1
|
Nandave M, Acharjee R, Bhaduri K, Upadhyay J, Rupanagunta GP, Ansari MN. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: Call for further research. Int J Biol Macromol 2023; 242:124581. [PMID: 37105251 DOI: 10.1016/j.ijbiomac.2023.124581] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Sirtuins or Sir (Silent information regulator) are NAD+-dependent enzymes playing an important part in the pathogenesis and treatment of various disorders. They have ubiquitously expressed protein deacetylases. They are implicated in several cellular activities like DNA repair, cellular metabolism, mitochondrial function, and inflammation. Deletion of sirtuin protein, SIRT1 in the organs like brain, heart, liver and pancreas can cause inflammation and increases the level of free radical ions causing oxidative stress. Inflammation and oxidative stress are closely associated with pathophysiological events in many chronic diseases, like diabetes, cancer, cardiovascular, osteoporosis, and neurodegenerative diseases. Modulation of SIRT1 gene expression might help in preventing the progression of chronic diseases related to the brain, heart, liver, and pancreas. SIRT2 proteins play an essential role in tumorigenesis, including tumor-suppressing and tumor-promoting functions. Sirtuin activators are molecules that upregulate the activity of Sirtuins in the body. Their multifaceted uses have surprised the global scientific community. They are found to control obesity, lower cardiac risks, battle cancer, etc. This article provides an update on the pharmacological effect of SIRT1 and SIRT 2 proteins, their activators and inhibitors, and their molecular mechanism. It provides novel insights for future research in targeted therapy and drug development.
Collapse
Affiliation(s)
- Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rituparna Acharjee
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Kinkini Bhaduri
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Jyoti Upadhyay
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| | | | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
2
|
Chattree V, Singh K, Singh K, Goel A, Maity A, Lone A. A comprehensive review on modulation of SIRT1 signaling pathways in the immune system of COVID-19 patients by phytotherapeutic melatonin and epigallocatechin-3-gallate. J Food Biochem 2022; 46:e14259. [PMID: 35662052 PMCID: PMC9347991 DOI: 10.1111/jfbc.14259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
SARS-CoV-2 infection has now become the world's most significant health hazard, with the World Health Organization declaring a pandemic on March 11, 2020. COVID-19 enters the lungs through angiotensin-converting enzyme 2 (ACE2) receptors, alters various signaling pathways, and causes immune cells to overproduce cytokines, resulting in mucosal inflammation, lung damage, and multiple organ failure in COVID-19 patients. Although several antiviral medications have been effective in managing the virus, they have not been effective in lowering the inflammation and symptoms of the illness. Several studies have found that epigallocatechin-3-gallate and melatonin upregulate sirtuins proteins, which leads to downregulation of pro-inflammatory gene transcription and NF-κB, protecting organisms from oxidative stress in autoimmune, respiratory, and cardiovascular illnesses. As a result, the purpose of this research is to understand more about the molecular pathways through which these phytochemicals affect COVID-19 patients' impaired immune systems, perhaps reducing hyperinflammation and symptom severity. PRACTICAL APPLICATIONS: Polyphenols are natural secondary metabolites that are found to be present in plants. EGCG a polyphenol belonging to the flavonoid family in tea has potent anti-inflammatory and antioxidative properties that helps to counter the inflammation and oxidative stress associated with many neurodegenerative diseases. Melatonin, another strong antioxidant in plants, has been shown to possess antiviral function and alleviate oxidative stress in many inflammatory diseases. In this review, we propose an alternative therapy for COVID-19 patients by supplementing their diet with these nutraceuticals that perhaps by modulating sirtuin signaling pathways counteract cytokine storm and oxidative stress, the root causes of severe inflammation and symptoms in these patients.
