - C. Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, NIH, Rockville, Maryland
| |
Collapse
|
3
|
Mortensen ACL, Berglund H, Hariri M, Papalanis E, Malmberg C, Spiegelberg D. Combination therapy of tyrosine kinase inhibitor sorafenib with the HSP90 inhibitor onalespib as a novel treatment regimen for thyroid cancer. Sci Rep 2023; 13:16844. [PMID: 37803074 PMCID: PMC10558458 DOI: 10.1038/s41598-023-43486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy, affecting nearly 600,000 new patients worldwide. Treatment with the BRAF inhibitor sorafenib partially prolongs progression-free survival in thyroid cancer patients, but fails to improve overall survival. This study examines enhancing sorafenib efficacy by combination therapy with the novel HSP90 inhibitor onalespib. In vitro efficacy of sorafenib and onalespib monotherapy as well as in combination was assessed in papillary (PTC) and anaplastic (ATC) thyroid cancer cells using cell viability and colony formation assays. Migration potential was studied in wound healing assays. The in vivo efficacy of sorafenib and onalespib therapy was evaluated in mice bearing BHT-101 xenografts. Sorafenib in combination with onalespib significantly inhibited PTC and ATC cell proliferation, decreased metabolic activity and cancer cell migration. In addition, the drug combination approach significantly inhibited tumor growth in the xenograft model and prolonged the median survival. Our results suggest that combination therapy with sorafenib and onalespib could be used as a new therapeutic approach in the treatment of thyroid cancer, significantly improving the results obtained with sorafenib as monotherapy. This approach has the potential to reduce treatment adaptation while at the same time providing therapeutic anti-cancer benefits such as reducing tumor growth and metastatic potential.
Collapse
Affiliation(s)
- Anja Charlotte Lundgren Mortensen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eleftherios Papalanis
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Mohajershojai T, Spangler D, Chopra S, Frejd FY, Yazaki PJ, Nestor M. Enhanced Therapeutic Effects of 177Lu-DOTA-M5A in Combination with Heat Shock Protein 90 Inhibitor Onalespib in Colorectal Cancer Xenografts. Cancers (Basel) 2023; 15:4239. [PMID: 37686514 PMCID: PMC10486833 DOI: 10.3390/cancers15174239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Carcinoembryonic antigen (CEA) has emerged as an attractive target for theranostic applications in colorectal cancers (CRCs). In the present study, the humanized anti-CEA antibody hT84.66-M5A (M5A) was labeled with 177Lu for potential CRC therapy. Moreover, the novel combination of 177Lu-DOTA-M5A with the heat shock protein 90 inhibitor onalespib, suggested to mediate radiosensitizing properties, was assessed in vivo for the first time. M5A antibody uptake and therapeutic effects, alone or in combination with onalespib, were assessed in human CRC xenografts and visualized using SPECT/CT imaging. Although both 177Lu-DOTA-M5A and onalespib monotherapies effectively reduced tumor growth rates, the combination therapy demonstrated the most substantial impact, achieving a fourfold reduction in tumor growth compared to the control group. Median survival increased by 33% compared to 177Lu-DOTA-M5A alone, and tripled compared to control and onalespib groups. Importantly, combination therapy yielded comparable or superior effects to the double dose of 177Lu-DOTA-M5A monotherapy. 177Lu-DOTA-M5A increased apoptotic cell levels, indicating its potential to induce tumor cell death. These findings show promise for 177Lu-DOTA-M5A as a CRC therapeutic agent, and its combination with onalespib could significantly enhance treatment efficacy. Further in vivo studies are warranted to validate these findings fully and explore the treatment's potential for clinical use.
Collapse
Affiliation(s)
- Tabassom Mohajershojai
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Douglas Spangler
- Department of Public Health and Caring Sciences, Uppsala University, 751 22 Uppsala, Sweden;
| | - Saloni Chopra
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Fredrik Y. Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Paul J. Yazaki
- Department of Immunology & Theranostics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| |
Collapse
|
5
|
Mainwaring OJ, Weishaupt H, Zhao M, Rosén G, Borgenvik A, Breinschmid L, Verbaan AD, Richardson S, Thompson D, Clifford SC, Hill RM, Annusver K, Sundström A, Holmberg KO, Kasper M, Hutter S, Swartling FJ. ARF suppression by MYC but not MYCN confers increased malignancy of aggressive pediatric brain tumors. Nat Commun 2023; 14:1221. [PMID: 36869047 PMCID: PMC9984535 DOI: 10.1038/s41467-023-36847-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.
Collapse
Affiliation(s)
- Oliver J Mainwaring
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Borgenvik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Breinschmid
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Annemieke D Verbaan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Dean Thompson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Abramenkovs A, Hariri M, Spiegelberg D, Nilsson S, Stenerlöw B. Ra-223 induces clustered DNA damage and inhibits cell survival in several prostate cancer cell lines. Transl Oncol 2022; 26:101543. [PMID: 36126563 PMCID: PMC9489499 DOI: 10.1016/j.tranon.2022.101543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 10/24/2022] Open
Abstract
The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended survival and palliative effects in treatment of bone metastases in prostate cancer. The alpha-particle emitter Ra-223, targets regions undergoing active bone remodeling and strongly binds to bone hydroxyapatite (HAp). However, the toxicity mechanism and properties of Ra-223 binding to hydroxyapatite are not fully understood. By exposing 2D and 3D (spheroid) prostate cancer cell models to free and HAp-bound Ra-223 we here studied cell toxicity, apoptosis and formation and repair of DNA double-strand breaks (DSBs). The rapid binding with a high affinity of Ra-223 to bone-like HAp structures was evident (KD= 19.2 × 10-18 M) and almost no dissociation was detected within 24 h. Importantly, there was no significant uptake of Ra-223 in cells. The Ra-223 alpha-particle decay produced track-like distributions of the DNA damage response proteins 53BP1 and ɣH2AX induced high amounts of clustered DSBs in prostate cancer cells and activated DSB repair through non-homologous end-joining (NHEJ). Ra-223 inhibited growth of prostate cancer cells, independent of cell type, and induced high levels of apoptosis. In summary, we suggest the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by α-particles.
Collapse
Affiliation(s)
- Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden.