Collapse
Affiliation(s)
- Vineeta Chattree
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Kamana Singh
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Kanishk Singh
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Aayush Goel
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Amritaparna Maity
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Asif Lone
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| |
Collapse
|
3
|
Magdy A, Farrag EAE, Hamed SM, Abdallah Z, El Nashar EM, Alghamdi MA, Ali AAH, Abd El-kader M. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson’s disease rat model. Front Cell Neurosci 2022; 16:967813. [PMID: 36187296 PMCID: PMC9522903 DOI: 10.3389/fncel.2022.967813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Treatment of PD is challenging, as current treatment strategies are only symptomatic and do not stop disease development. Recent studies reported neuroprotective effects of calcitriol in PD through its antioxidant and anti-inflammatory properties. The exact pathomechanisms of PD are not yet fully understood. So, investigation of different molecular pathways is challenging. Sirtuin-1 (Sirt1) modulates multiple physiological processes, including programmed cell death, DNA repair, and inflammation. Furthermore, defective autophagy is considered a key pathomechanism in PD as it eliminates protein aggregation and dysfunctional cell organelles. The present study investigated the involvement of autophagy and Sirt1/NF-κB molecular pathway in rotenone-induced PD and explored the protective and restorative effects of calcitriol through these mechanisms. Therefore, behavioral tests were used to test the effect of calcitriol on motor disability and equilibrium. Furthermore, the histological and neuronal architecture was assessed. The expression of genes encoding neuroinflammation and autophagy markers was determined by qPCR while their protein levels were determined by Western blot analysis and immune-histochemical staining. Our results indicate that behavioral impairments and dopaminergic neuron depletion in the rotenone-induced PD model were improved by calcitriol administration. Furthermore, calcitriol attenuated rotenone-induced neuroinflammation and autophagy dysfunction in PD rats through up-regulation of Sirt1 and LC3 and down-regulation of P62 and NF-κB expression levels. Thus, calcitriol could induce a neuro-protective and restorative effect in the rotenone-induced PD model by modulating autophagy and Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Alshimaa Magdy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Alshimaa Magdy,
| | - Eman A. E. Farrag
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Mohamed Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amira A. H. Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Institute of Anatomy ll, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marwa Abd El-kader
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Scisciola L, Fontanella RA, Surina, Garofalo G, Rizzo MR, Paolisso G, Barbieri M. Potential Role of Lisinopril in Reducing Atherosclerotic Risk: Evidence of an Antioxidant Effect in Human Cardiomyocytes Cell Line. Front Pharmacol 2022; 13:868365. [PMID: 35656292 PMCID: PMC9152216 DOI: 10.3389/fphar.2022.868365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cellular mechanisms involved in myocardial ischemia/reperfusion injury (I/R) pathogenesis are complex but attributable to reactive oxygen species (ROS) production. ROS produced by coronary endothelial cells, blood cells (e.g., leukocytes and platelets), and cardiac myocytes have the potential to damage vascular cells directly and cardiac myocytes, initiating mechanisms that induce apoptosis, inflammation, necrosis, and fibrosis of myocardial cells. In addition to reducing blood pressure, lisinopril, a new non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, increases the antioxidant defense in animals and humans. Recently, it has been shown that lisinopril can attenuate renal oxidative injury in the l-NAME-induced hypertensive rat and cause an impressive improvement in the antioxidant defense system of Wistar rats treated with doxorubicin. The potential effect of lisinopril on oxidative damage and fibrosis in human cardiomyocytes has not been previously investigated. Thus, the present study aims to investigate the effect of different doses of lisinopril on oxidative stress and fibrotic mediators in AC16 human cardiomyocytes, along with a 7-day presence in the culture medium. The results revealed that AC16 human cardiomyocytes exposed to lisinopril treatment significantly showed an upregulation of proteins involved in protecting against oxidative stress, such as catalase, SOD2, and thioredoxin, and a reduction of osteopontin and Galectin-3, critical proteins involved in cardiac fibrosis. Moreover, lisinopril treatment induced an increment in Sirtuin 1 and Sirtuin 6 protein expression. These findings demonstrated that, in AC16 human cardiomyocytes, lisinopril could protect against oxidative stress and fibrosis via the activation of Sirtuin 1 and Sirtuin 6 pathways.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Garofalo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Sayed AM, Abdel-Fattah MM, Arab HH, Mohamed WR, Hassanein EHM. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact 2022; 351:109732. [PMID: 34737150 DOI: 10.1016/j.cbi.2021.109732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/06/2023]
Abstract
AIMS The use of methotrexate (MTX), a classical immunosuppressant and anti-cancer agent, is associated with multiple organ toxicities, including the intestinal injury. Components of the renin-angiotensin system are expressed in the intestinal epithelium and mucosal immune cells where they provoke pro-inflammatory and pro-oxidant action. The present study was conducted to investigate the potential ability of perindopril (PER), an angiotensin-converting enzyme inhibitor (ACEI), to attenuate MTX-induced intestinal injury with emphasis on the role of the pro-inflammatory TLR4/NF-κB and c-Fos/c-Jun pathways alongside PPAR-γ and SIRT1 cytoprotective signals. MATERIALS AND METHODS The intestinal injury was induced by a single-dose injection of 20 mg/kg of MTX i.p at the end of the 5th day. PER was administrated once daily in a dose of 1 mg/kg, i.p, for five days before MTX and five days later. RESULTS Herein, perindopril attenuated the intestinal injury as seen by lowering the histopathological aberrations and preserving the goblet cells in villi/crypts. These beneficial actions were associated with downregulating the expression of the pro-inflammatory angiotensin II, TNF-α, IL-1β, and IL-6 cytokines, alongside upregulating the anti-inflammatory angiotensin (1-7) and IL-10. At the molecular level, perindopril downregulated the TLR4/NF-κB and c-Fos/c-Jun pathways in inflamed intestine of rats. Moreover, it attenuated the pro-oxidant events by lowering intestinal MDA and boosting GSH, SOD, and GST antioxidants together with PPAR-γ and SIRT1 cytoprotective signals. The aforementioned findings were also highlighted using molecular docking and network pharmacology analysis. CONCLUSIONS Perindopril demonstrated notable mitigation of MTX-induced intestinal injury through suppression of TLR4/NF-κB and c-Fos/c-Jun pathways alongside the augmentation of PPAR-γ/SIRT1 cytoprotective signals.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
6
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
7
|
Zhao W, Zhao YL, Liu M, Liu L, Wang Y. Possible repair mechanisms of renin-angiotensin system inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones on methamphetamine-induced neurotoxicity. Mol Biol Rep 2021; 48:7509-7516. [PMID: 34623593 DOI: 10.1007/s11033-021-06741-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine is a highly addictive central stimulant with extensive and strong neurotoxicity. The neurotoxicity of methamphetamine is closely related to the imbalance of dopamine levels and the destruction of the blood-brain barrier. An increase in dopamine may induce adverse effects such as behavioral sensitization and excessive locomotion. Damage to the blood-brain barrier can cause toxic or harmful substances to leak to the central nervous system, leading to neurotoxicity. The renin-angiotensin system is essential for the regulation of dopamine levels in the brain. Matrix metalloproteinase-9 causes reward effects and behavioral sensitization by inducing dopamine release. Prolactin has been shown to be involved in the regulation of tight junction proteins and the integrity of the blood-brain barrier. At present, the treatment of methamphetamine detoxification is still based on psychotherapy, and there is no specific medicine. With the rapid increase in global seizures of methamphetamine, the treatment of its toxicity has attracted more and more attention. This review intends to summarize the therapeutic mechanisms of renin-angiotensin inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones (prolactin) on methamphetamine neurotoxicity. The repair effects of these three on methamphetamine may be related to the maintenance of brain dopamine balance and the integrity of the blood-brain barrier. This review is expected to provide the new therapeutic strategy of methamphetamine toxicity.