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden.
| |
Collapse
|
7
|
Mohajershojai T, Jha P, Boström A, Frejd FY, Yazaki PJ, Nestor M. In Vitro Characterization of 177Lu-DOTA-M5A Anti-Carcinoembryonic Antigen Humanized Antibody and HSP90 Inhibition for Potentiated Radioimmunotherapy of Colorectal Cancer. Front Oncol 2022; 12:849338. [PMID: 35433442 PMCID: PMC9010075 DOI: 10.3389/fonc.2022.849338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is an antigen that is highly expressed in colorectal cancers and widely used as a tumor marker. 131I and 90Y-radiolabeled anti-CEA monoclonal antibodies (mAbs) have previously been assessed for radioimmunotherapy in early clinical trials with promising results. Moreover, the heat shock protein 90 inhibitor onalespib has previously demonstrated radiotherapy potentiation effects in vivo. In the present study, a 177Lu-radiolabeled anti-CEA hT84.66-M5A mAb (M5A) conjugate was developed and the potential therapeutic effects of 177Lu-DOTA-M5A and/or onalespib were investigated. The 177Lu radiolabeling of M5A was first optimized and characterized. Binding specificity and affinity of the conjugate were then evaluated in a panel of gastrointestinal cancer cell lines. The effects on spheroid growth and cell viability, as well as molecular effects from treatments, were then assessed in several three-dimensional (3D) multicellular colorectal cancer spheroid models. Stable and reproducible radiolabeling was obtained, with labeling yields above 92%, and stability was retained at least 48 h post-radiolabeling. Antigen-specific binding of the radiolabeled conjugate was demonstrated on all CEA-positive cell lines. Dose-dependent therapeutic effects of both 177Lu-DOTA-M5A and onalespib were demonstrated in the spheroid models. Moreover, effects were potentiated in several dose combinations, where spheroid sizes and viabilities were significantly decreased compared to the corresponding monotherapies. For example, the combination treatment with 350 nM onalespib and 20 kBq 177Lu-DOTA-M5A resulted in 2.5 and 2.3 times smaller spheroids at the experimental endpoint than the corresponding monotreatments in the SNU1544 spheroid model. Synergistic effects were demonstrated in several of the more effective combinations. Molecular assessments validated the therapy results and displayed increased apoptosis in several combination treatments. In conclusion, the combination therapy of anti-CEA 177Lu-DOTA-M5A and onalespib showed enhanced therapeutic effects over the individual monotherapies for the potential treatment of colorectal cancer. Further in vitro and in vivo studies are warranted to confirm the current study findings.
Collapse
Affiliation(s)
| | - Preeti Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Paul J Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
V B, Femina T A, Iyengar D, K A, Ravi M. Approaches for Head and Neck Cancer Research - Current Status and the Way Forward. Cancer Invest 2021; 40:151-172. [PMID: 34806936 DOI: 10.1080/07357907.2021.2009850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Head and neck cancers (HNCs) are seeing an increasing trend in their prevalence among both genders and are the seventh most common cancer type occurring at the global level. Studies addressing both the cancer cell physiology and individual differences in response to a specific treatment modality should be understood for arriving at effective treatment and management of the HNCs. In this article, we discuss the trends in HNC research and their various approaches starting from 2D in vitro models, which are the traditional experimental materials to recently established Cancer-Tissue Originated Spheroids (CTOS) distinctly contributing towards personalized or precision medicine.
Collapse
Affiliation(s)
- Barghavi V
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arokia Femina T
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - DivyaSowrirajan Iyengar
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Archana K
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
9
|
Idrissou MB, Pichard A, Tee B, Kibedi T, Poty S, Pouget JP. Targeted Radionuclide Therapy Using Auger Electron Emitters: The Quest for the Right Vector and the Right Radionuclide. Pharmaceutics 2021; 13:pharmaceutics13070980. [PMID: 34209637 PMCID: PMC8309076 DOI: 10.3390/pharmaceutics13070980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Auger electron emitters (AEEs) are attractive tools in targeted radionuclide therapy to specifically irradiate tumour cells while sparing healthy tissues. However, because of their short range, AEEs need to be brought close to sensitive targets, particularly nuclear DNA, and to a lower extent, cell membrane. Therefore, radioimmunoconjugates (RIC) have been developed for specific tumour cell targeting and transportation to the nucleus. Herein, we assessed, in A-431CEA-luc and SK-OV-31B9 cancer cells that express low and high levels of HER2 receptors, two 111In-RIC consisting of the anti-HER2 antibody trastuzumab conjugated to NLS or TAT peptides for nuclear delivery. We found that NLS and TAT peptides improved the nuclear uptake of 111In-trastuzumab conjugates, but this effect was limited and non-specific. Moreover, it did not result in a drastic decrease of clonogenic survival. Indium-111 also contributed to non-specific cytotoxicity in vitro due to conversion electrons (30% of the cell killing). Comparison with [125I]I-UdR showed that the energy released in the cell nucleus by increasing the RIC’s nuclear uptake or by choosing an AEE that releases more energy per decay should be 5 to 10 times higher to observe a significant therapeutic effect. Therefore, new Auger-based radiopharmaceuticals need to be developed.
Collapse
Affiliation(s)
- Malick Bio Idrissou
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France; (M.B.I.); (A.P.); (S.P.)
| | - Alexandre Pichard
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France; (M.B.I.); (A.P.); (S.P.)
| | - Bryan Tee
- Department of Nuclear Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia; (B.T.); (T.K.)
| | - Tibor Kibedi
- Department of Nuclear Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia; (B.T.); (T.K.)
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France; (M.B.I.); (A.P.); (S.P.)
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France; (M.B.I.); (A.P.); (S.P.)
- Correspondence:
| |
Collapse
|
10
|
Huang J, Zhu XL, Wu Y, Han SH, Xie Y, Yang SF, Ding M, Chen PS. Combined effects of low-dose gambogic acid and NaI 131 in drug-resistant non-small cell lung cancer cells. Oncol Lett 2021; 22:588. [PMID: 34149899 PMCID: PMC8200936 DOI: 10.3892/ol.2021.12849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
Radioactive seed brachytherapy is a method for treating drug-resistant, late-stage non-small cell lung cancer (NSCLC). To elucidate the mechanism of low-dose gambogic acid (GA) and NaI131 in drug-resistant NSCLC cells, the human NSCLC A549 cell line and the drug-resistant A549/cisplatin (DDP) and A549/Taxol cell lines were treated with NaI131, low-dose GA or a combination of both in the present study; the control group of each cell line was treated with phosphate-buffered saline (PBS). Following treatment, cell proliferation, apoptosis and cell cycle analysis was performed. Apoptosis-related proteins, namely CDK1, cyclin B, mutant p53 (mtp53), heat shock protein 90 (HSP90), Bax and Bcl-2, and P-glycoprotein 1 (P-gp), which is known to confer resistance to chemotherapy, were detected using western blotting and immunofluorescence analysis. mRNA levels of p53 and HSP90 were measured using reverse transcription-quantitative PCR. Compared with the PBS control group, the A549, A549/DDP and A549/Taxol cells treated with NaI131, GA or a combination of the drugs exhibited G2/M arrest and increased percentages of total apoptotic cells, as well as significantly decreased protein levels of CDK1, cyclin B, mtp53, HSP90, Bcl-2 and P-gp, increased protein levels of Bax and decreased mRNA levels of p53 and HSP90. The changes in the combination group were the most evident and were significantly different from the other groups (P<0.001). In conclusion, low-dose GA may be a potential radionuclide sensitizer.
Collapse
Affiliation(s)
- Jing Huang
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiao-Li Zhu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ying Wu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shu-Hua Han
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yan Xie
- Department of Nuclear Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Su-Fang Yang
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Ding
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ping-Sheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Naz S, Leiker AJ, Choudhuri R, Preston O, Sowers AL, Gohain S, Gamson J, Mathias A, Van Waes C, Cook JA, Mitchell JB. Pharmacological Inhibition of HSP90 Radiosensitizes Head and Neck Squamous Cell Carcinoma Xenograft by Inhibition of DNA Damage Repair, Nucleotide Metabolism, and Radiation-Induced Tumor Vasculogenesis. Int J Radiat Oncol Biol Phys 2021; 110:1295-1305. [PMID: 33838214 DOI: 10.1016/j.ijrobp.2021.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Recent preclinical studies suggest combining the HSP90 inhibitor AT13387 (Onalespib) with radiation (IR) against colon cancer and head and neck squamous cell carcinoma (HNSCC). These studies emphasized that AT13387 downregulates HSP90 client proteins involved in oncogenic signaling and DNA repair mechanisms as major drivers of enhanced radiosensitivity. Given the large array of client proteins HSP90 directs, we hypothesized that other key proteins or signaling pathways may be inhibited by AT13387 and contribute to enhanced radiosensitivity. Metabolomic analysis of HSP90 inhibition by AT13387 was conducted to identify metabolic biomarkers of radiosensitization and whether modulations of key proteins were involved in IR-induced tumor vasculogenesis, a process involved in tumor recurrence. METHODS AND MATERIALS HNSCC and non-small cell lung cancer cell lines were used to evaluate the AT13387 radiosensitization effect in vitro and in vivo. Flow cytometry, immunofluorescence, and immunoblot analysis were used to evaluate cell cycle changes and HSP90 client protein's role in DNA damage repair. Metabolic analysis was performed using liquid chromatography-Mass spectrometry. Immunohistochemical examination of resected tumors post-AT13387 and IR treatment were conducted to identify biomarkers of IR-induced tumor vasculogenesis. RESULTS In agreement with recent studies, AT13387 treatment combined with IR resulted in a G2/M cell cycle arrest and inhibited DNA repair. Metabolomic profiling indicated a decrease in key metabolites in glycolysis and tricarboxylic acid cycle by AT13387, a reduction in Adenosine 5'-triphosphate levels, and rate-limiting metabolites in nucleotide metabolism, namely phosphoribosyl diphosphate and aspartate. HNSCC xenografts treated with the combination exhibited increased tumor regrowth delay, decreased tumor infiltration of CD45 and CD11b+ bone marrow-derived cells, and inhibition of HIF-1 and SDF-1 expression, thereby inhibiting IR-induced vasculogenesis. CONCLUSIONS AT13387 treatment resulted in pharmacologic inhibition of cancer cell metabolism that was linked to DNA damage repair. AT13387 combined with IR inhibited IR-induced vasculogenesis, a process involved in tumor recurrence postradiotherapy. Combining AT13387 with IR warrants consideration of clinical trial assessment.
Collapse
Affiliation(s)
- Sarwat Naz
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Leiker
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Missouri Cancer Associates, Columbia, Missouri
| | - Rajani Choudhuri
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Olivia Preston
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L Sowers
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sangeeta Gohain
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Janet Gamson
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Askale Mathias
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - John A Cook
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Abstract
Malignant melanoma is one of the most common tumours of the skin. Heat shock protein 90α (HSP90α) has been applied in the auxiliary diagnosis of various malignancies, as a tumour marker. This study aims to evaluate diagnostic, therapeutic efficacy and prognostic value of plasma HSP90α levels in malignant melanoma. In this study, higher plasma HSP90α levels and abnormal rates were found in malignant melanoma patients than in healthy controls (92.63 vs. 51.84 ng/mL; P < 0.001 and 68.30 vs. 8.30%; P < 0.001). Plasma HSP90α levels were higher with Breslow thickness >4 mm, a high Clark level (IV + V), abnormal serum lactate dehydrogenase (LDH), distant metastases occurrence and Ki-67≥30% (P < 0.05). The area under the curves (AUCs) of HSP90α was greater than LDH in the training (0.847 vs. 0.677) and validation (0.867 vs. 0.672) cohort. Meanwhile, the sensitivity (76.70%) and negative predictive values (78.80%) of HSP90α were higher. Plasma HSP90α levels were significantly reduced in objective response (81.05 vs. 37.26 ng/mL; P = 0.012) and disease control patients (84.16 vs. 47.05 ng/mL; P = 0.002) post-treatment. Patients with normal HSP90α levels had slightly longer progression-free survival (PFS) than those with abnormal levels (8.0 vs. 3.5 months; P = 0.096). Unfortunately, the trend was not statistically significant. In multivariable analysis, immunotherapy was an independent prognostic factor for PFS. Nevertheless, patients with normal HSP90α levels who received chemotherapy(±targeted therapy) without immunotherapy had significantly longer PFS than patients with abnormal levels (6.0 vs. 2.0 months; P = 0.008). Therefore, HSP90α can be used for auxiliary diagnosis and predict the responses to therapy in malignant melanoma patients.
Collapse
|
13
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
14
|
Mehta RK, Pal S, Kondapi K, Sitto M, Dewar C, Devasia T, Schipper MJ, Thomas DG, Basrur V, Pai MP, Morishima Y, Osawa Y, Pratt WB, Lawrence TS, Nyati MK. Low-Dose Hsp90 Inhibitor Selectively Radiosensitizes HNSCC and Pancreatic Xenografts. Clin Cancer Res 2020; 26:5246-5257. [PMID: 32718999 PMCID: PMC7541797 DOI: 10.1158/1078-0432.ccr-19-3102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Treatment approaches using Hsp90 inhibitors at their maximum tolerated doses (MTDs) have not produced selective tumor toxicity. Inhibition of Hsp90 activity causes degradation of client proteins including those involved in recognizing and repairing DNA lesions. We hypothesized that if DNA repair proteins were degraded by concentrations of an Hsp90 inhibitor below those required to cause nonspecific cytotoxicity, significant tumor-selective radiosensitization might be achieved. EXPERIMENTAL DESIGN Tandem mass tagged-mass spectrometry was performed to determine the effect of a subcytotoxic concentration of the Hsp90 inhibitor, AT13387 (onalespib), on global protein abundance. The effect of AT13387 on in vitro radiosensitization was assessed using a clonogenic assay. Pharmacokinetics profiling was performed in mice bearing xenografts. Finally, the effect of low-dose AT13387 on the radiosensitization of three tumor models was assessed. RESULTS A subcytotoxic concentration of AT13387 reduced levels of DNA repair proteins, without affecting the majority of Hsp90 clients. The pharmacokinetics study using one-third of the MTD showed 40-fold higher levels of AT13387 in tumors compared with plasma. This low dose enhanced Hsp70 expression in peripheral blood mononuclear cells (PBMCs), which is a biomarker of Hsp90 inhibition. Low dose monotherapy was ineffective, but when combined with radiotherapy, produced significant tumor growth inhibition. CONCLUSIONS This study shows that a significant therapeutic ratio can be achieved by a low dose of Hsp90 inhibitor in combination with radiotherapy. Hsp90 inhibition, even at a low dose, can be monitored by measuring Hsp70 expression in PBMCs in human studies.