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China.,Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
SIRT1 and SIRT2 modulators reduce LPS-induced inflammation in HAPI microglial cells and protect SH-SY5Y neuronal cells in vitro. J Neural Transm (Vienna) 2021; 128:631-644. [PMID: 33821324 DOI: 10.1007/s00702-021-02331-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is associated with the development of depression. Deacetylases SIRT1 and SIRT2 are reported to exert neuroprotective effects in aging, neurogenesis, neurodegeneration and neuroinflammation. Therefore, this study aimed to investigate the effects of SIRT1 and SIRT2 modulators on LPS-induced neuroinflammation and neurodegeneration in vitro. To achieve this, HAPI rat microglial cells were pre-treated with the SIRT1 activator resveratrol (0.1-20 µM), the selective SIRT1 inhibitor EX527 (0.1; 1 µM), the dual SIRT1/SIRT2 inhibitor sirtinol (0.1-20 µM) and the SIRT2 inhibitor AGK2 (0.1; 1 µM), prior to exposure with LPS (5 ng/mL) for 20 h. The reference antidepressant drug fluoxetine and the nonsteroidal anti-inflammatory drug ibuprofen were also evaluated in the same paradigm, both at 1 μM. Resveratrol and sirtinol inhibited TNF-α production to a greater degree than either fluoxetine or ibuprofen. Resveratrol, sirtinol, EX527 and AGK2 significantly reduced PGE2 production by up to 100% in microglia. Then, the supernatant was transferred to treat SH-SY5Y cells for 24 h. In all cases, SIRT modulator pretreatment significantly protected undifferentiated SH-SY5Y human neuroblastoma cells from the insult of LPS-stimulated HAPI supernatant by up to 40%. Moreover, resveratrol and sirtinol also showed significantly better neuroprotection than fluoxetine or ibuprofen by up to 83 and 69%, respectively. In differentiated SH-SY5Y cells, only sirtinol (20, 10 µM) and AGK2 (0.1 µM) pretreatment protected the cells from LPS-stimulated HAPI supernatant. This study suggests that SIRT1 and SIRT2 modulators are effective in inhibiting LPS-stimulated production of TNF-α and PGE2 in HAPI microglial cells and protecting SH-SY5Y cells from inflammation. Thus, we provide proof of concept for further investigation of the therapeutic effect of SIRT1 and SIRT2 modulators and combination with current antidepressant medication as a treatment option.
Collapse
|
9
|
The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021; 10:cells10030650. [PMID: 33804069 PMCID: PMC7999456 DOI: 10.3390/cells10030650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/18/2023] Open
Abstract
Evidence has arisen in recent years suggesting that a tissue renin-angiotensin system (tRAS) is involved in the progression of various human diseases. This system contains two regulatory pathways: a pathological pro-inflammatory pathway containing the Angiotensin Converting Enzyme (ACE)/Angiotensin II (AngII)/Angiotensin II receptor type 1 (AGTR1) axis and a protective anti-inflammatory pathway involving the Angiotensin II receptor type 2 (AGTR2)/ACE2/Ang1–7/MasReceptor axis. Numerous studies reported the positive effects of pathologic tRAS pathway inhibition and protective tRAS pathway stimulation on the treatment of cardiovascular, inflammatory, and autoimmune disease and the progression of neuropathic pain. Cell senescence and aging are known to be related to RAS pathways. Further, this system directly interacts with SARS-CoV 2 and seems to be an important target of interest in the COVID-19 pandemic. This review focuses on the involvement of tRAS in the progression of the mentioned diseases from an interdisciplinary clinical perspective and highlights therapeutic strategies that might be of major clinical importance in the future.