Collapse
Affiliation(s)
- Ranjit K Mehta
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sanjima Pal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Koushik Kondapi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Merna Sitto
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Cuyler Dewar
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theresa Devasia
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | | | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | | | - Yoichi Osawa
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - William B Pratt
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Mortensen ACL, Mohajershojai T, Hariri M, Pettersson M, Spiegelberg D. Overcoming Limitations of Cisplatin Therapy by Additional Treatment With the HSP90 Inhibitor Onalespib. Front Oncol 2020; 10:532285. [PMID: 33102211 PMCID: PMC7554556 DOI: 10.3389/fonc.2020.532285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
Rational Cisplatin based cancer therapy is an affordable and effective standard therapy for several solid cancers, including lung, ovarian and head and neck cancers. However, the clinical use of cisplatin is routinely limited by the development of drug resistance and subsequent therapeutic failure. Therefore, methods of circumventing cisplatin resistance have the potential to increase therapeutic efficiency and dramatically increase overall survival. Cisplatin resistance can be mediated by alterations to the DNA damage response, where multiple components of the repair machinery have been described to be client proteins of HSP90. In the present study, we have investigated whether therapy with the novel HSP90 inhibitor onalespib can potentiate the efficacy of cisplatin and potentially reverse cisplatin resistance in ovarian and head and neck cancer cells. Methods Cell viability, cancer cell proliferation and migration capacity were evaluated in vitro on models of ovarian and head and neck cancer cells. Western blotting was used to assess the downregulation of HSP90 client proteins and alterations in downstream signaling proteins after exposure to cisplatin and/or onalespib. Induction of apoptosis and DNA damage response were evaluated in both monotherapy and combination therapy groups. Results Results demonstrate that onalespib enhances the efficiency of cisplatin in a dose-dependent manner. Tumor cells treated with both drugs displayed lower viability and a decreased migration rate compared to vehicle-control cells and cells treated with individual compounds. An increase of DNA double strand breaks was observed in both cisplatin and onalespib treated cells. The damage was highest and most persistent in the combination group, delaying the DNA repair machinery. Further, the cisplatin and onalespib co-treated cells had greater apoptotic activity compared to controls. Conclusion The results of this study demonstrate that the reduced therapeutic efficacy of cisplatin due to drug-resistance could be overcome by combination treatment with onalespib. We speculate that the increased apoptotic signaling, DNA damage as well as the downregulation of HSP90 client proteins are important mechanisms promoting increased sensitivity to cisplatin treatment.
Collapse
Affiliation(s)
| | | | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marika Pettersson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Ernst A, Hennel R, Krombach J, Kapfhammer H, Brix N, Zuchtriegel G, Uhl B, Reichel CA, Frey B, Gaipl US, Winssinger N, Shirasawa S, Sasazuki T, Sperandio M, Belka C, Lauber K. Priming of Anti-tumor Immune Mechanisms by Radiotherapy Is Augmented by Inhibition of Heat Shock Protein 90. Front Oncol 2020; 10:1668. [PMID: 32984042 PMCID: PMC7481363 DOI: 10.3389/fonc.2020.01668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an essential part of multi-modal cancer therapy. Nevertheless, for certain cancer entities such as colorectal cancer (CRC) the indications of radiotherapy are limited due to anatomical peculiarities and high radiosensitivity of the surrounding normal tissue. The development of molecularly targeted, combined modality approaches may help to overcome these limitations. Preferably, such strategies should not only enhance radiation-induced tumor cell killing and the abrogation of tumor cell clonogenicity, but should also support the stimulation of anti-tumor immune mechanisms – a phenomenon which moved into the center of interest of preclinical and clinical research in radiation oncology within the last decade. The present study focuses on inhibition of heat shock protein 90 (HSP90) whose combination with radiotherapy has previously been reported to exhibit convincing therapeutic synergism in different preclinical cancer models. By employing in vitro and in vivo analyses, we examined if this therapeutic synergism also applies to the priming of anti-tumor immune mechanisms in model systems of CRC. Our results indicate that the combination of HSP90 inhibitor treatment and ionizing irradiation induced apoptosis in colorectal cancer cells with accelerated transit into secondary necrosis in a hyperactive Kras-dependent manner. During secondary necrosis, dying cancer cells released different classes of damage-associated molecular patterns (DAMPs) that stimulated migration and recruitment of monocytic cells in vitro and in vivo. Additionally, these dying cancer cell-derived DAMPs enforced the differentiation of a monocyte-derived antigen presenting cell (APC) phenotype which potently triggered the priming of allogeneic T cell responses in vitro. In summary, HSP90 inhibition – apart from its radiosensitizing potential – obviously enables and supports the initial steps of anti-tumor immune priming upon radiotherapy and thus represents a promising partner for combined modality approaches. The therapeutic performance of such strategies requires further in-depth analyses, especially for but not only limited to CRC.
Collapse
Affiliation(s)
- Anne Ernst
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Krombach
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Heidi Kapfhammer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine Fukuoka University, Fukuoka, Japan
| | | | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
17
|
Zhang J, Si J, Gan L, Zhou R, Guo M, Zhang H. Harnessing the targeting potential of differential radiobiological effects of photon versus particle radiation for cancer treatment. J Cell Physiol 2020; 236:1695-1711. [PMID: 32691425 DOI: 10.1002/jcp.29960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023]
Abstract
Radiotherapy is one of the major modalities for malignancy treatment. High linear energy transfer (LET) charged-particle beams, like proton and carbon ions, exhibit favourable depth-dose distributions and radiobiological enhancement over conventional low-LET photon irradiation, thereby marking a new era in high precision medicine. Tumour cells have developed multicomponent signal transduction networks known as DNA damage responses (DDRs), which initiate cell-cycle checkpoints and induce double-strand break (DSB) repairs in the nucleus by nonhomologous end joining or homologous recombination pathways, to manage ionising radiation (IR)-induced DNA lesions. DNA damage induction and DSB repair pathways are reportedly dependent on the quality of radiation delivered. In this review, we summarise various types of DNA lesion and DSB repair mechanisms, upon irradiation with low and high-LET radiation, respectively. We also analyse factors influencing DNA repair efficiency. Inhibition of DNA damage repair pathways and dysfunctional cell-cycle checkpoint sensitises tumour cells to IR. Radio-sensitising agents, including DNA-PK inhibitors, Rad51 inhibitors, PARP inhibitors, ATM/ATR inhibitors, chk1 inhibitors, wee1 kinase inhibitors, Hsp90 inhibitors, and PI3K/AKT/mTOR inhibitors have been found to enhance cell killing by IR through interference with DDRs, cell-cycle arrest, or other cellular processes. The cotreatment of these inhibitors with IR may represent a promising therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhou
- Research Center for Ecological Impacts and Environmental Health Effects of Toxic and Hazardous Chemicals, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Mortensen ACL, Morin E, Brown CJ, Lane DP, Nestor M. Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2. EJNMMI Res 2020; 10:38. [PMID: 32300907 PMCID: PMC7163001 DOI: 10.1186/s13550-020-0613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Precision therapeutics continuously make advances in cancer therapy, and a field of growing interest is the combination of targeted radionuclide therapy (TRNT) with potential radiosensitizing agents. This study evaluated whether the effects of in vitro TRNT, using the 177Lu-labeled anti-CD44v6 antibody AbN44v6, were potentiated by the novel stapled MDM2/X-p53 antagonist PM2. MATERIALS AND METHODS Two wt p53 cell lines, HCT116 (colorectal carcinoma) and UM-SCC-74B (head and neck squamous cell carcinoma), expressing different levels of the target antigen, CD44v6, were used. Antigen-specific binding of 177Lu-AbN44v6 was initially verified in a 2D cell assay, after which the potential effects of unlabeled AbN44v6 on downstream phosphorylation of Erk1/2 were evaluated by western blotting. Further, the therapeutic effects of unlabeled AbN44v6, 177Lu-AbN44v6, PM2, or a combination (labeled/unlabeled AbN44v6 +/- PM2) were assessed in 3D multicellular tumor spheroid assays. RESULTS Radiolabeled antibody bound specifically to CD44v6 on both cell lines. Unlabeled AbN44v6 binding did not induce downstream phosphorylation of Erk1/2 at any of the concentrations tested, and repeated treatments with the unlabeled antibody did not result in any spheroid growth inhibition. 177Lu-AbN44v6 impaired spheroid growth in a dose-dependent and antigen-dependent manner. A single modality treatment with 20 μM of PM2 significantly impaired spheroid growth in both spheroid models. Furthermore, the combination of TRNT and PM2-based therapy proved significantly more potent than either monotherapy. In HCT116 spheroids, this resulted in a two- and threefold spheroid growth rate decrease for the combination of PM2 and 100 kBq 177Lu-AbN44v6 compared to monotherapies 14-day post treatment. In UM-SCC-74B spheroids, the combination therapy resulted in a reduction in spheroid size compared to the initial spheroid size 10-day post treatment. CONCLUSION TRNT using 177Lu-AbN44v6 proved efficient in stalling spheroid growth in a dose-dependent and antigen-dependent manner, and PM2 treatment demonstrated a growth inhibitory effect as a monotherapy. Moreover, by combining TRNT with PM2-based therapy, therapeutic effects of TRNT were potentiated in a 3D multicellular tumor spheroid model. This proof-of-concept study exemplifies the strength and possibility of combining TRNT targeting CD44v6 with PM2-based therapy.
Collapse
Affiliation(s)
- Anja C. L. Mortensen
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Eric Morin
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Christopher J. Brown
- p53Lab, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
| | - David P. Lane
- p53Lab, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
19
|
Spiegelberg D, Abramenkovs A, Mortensen ACL, Lundsten S, Nestor M, Stenerlöw B. The HSP90 inhibitor Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy: an in vitro and in vivo approach. Sci Rep 2020; 10:5923. [PMID: 32246062 PMCID: PMC7125222 DOI: 10.1038/s41598-020-62293-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
Oncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Sara Lundsten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Lundsten S, Spiegelberg D, Raval NR, Nestor M. The radiosensitizer Onalespib increases complete remission in 177Lu-DOTATATE-treated mice bearing neuroendocrine tumor xenografts. Eur J Nucl Med Mol Imaging 2020; 47:980-990. [PMID: 31912256 PMCID: PMC7075859 DOI: 10.1007/s00259-019-04673-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/26/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE 177Lu-DOTATATE targeting the somatostatin receptor (SSTR) is utilized for treatment of neuroendocrine tumors (NETs). Onalespib, a heat shock protein 90 (HSP90) inhibitor, has demonstrated radiosensitizing properties and may thus enhance the effect of 177Lu-DOTATATE. Consequently, the aim of this study was to assess the potential of Onalespib in combination with 177Lu-DOTATATE in vivo and to examine the toxicity profiles of the treatments. METHODS 177Lu-DOTATATE selectivity and distribution in NET xenografts were studied using biodistribution and autoradiography. Therapeutic effects of Onalespib in combination with 177Lu-DOTATATE were studied in NET xenografts. Histological analyses were used to assess molecular effects from treatment and to establish toxicity profiles. RESULTS Biodistribution and autoradiography confirmed the SSTR-selective tumor uptake of 177Lu-DOTATATE, which was unaffected by Onalespib treatment. Immunohistochemistry verified molecular responses to Onalespib therapy in the tumors. While Onalespib and 177Lu-DOTATATE monotherapies resulted in a 10% and 33% delay in tumor doubling time compared with control, the combination treatment resulted in a 73% delayed tumor doubling time. Moreover, combination treatment increased complete remissions threefold from 177Lu-DOTATATE monotherapy, resulting in 29% complete remissions. In addition, histological analyses demonstrated radiation-induced glomerular injury in the 177Lu-DOTATATE monotherapy group. The damage was decreased tenfold in the combination group, potentially due to Onalespib-induced HSP70 upregulation in the kidneys. CONCLUSION Treatment with Onalespib potentiated 177Lu-DOTATATE therapy of NET xenografts with a favorable toxicity profile. Utilizing Onalespib's radiosensitizing properties with 177Lu-DOTATATE may lead to better therapeutic results in the future and may reduce unwanted side effects in dose-limiting organs.