Collapse
|
10
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
11
|
Portero-Tresserra M, Rojic-Becker D, Vega-Carbajal C, Guillazo-Blanch G, Vale-Martínez A, Martí-Nicolovius M. Caloric restriction modulates the monoaminergic system and metabolic hormones in aged rats. Sci Rep 2020; 10:19299. [PMID: 33168891 PMCID: PMC7653031 DOI: 10.1038/s41598-020-76219-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction (CR) can attenuate the general loss of health observed during aging, being one of the mechanisms involved the reduction of hormonal alteration, such as insulin and leptin. This change could also prevent age-specific fluctuations in brain monoamines, although few studies have addressed the effects of CR on peripheral hormones and central neurotransmitters exhaustively. Therefore, the variations in brain monoamine levels and some peripheral hormones were assessed here in adult 4-month old and 24-month old male Wistar rats fed ad libitum (AL) or maintained on a 30% CR diet from four months of age. Noradrenaline (NA), dopamine (DA), serotonin (5-HT) and its metabolites were measured by high-performance liquid chromatography with electrochemical detection (HPLC-ED) in nine brain regions: cerebellum, pons, midbrain, hypothalamus, thalamus, hippocampus, striatum, frontal cortex, and occipital cortex. In addition, the blood plasma levels of hormones like corticosterone, insulin and leptin were also evaluated, as were insulin-like growth factor 1 and other basal metabolic parameters using enzyme-linked immunosorbent assays (ELISAs): cholesterol, glucose, triglycerides, albumin, low-density lipoprotein, calcium and high-density lipoprotein (HDLc). CR was seen to increase the NA levels that are altered by aging in specific brain regions like the striatum, thalamus, cerebellum and hypothalamus, and the DA levels in the striatum, as well as modifying the 5-HT levels in the striatum, hypothalamus, pons and hippocampus. Moreover, the insulin, leptin, calcium and HDLc levels in the blood were restored in old animals maintained on a CR diet. These results suggest that a dietary intervention like CR may have beneficial health effects, recovering some negative effects on peripheral hormones, metabolic parameters and brain monoamine concentrations.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - D Rojic-Becker
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Vega-Carbajal
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - G Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2020; 199:101919. [PMID: 33039415 PMCID: PMC7543790 DOI: 10.1016/j.pneurobio.2020.101919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is one of the oldest hormone systems in vertebrate phylogeny. RAS was initially related to regulation of blood pressure and sodium and water homeostasis. However, local or paracrine RAS were later identified in many tissues, including brain, and play a major role in their physiology and pathophysiology. In addition, a major component, ACE2, is the entry receptor for SARS-CoV-2. Overactivation of tissue RAS leads several oxidative stress and inflammatory processes involved in aging-related degenerative changes. In addition, a third level of RAS, the intracellular or intracrine RAS (iRAS), with still unclear functions, has been observed. The possible interaction between the intracellular and extracellular RAS, and particularly the possible deleterious or beneficial effects of the iRAS activation are controversial. The dopaminergic system is particularly interesting to investigate the RAS as important functional interactions between dopamine and RAS have been observed in the brain and several peripheral tissues. Our recent observations in mitochondria and nucleus of dopaminergic neurons may clarify the role of the iRAS. This may be important for the developing of new therapeutic strategies, since the effects on both extracellular and intracellular RAS must be taken into account, and perhaps better understanding of COVID-19 cell mechanisms.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
13
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, Franco R, Labandeira-Garcia JL. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun 2020; 87:256-271. [PMID: 31863823 DOI: 10.1016/j.bbi.2019.