Collapse
Affiliation(s)
- Sara Lundsten
- Department of Immunology, Genetics and Pathology, Uppsala University, The Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, The Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala University Hospital, Entrance 70, SE-751 85, Uppsala, Sweden
| | - Nakul R Raval
- Department of Immunology, Genetics and Pathology, Uppsala University, The Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, The Rudbeck Laboratory, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
21
|
Gao C, Peng YN, Wang HZ, Fang SL, Zhang M, Zhao Q, Liu J. Inhibition of Heat Shock Protein 90 as a Novel Platform for the Treatment of Cancer. Curr Pharm Des 2020; 25:849-855. [PMID: 31244417 DOI: 10.2174/1381612825666190503145944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays an essential role in various physiological and pathological processes. It activates client proteins to participate in tumor progression. Blocking Hsp90 could enable effective antitumor effects in many tumor types, such as multiple myeloma and colon cancer. Recently, it has motivated an interest in Hsp90 inhibitors that bind to the N-terminal or C-terminal ATP pocket as antitumor drugs. We reviewed the data from experimental and clinical trials on Hsp90 inhibitors in the treatment of different malignancies to explore and summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Chang Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ya-Nan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi-Lin Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
22
|
Lundsten S, Spiegelberg D, Stenerlöw B, Nestor M. The HSP90 inhibitor onalespib potentiates 177Lu‑DOTATATE therapy in neuroendocrine tumor cells. Int J Oncol 2019; 55:1287-1295. [PMID: 31638190 PMCID: PMC6831206 DOI: 10.3892/ijo.2019.4888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
177Lu-DOTATATE was recently approved for the treatment of somatostatin receptor (SSTR)-positive neuroen-docrine tumors (NETs). However, despite impressive response rates, complete responses are rare. Heat shock protein 90 (HSP90) inhibitors have been suggested as suitable therapeutic agents for NETs, as well as a potential radiosensitizers. Consequently, the aim of this study was to investigate whether the HSP90-inhibitor onalespib could reduce NET cell growth and act as a radiosensitizer when used in combination with 177Lu-DOTATATE. The NET cell lines BON, NCI-H727 and NCI-H460, were first characterized with regards to 177Lu-DOTATATE uptake and sensitivity to onalespib treatment in monolayer cell assays. The growth inhibitory effects of the monotherapies and combination treatments were then examined in three-dimensional multicellular tumor spheroids. Lastly, the molecular effects of the treatments were assessed. 177Lu-DOTATATE uptake was observed in the BON and NCI-H727 cells, while the NCI-H460 cells exhibited no detectable uptake. Accordingly, 177Lu-DOTATATE reduced the growth of BON and NCI-H727 spheroids, while no effect was observed in the NCI-H460 spheroids. Onalespib reduced cell viability and spheroid growth in all three cell lines. Furthermore, the combination of onalespib and 177Lu-DOTATATE exerted synergistic therapeutic effects on the BON and NCI-H727 spheroids. Western blot analysis of BON spheroids revealed the downregulation of epidermal growth factor receptor (EGFR) and the upregulation of γ H2A histone family member X (γH2AX) following combined treatment with onalespib and 177Lu-DOTATATE. Moreover, flow cytometric analyses revealed a two-fold increase in caspase 3/7 activity in the combination group. In conclusion, the findings of this study demonstrate that onalespib exerts antitumorigenic effects on NET cells and may thus be a feasible treatment option for NETs. Furthermore, onalespib was able to synergistically potentiate 177Lu-DOTATATE treatment in a SSTR-specific manner. The radiosensitizing mechanisms of onalespib involved the downregulation of EGFR expression and the induction of apoptosis. Consequently, the combination of onalespib and 177Lu-DOTATATE may prove to be a promising strategy with which to improve therapeutic responses in patients with NETs. Further studies investigating this strategy in vivo regarding the therapeutic effects and potential toxicities are warranted to expand these promising findings.
Collapse
Affiliation(s)
- Sara Lundsten
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 87 Uppsala, Sweden
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 87 Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 87 Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 87 Uppsala, Sweden
| |
Collapse
|
23
|
Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion. Int J Mol Sci 2019; 20:ijms20184588. [PMID: 31533245 PMCID: PMC6770223 DOI: 10.3390/ijms20184588] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.
Collapse
|
24
|
Nagaraju GP, Zakka KM, Landry JC, Shaib WL, Lesinski GB, El-Rayes BF. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int J Cancer 2019; 145:1529-1537. [PMID: 30801702 DOI: 10.1002/ijc.32227] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Resistance of pancreatic ductal adenocarcinoma (PDAC) to radiotherapy and chemotherapy represents a significant clinical issue. Although the mechanisms of resistance are multi-faceted, client proteins of heat shock protein 90 (HSP90) such as hypoxia induced factor-1α (HIF-1α) have a central role in this process. The purpose of this investigation was to evaluate inhibition of HSP90 as a therapeutic strategy for radiosensitization in pancreatic cancer. Ganetespib, a selective inhibitor of HSP90, was evaluated as a radio-sensitizer in setting of PDAC. Inhibition of HSP90 by ganetespib potentiated the ability of radiation therapy to limit cell proliferation and colony formation in vitro. HIF-1α expression was upregulated by irradiation and HIF-1α-overexpressing stable cell lines were resistant to radiation. Inhibition of HSP90 with ganetespib reversed the effects of HIF-1α overexpression, by reducing signaling via proliferative, angiogenic and anti-apoptotic pathways. The potentiation of the antitumor effects of chemoradiotherapy by ganetespib and modulation of key pathways (e.g. HIF-1α, STAT3, and AKT) was confirmed in vivo in nude mice bearing HPAC xenograft tumors. These novel data highlight HIF-1α-mediated mechanisms of HSP90 inhibition that sensitize PDAC cells to chemoradiotherapy. This pathway and its pleiotropic effects warrant further evaluation in concert with conventional therapy in pancreatic cancer clinical trials.
Collapse
Affiliation(s)
| | - Katerina M Zakka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jerome C Landry
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Walid L Shaib
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
25
|
Chandra A, Park SS, Pignolo RJ. Potential role of senescence in radiation-induced damage of the aged skeleton. Bone 2019; 120:423-431. [PMID: 30543989 DOI: 10.1016/j.bone.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/21/2022]
Abstract
Human aging-related changes are exacerbated in cases of disease and cancer, and conversely aging is a catalyst for the occurrence of disease and multimorbidity. For example, old age is the most significant risk factor for cancer and among people who suffer from cancer, >60% are above the age of 65. Oxidative stress and DNA damage, leading to genomic instability and telomere dysfunction, are prevalent in aging and radiation-induced damage and are major cellular events that lead to senescence. Human exposures from nuclear fallout, cosmic radiation and clinical radiotherapy (RT) are some common sources of irradiation that affect bone tissue. RT has been used to treat malignant tumors for over a century, but the effects of radiation damage on tumor-adjacent normal tissue has largely been overlooked. There is an increase in the percent survivorship among patients post-RT, and it is in older survivors where the deleterious synergy between aging and radiation exposure conspires to promote tissue deterioration and dysfunction which then negatively impacts their quality of life. Thus, an aging skeleton is already pre-disposed to architectural deterioration, which is further worsened by radiation-induced bone damage. Effects of senescence and the senescence associated secretory phenotype (SASP) have been implicated in age-associated bone loss, but their roles in radiation-associated bone damage are still elusive. RT is used in treatment for a variety of cancers and in different anatomical locations, the sequelae of which include long-term morbidity and lifelong discomfort. Therefore, consideration of the growing evidence that implicates the role of senescence in radiation-induced bone damage argues in favor of exploiting current senotherapeutic approaches as a possible prevention or treatment.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 2018; 17:1048-1055. [PMID: 29886783 DOI: 10.1080/15384101.2018.1475828] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Laura J Niedernhofer
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Paul D Robbins
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
27
|
Spiegelberg D, Mortensen AC, Lundsten S, Brown CJ, Lane DP, Nestor M. The MDM2/MDMX-p53 Antagonist PM2 Radiosensitizes Wild-Type p53 Tumors. Cancer Res 2018; 78:5084-5093. [PMID: 30026328 DOI: 10.1158/0008-5472.can-18-0440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/05/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022]
Abstract
Radiotherapy amplifies p53 expression in cancer cells with wild-type (wt) p53. Blocking the negative regulators MDM2 and MDMX stabilizes p53 and may therefore potentiate radiotherapy outcomes. In this study, we investigate the efficacy of the novel anti-MDM2/X stapled peptide PM2 alone and in combination with external gamma radiation in vitro and in vivo PM2 therapy combined with radiotherapy elicited synergistic therapeutic effects compared with monotherapy in cells with wt p53 in both in vitro and in vivo assays, whereas these effects did not manifest in p53 -/- cells. Biodistribution and autoradiography of 125I-PM2 revealed high and retained uptake homogenously distributed throughout the tumor. In mice carrying wt p53 tumors, PM2 combined with radiotherapy significantly prolonged the median survival by 50%, whereas effects of PM2 therapy on mutant and p53 -/- tumors were negligible. PM2-dependent stabilization of p53 was confirmed with ex vivo immunohistochemistry. These data demonstrate the potential of the stapled peptide PM2 as a radiotherapy potentiator in vivo and suggest that clinical application of PM2 with radiotherapy in wt p53 cancers might improve tumor control.Significance: These findings contribute advances to cancer radiotherapy by using novel p53-reactivating stapled peptides as radiosensitizers in wild-type p53 cancers. Cancer Res; 78(17); 5084-93. ©2018 AACR.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anja C Mortensen
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Lundsten
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Christopher J Brown
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - David P Lane
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
A comparison of cell survival and heat shock protein expression after radiation in normal dermal fibroblasts, microvascular endothelial cells, and different head and neck squamous carcinoma cell lines. Clin Oral Investig 2018; 22:2251-2262. [PMID: 29307045 DOI: 10.1007/s00784-017-2323-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) shows increased radioresistance due to the manipulation of homeostatic mechanisms like the heat shock response. This study intended to comparatively analyze effects of ionizing radiation on different HNSCC cell lines (PCI) and normal human dermal fibroblasts (NHFs) and human dermal microvascular endothelial cells (HDMECs) to uncover differences in radiation coping strategies. MATERIALS AND METHODS Proliferation (BrdU assay), apoptosis (caspase 3/7) and intracellular protein expression of heat shock protein (HSP)-70, and phosphorylated and total HSP27, determined by enzyme-linked immunosorbent assay (ELISA), were analyzed after exposure to increasing doses of ionizing radiation (2, 6, and 12 Gray, Gy). RESULTS Cell count decreased dose-dependently, but PCI cell lines consistently showed higher numbers compared to NHF and HDMEC. Likewise, high doses reduced cell proliferation, but low-dose radiation (2 Gy) instead increased proliferation in PCI 9 and 52. Apoptosis was not detectable in PCI cell lines. Basic HSP70 expression was high in PCI cells with little additional increase by irradiation. PCI cells yielded high basic total HSP27 concentrations but irradiation dose-dependently increased HSP27 in HDMEC, NHF, and PCI cells. Phosphorylated HSP27 concentrations were highest in NHF. CONCLUSION PCI cell lines showed higher resistance to dose-dependent reduction in cell number, proliferation, and protection from apoptosis compared to NHF and HDMEC. In parallel, we observed a high basic and radiation-induced expression of intracellular HSP70 leading to the assumption that the radioresistance of PCI cells is conferred by HSP70. CLINICAL RELEVANCE HNSCC use HSP to escape radiation-induced apoptosis and certain subtypes might increase proliferation after low-dose irradiation.
Collapse
|
29
|
Kinzel L, Ernst A, Orth M, Albrecht V, Hennel R, Brix N, Frey B, Gaipl US, Zuchtriegel G, Reichel CA, Blutke A, Schilling D, Multhoff G, Li M, Niyazi M, Friedl AA, Winssinger N, Belka C, Lauber K. A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget 2017; 7:43199-43219. [PMID: 27259245 PMCID: PMC5190018 DOI: 10.18632/oncotarget.9774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
The chaperone heat shock protein 90 (HSP90) crucially supports the maturation, folding, and stability of a variety of client proteins which are of pivotal importance for the survival and proliferation of cancer cells. Consequently, targeting of HSP90 has emerged as an attractive strategy of anti-cancer therapy, and it appears to be particularly effective in the context of molecular sensitization towards radiotherapy as has been proven in preclinical models of different cancer entities. However, so far the clinical translation has largely been hampered by suboptimal pharmacological properties and serious hepatotoxicity of first- and second-generation HSP90 inhibitors. Here, we report on NW457, a novel radicicol-derived member of the pochoxime family with reduced hepatotoxicity, how it inhibits the DNA damage response and how it synergizes with ionizing irradiation to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Linda Kinzel
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, Head and Neck Surgery, and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
30
|
Spiegelberg D. HSP90 inhibition in angiosarcoma. Br J Dermatol 2017; 177:343-344. [PMID: 28833016 DOI: 10.1111/bjd.15609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Abstract
OPINION STATEMENT The survival rate for patients with advanced stages of squamous cell carcinoma of the head and neck (SCCHN) remains poor despite multimodal treatment options. Cetuximab, an anti-EGFR inhibitor, is the only FDA-approved targeted agent for this disease. Recent findings have implicated modifications of the microenvironment and, consequently, phenotypical modifications of the cancer cell, in treatment resistance mechanisms. For many years, cancer research has focused mainly on targetable sites on or inside the cancer cell. Nowadays, in preclinical and clinical studies, a greater emphasis is being placed on drugs that target the tumor microenvironment. Potential targets relate to tumor vascularization, immunology, extracellular matrix components, or cancer-associated fibroblasts. The combination of these new agents with standard treatment options is of particular interest to overcome resistance mechanisms and/or to increase treatment efficacy. Whereas antiangiogenic agents show poor clinical activity, immunotherapy seems to be a more promising tool with an objective response rate (ORR) of 20 % in patients with recurrent and/or metastatic squamous cell carcinoma (R/M SCC). Other targets, located inside the extracellular matrix or on cancer associated fibroblasts, are under preclinical investigation. These new agents all need to be tested in clinical trials alone, or in combination with standard treatment modalities, based on preclinical data. To increase our knowledge of the complex network between the cancer cell and its environment, preclinical studies should consider co-culture models, and clinical studies should incorporate a translational research objective.