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Overactivity of the angiotensin-type-1 receptor (AT1)/NADPH-oxidase axis enhances aging processes, neuroinflammation and neurodegeneration. The role of AT2 receptors in the above-mentioned AT1-related effects in the aged brain, particularly substantia nigra, was investigated in this study. In the nigra, we observed a progressive decrease in AT2 mRNA expression with aging, and AT2 deletion led to changes in spontaneous motor behavior, dopamine receptors, renin-angiotensin system, and pro-oxidative and pro-inflammatory markers similar to those observed in aged wild type (WT) mice. Both aged WT mice and young AT2 KO mice showed an increased AT1, decreased MAS receptor and increased angiotensinogen mRNA and/or protein expression, as well as upregulation of pro-oxidative and pro-inflammatory markers. In cultures of microglial cells, activation of AT2 receptors inhibited the LPS-induced increase in AT1 mRNA and protein expression and neuroinflammatory markers. Both in AT2 KO microglial cultures and microglia obtained from adult AT2 KO mice, an increase in AT1 mRNA expression was observed. In cultured dopaminergic neurons, AT2 activation down-regulated AT1 mRNA and protein, and dopaminergic neurons from adult AT2 KO mice showed upregulation of AT1 mRNA expression. Both in microglia and dopaminergic neurons the pathway AT2/nitric oxide/cyclic guanosine monophosphate mediates the regulation of the AT1 mRNA and protein expression through downregulation of the Sp1 transcription factor. MAS receptors are also involved in the regulation of AT1 mRNA and protein expression by AT2. The results suggest that an aging-related decrease in AT2 expression plays a major role in the aging-related AT1 overexpression and AT1-related pro-inflammatory pro-oxidative effects.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Pedrosa
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria Garcia-Garrote
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Gemma Navarro
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rafael Franco
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
15
|
Mogi M. Effect of renin-angiotensin system on senescence. Geriatr Gerontol Int 2020; 20:520-525. [PMID: 32346971 DOI: 10.1111/ggi.13927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) plays crucial roles in the control of blood pressure and sodium homeostasis. Moreover, RAS also acts as a key player in cell and organ senescence, mainly by activation of the classical axis of angiotensin (Ang) converting enzyme (ACE)/Ang II/Ang II type 1 receptor via overproduction of reactive oxygen species. Overactivation of the classical RAS axis induces organ dysfunction in the vasculature, brain, kidney and skeletal muscle, resulting in atherosclerosis, stroke, chronic kidney disease and sarcopenia. Moreover, RAS has been shown to regulate lifespan, using gene-modification models. Recently, mice lacking the Ang II type 1 receptor were shown to exhibit an increase in lifespan compared with control mice. Here, the effect of RAS on age-related tissue dysfunction in several organs is reviewed, including not only the classical axis but also protective functions of RAS such as the ACE2/Ang (1-7)/Mas axis. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
16
|
Zhang Y, Anoopkumar-Dukie S, Arora D, Davey AK. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur J Pharmacol 2020; 867:172847. [DOI: 10.1016/j.ejphar.2019.172847] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
17
|
Silva P, Sureda A, Tur JA, Andreoletti P, Cherkaoui-Malki M, Latruffe N. How efficient is resveratrol as an antioxidant of the Mediterranean diet, towards alterations during the aging process? Free Radic Res 2019; 53:1101-1112. [DOI: 10.1080/10715762.2019.1614176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paula Silva
- NutRedOx Network (COST Action CA16112), Porto, Portugal
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto, Portugal
| | - Antoni Sureda
- NutRedOx Network (COST Action CA16112), Porto, Portugal
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Palma de Mallorca, Spain
| | - Josep A. Tur
- NutRedOx Network (COST Action CA16112), Porto, Portugal
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Palma de Mallorca, Spain
| | - Pierre Andreoletti
- NutRedOx Network (COST Action CA16112), Porto, Portugal
- BioPeroxIL laboratory, Université de Bourgogne, Dijon, France
| | - Mustapha Cherkaoui-Malki
- NutRedOx Network (COST Action CA16112), Porto, Portugal
- BioPeroxIL laboratory, Université de Bourgogne, Dijon, France
| | - Norbert Latruffe
- NutRedOx Network (COST Action CA16112), Porto, Portugal
- BioPeroxIL laboratory, Université de Bourgogne, Dijon, France
| |
Collapse
|
18
|
Muñoz A, Corrêa CL, Lopez-Lopez A, Costa-Besada MA, Diaz-Ruiz C, Labandeira-Garcia JL. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. J Gerontol A Biol Sci Med Sci 2019; 73:1594-1601. [PMID: 29659739 DOI: 10.1093/gerona/gly072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of tissue renin-angiotensin system (RAS) is involved in oxidative and inflammatory processes observed in major aging-related diseases, including neurodegenerative diseases such as Parkinson's disease (PD). Physical exercise has beneficial effects against aging-related changes, dopaminergic neuron vulnerability, and PD progression. The present study indicates that sedentary aged rats have an increase in activity of the nigral angiotensin (Ang) II/Ang type 1 receptor (AT1) axis (ie, the pro-oxidative pro-inflammatory arm), and a decrease in the activity of the RAS protective arm (ie, Ang II/AT2 and Ang 1-7/Mas receptor axis) in comparison with young rats. In addition, sedentary aged rats showed a decrease in levels of nigral IGF-1, SIRT1, SIRT3, and VEGF. Treadmill running induced a significant increase in levels of IGF-1, SIRT1, SIRT3, and VEGF, as well as an increase in expression of the protective Ang 1-7/Mas axis and inhibition of the Ang II/AT1 axis. The exercise-induced increase in IGF-1 and sirtuins may mediate the effects of exercise on the nigral RAS. However, exercise may induce the increase in VEGF and modulation of RAS activity by different pathways. Exercise, via RAS, contributes to inhibition of the pro-oxidative and proinflammatory state that increase dopaminergic neuron vulnerability and risk of PD with aging.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Clynton L Corrêa