Collapse
|
32
|
Yamada-Kanazawa S, Kajihara I, Fukushima S, Jinnin M, Masuzawa M, Masuzawa M, Amoh Y, Hoshina D, Abe R, Ihn H. Inhibition of heat shock protein 90 exerts an antitumour effect in angiosarcoma: involvement of the vascular endothelial growth factor signalling pathway. Br J Dermatol 2017; 177:456-469. [DOI: 10.1111/bjd.15303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 02/04/2023]
Affiliation(s)
- S. Yamada-Kanazawa
- Department of Dermatology and Plastic Surgery; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - I. Kajihara
- Department of Dermatology and Plastic Surgery; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - S. Fukushima
- Department of Dermatology and Plastic Surgery; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - M. Jinnin
- Department of Dermatology and Plastic Surgery; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - M. Masuzawa
- Department of Dermatology; Kitasato University School of Medicine; Sagamihara Kanagawa Japan
| | - M. Masuzawa
- Department of Molecular Diagnostics; School of Allied Health Sciences; Kitasato University; Sagamihara Kanagawa Japan
| | - Y. Amoh
- Department of Dermatology; Kitasato University School of Medicine; Sagamihara Kanagawa Japan
| | - D. Hoshina
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Hokkaido Japan
| | - R. Abe
- Department of Dermatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - H. Ihn
- Department of Dermatology and Plastic Surgery; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
33
|
Bennati C, Paglialunga L, Ricciuti B, Metro G, Marcomigni L, Gili A, Crinò L. Targeting EGFR and ALK in NSCLC: current evidence and future perspective. Lung Cancer Manag 2016; 5:79-90. [PMID: 30643552 PMCID: PMC6310340 DOI: 10.2217/lmt-2016-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
The advent of molecular therapy targeting specific driver oncogenes has dramatically changed the prognosis of a subset of NSCLC, dilating survival and improving the quality of life of patients with advanced disease. Two of the major targets for treatment with receptor TKIs are the activated mutated forms of the EGFR and the ALK gene fusions. In advanced NSCLC patients harboring EGFR mutations or ALK rearrangements, the use of TKIs in the first-line setting, have provided unexpected large progression-free survival and overall survival benefits, compared with cytotoxic chemotherapy. However, despite initial responses and durable remissions, the development of resistance inevitably leads to treatment failure. The aim of this review is to discuss the treatment strategy currently used for tumors harboring these two genetic targets and to focus on what will be available in clinical practice in the near future.
Collapse
Affiliation(s)
- Chiara Bennati
- Department of Medical Oncology, S Maria della Misericordia Hospital, Perugia/Italy
| | - Luca Paglialunga
- Department of Medical Oncology, S Maria della Misericordia Hospital, Perugia/Italy
| | - Biagio Ricciuti
- Department of Medical Oncology, S Maria della Misericordia Hospital, Perugia/Italy
| | - Giulio Metro
- Department of Medical Oncology, S Maria della Misericordia Hospital, Perugia/Italy
| | - Luca Marcomigni
- Department of Medical Oncology, S Maria della Misericordia Hospital, Perugia/Italy
| | - Alessio Gili
- Department of Experimental Medicine, S Maria della Misericordia Hospital, Perugia/Italy
| | - Lucio Crinò
- Department of Medical Oncology, S Maria della Misericordia Hospital, Perugia/Italy
| |
Collapse
|
34
|
Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol 2016; 127:209-19. [PMID: 26842818 DOI: 10.1007/s11060-016-2070-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. There is a critical need for novel strategies to abolish the molecular mechanisms that support GBM growth, invasion and treatment resistance. The heat shock proteins, HSP27 and HSP90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. Natural and synthetic inhibitors have been evaluated in clinical trials for several forms of systemic cancer but none as yet for GBM. This topic review summarizes the current preclinical evidence and rationale to define the potential of HSP27 and HSP90 inhibitors in GBM management.
Collapse
|
35
|
Spiegelberg D, Mortensen AC, Selvaraju RK, Eriksson O, Stenerlöw B, Nestor M. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model. Eur J Nucl Med Mol Imaging 2015; 43:974-982. [PMID: 26627081 PMCID: PMC4819754 DOI: 10.1007/s00259-015-3260-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/10/2015] [Indexed: 01/19/2023]
Abstract
Purpose Heat shock protein 90 (HSP90) is essential for the activation and stabilization of numerous oncogenic client proteins. AT13387 is a novel HSP90 inhibitor promoting degradation of oncogenic proteins upon binding, and may also act as a radiosensitizer. For optimal treatment there is, however, the need for identification of biomarkers for patient stratification and therapeutic response monitoring, and to find suitable targets for combination treatments. The aim of this study was to assess the response of surface antigens commonly expressed in squamous cell carcinoma to AT13387 treatment, and to find suitable biomarkers for molecular imaging and radioimmunotherapy in combination with HSP90 inhibition. Methods Cancer cell proliferation and radioimmunoassays were used to evaluate the effect of AT13387 on target antigen expression in vitro. Inhibitor effects were then assessed in vivo in mice-xenografts. Animals were treated with AT13387 (5 × 50 mg/kg), and were imaged with PET using either 18F-FDG or 124I-labelled tracers for EGFR and CD44v6, and this was followed by ex-vivo biodistribution analysis and immunohistochemical staining. Results AT13387 exposure resulted in high cytotoxicity and possible radiosensitization with IC50 values below 4 nM. Both in vitro and in vivo AT13387 effectively downregulated HSP90 client proteins. PET imaging with 124I-cetuximab showed a significant decrease of EGFR in AT13387-treated animals compared with untreated animals. In contrast, the squamous cell carcinoma-associated biomarker CD44v6, visualized with 124I-AbD19384 as well as 18F-FDG uptake, were not significantly altered by AT13387 treatment. Conclusion We conclude that AT13387 downregulates HSP90 client proteins, and that molecular imaging of these proteins may be a suitable approach for assessing treatment response. Furthermore, radioimmunotherapy targeting CD44v6 in combination with AT13387 may potentiate the radioimmunotherapy outcome due to radiosensitizing effects of the drug, and could potentially lead to a lower dose to normal tissues. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3260-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Anja C Mortensen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ram K Selvaraju
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|