- Faculty of Medicine, Master Program of Physical Education - Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Lopez-Lopez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
19
|
Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J. Recovery of Olfactory Function After Excitotoxic Lesion of the Olfactory Bulbs Is Associated with Increases in Bulbar SIRT1 and SIRT4 Expressions. Mol Neurobiol 2019; 56:5643-5653. [DOI: 10.1007/s12035-019-1472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|
20
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med 2018; 129:394-406. [PMID: 30315936 DOI: 10.1016/j.freeradbiomed.2018.10.409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/30/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor that activates the antioxidant cellular defense in response to oxidative stress, leading to neuroprotective effects in Parkinson's disease (PD) models. We have previously shown that Angiotensin II (AngII) induces an increase in reactive oxygen species (ROS) via AngII receptor type 1 and NADPH oxidase (NOX), which may activate the NRF2 pathway. However, controversial data suggest that AngII induces a decrease in NRF2 signaling leading to an increase in oxidative stress. We analyzed the effect of AngII and the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in culture and in vivo, and examined the effects on the expression of NRF2-related genes. Treatment of neuronal cell lines Mes23.5, N27 and SH-SY5Y with AngII, 6-OHDA or a combination of both increased ROS production and reduced cell viability. Simultaneously, these treatments induced an increase in expression in the NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Moreover, overexpression of KLF9 transcription factor caused a reduction in the production of ROS induced by treatment with AngII or 6-OHDA and improved the survival of these neuronal cells. Rats treated with AngII, 6-OHDA or a combination of both also showed an increased expression of NRF2 related genes and KLF9. In conclusion, our data indicate that AngII induces a damaging effect in neuronal cells, but also acts as a signaling molecule to activate NRF2 and KLF9 neuroprotective pathways in cellular and animal models of PD.
Collapse
Affiliation(s)
- Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
21
|
Jiang L, Zhu R, Bu Q, Li Y, Shao X, Gu H, Kong J, Luo L, Long H, Guo W, Tian J, Zhao Y, Cen X. Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. Neurotherapeutics 2018; 15:500-510. [PMID: 29464572 PMCID: PMC5935642 DOI: 10.1007/s13311-018-0613-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methamphetamine (METH) abuse has become a major public health concern worldwide without approved pharmacotherapies. The brain renin-angiotensin system (RAS) is involved in the regulation of neuronal function as well as neurological disorders. Angiotensin II (Ang II), which interacts with Ang II type 1 receptor (AT1-R) in the brain, plays an important role as a neuromodulator in dopaminergic transmission. However, the role of brain RAS in METH-induced behavior is largely unknown. Here, we revealed that repeated METH administration significantly upregulated the expression of AT1-R in the striatum of mice, but downregulated dopamine D3 receptor (D3R) expression. A specific AT1-R blocker telmisartan, which can penetrate the brain-blood barrier (BBB), or genetic deletion of AT1-R was sufficient to attenuate METH-triggered hyperlocomotion in mice. However, intraperitoneal injection of AT1-R blocker losartan, which cannot penetrate BBB, failed to attenuate METH-induced behavior. Moreover, intra-striatum re-expression of AT1 with lentiviral virus expressing AT1 reversed the weakened locomotor activity of AT1-/- mice treated with METH. Losartan alleviated METH-induced cytotoxicity in SH-SY5Y cells in vitro, which was accompanied by upregulated expressions of D3R and dopamine transporter. In addition, intraperitoneal injection of perindopril, which is a specific ACE inhibitor and can penetrate BBB, significantly attenuated METH-induced hyperlocomotor activity. Collectively, our results show that blockade of brain RAS attenuates METH-induced hyperlocomotion and neurotoxicity possibly through modulation of D3R expression. Our findings reveal a novel role of Ang II-AT1-R in METH-induced hyperlocomotion.
Collapse
Affiliation(s)
- Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Jueying Kong
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Li Luo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China.
| |
Collapse
|
22
|
Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P, Labandeira-Garcia JL. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging. Oncotarget 2017; 7:30049-67. [PMID: 27167199 PMCID: PMC5058663 DOI: 10.18632/oncotarget.9174] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023] Open
Abstract
The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
23
|
The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis 2017; 8:e3044. [PMID: 28880266 PMCID: PMC5636983 DOI: 10.1038/cddis.2017.439] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
The 'classical' renin-angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells.
Collapse
|
24
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci 2017; 9:129. [PMID: 28515690 PMCID: PMC5413566 DOI: 10.3389/fnagi.2017.00129] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative
stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain.,Neurosciences Division, Center for Applied Medical Research (CIMA), University of NavarraPamplona, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| |
Collapse
|
25
|
Labandeira-Garcia JL, Rodriguez-Perez AI, Valenzuela R, Costa-Besada MA, Guerra MJ. Menopause and Parkinson's disease. Interaction between estrogens and brain renin-angiotensin system in dopaminergic degeneration. Front Neuroendocrinol 2016; 43:44-59. [PMID: 27693730 DOI: 10.1016/j.yfrne.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease (PD) have not yet been clarified, and it is controversial whether there is a critical period for neuroprotection. Studies in animal models and clinical and epidemiological studies indicate that estrogens induce dopaminergic neuroprotection. Recent studies suggest that inhibition of the brain renin-angiotensin system (RAS) mediates the effects of estrogens in PD models. In the substantia nigra, ovariectomy induces a decrease in levels of estrogen receptor-α (ER-α) and increases angiotensin activity, NADPH-oxidase activity and expression of neuroinflammatory markers, which are regulated by estrogen replacement therapy. There is a critical period for the neuroprotective effect of estrogen replacement therapy, and local ER-α and RAS play a major role. Astrocytes play a major role in ER-α-induced regulation of local RAS, but neurons and microglia are also involved. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced neuroprotection.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
26
|
Li J, Dong G, Wang B, Gao W, Yang Q. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1. Biochem Biophys Res Commun 2015; 469:15-21. [PMID: 26612257 DOI: 10.1016/j.bbrc.2015.11.062] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 12/14/2022]
Abstract
SIRT1, a class III histone deacetylase, exerts inhibitory effects on tumorigenesis and is downregulated in gastric cancer. However, the role of microRNAs in the regulation of SIRT1 in gastric cancer is still largely unknown. Here, we identified miR-543 as a predicted upstream regulator of SIRT1 using 3 different bioinformatics databases. Mimics of miR-543 significantly inhibited the expression of SIRT1, whereas an inhibitor of miR-543 increased SIRT1 expression. MiR-543 directly targeted the 3'-UTR of SIRT1, and both of the two binding sites contributed to the inhibitory effects. In gastric epithelium-derived cell lines, miR-543 promoted cell proliferation and cell cycle progression, and overexpression of SIRT1 rescued the above effects of miR-543. The inhibitory effects of miR-543 on SIRT1 were also validated using clinical gastric cancer samples. Moreover, we found that miR-543 expression was positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis in gastric cancer patients. Our results identify a new regulatory mechanism of miR-543 on SIRT1 expression in gastric cancer, and raise the possibility that the miR-543/SIRT1 pathway may serve as a potential target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Juan Li
- Institute of Pathogen Biology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012, China
| | - Guoying Dong
- Institute of Pathogen Biology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012, China
| | - Bo Wang
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital, Jinan 250013, China
| | - Qing Yang
- Institute of Pathogen Biology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|