1
|
Chu T, Zhang R, Liu X, Lin L, Li Y, Niu Z, Quan H, Zhao Y, Li Y. Influence of recipient KRAS gene rs712 polymorphisms on the overall survival rate of hepatocellular carcinoma after hepatic transplantation. Clin Exp Med 2024; 24:246. [PMID: 39460812 PMCID: PMC11512907 DOI: 10.1007/s10238-024-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hepatocellular carcinoma (HCC) recurrence appears commonly after liver transplantation (LT), and it severely affected the long-term survival of patients. Previous studies have proved that Rap1A is involved in hepatocarcinogenesis and metastasis, and demonstrated the significant association between KRAS rs712 polymorphism and HCC. However, the relationship between KRAS rs712 polymorphism and HCC recurrence after LT remained unclear. A total of 93 HCC patients who underwent LT from March 2008 to Dec 2015 was analyzed. The genotypes of both donors and recipients had been confirmed as KRAS rs712. The independent risk factors that associated with HCC recurrence were investigated with univariate and multivariate logistic regression analysis. The recurrence-free (RFS) and overall survival (OS) were calculated with Cox regression analysis. The KRAS rs712 genotype frequencies were determined using the Χ2 test and the minor allele frequencies (MAFs) of KRAS rs712 genotypes were calculated by Hardy-Weinberg equilibrium. We found that the recipient KRAS rs712 polymorphism was significantly associated with HCC recurrence after LT. Moreover, the Milan criteria, microvascular invasion and recipient KRAS rs712 genotype were proved to be independent risk factors for HCC recurrence after LT. Patients with donor TG/TT genotypes had a significantly higher RFS and OS than TT genotype. The TNM stage, microvascular invasion, Milan criteria, treatment and recipient KRAS rs712 genotype were independent factors for the RFS of LT patients. Recipient KRAS rs712 polymorphism is associated with HCC recurrence after liver transplantation and plays as a promising bio-predictor of overall survival rate of HCC risks after hepatic transplantation.
Collapse
Affiliation(s)
- Tiancheng Chu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Songjiang District Health Commission of Shanghai, Shanghai, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolei Liu
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Li Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ziguang Niu
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Heng Quan
- Songjiang District Health Commission of Shanghai, Shanghai, China
| | - Yingying Zhao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohua Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Mull ML, Pratt SJP, Thompson KN, Annis DA, Gad AA, Lee RM, Chang KT, Stemberger MB, Ju JA, Gilchrist DE, Boyman L, Vitolo MI, Lederer WJ, Martin SS. Disruption of P2Y2 signaling promotes breast tumor cell dissemination by reducing ATP-dependent calcium elevation and actin localization to cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.31.533191. [PMID: 37034765 PMCID: PMC10081304 DOI: 10.1101/2023.03.31.533191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The tumor microenvironment and wound healing after injury both contain extremely high concentrations of the extracellular signaling molecule, adenosine triphosphate (ATP) compared to normal tissue. P2Y2 receptor, an ATP-activated purinergic receptor, is typically associated with pulmonary, endothelial, and neurological cell signaling. Here we report its role and importance in breast epithelial cell signaling and how it is altered in metastatic breast cancer. In response to ATP activation, P2Y2 receptor signaling causes an increase of intracellular Ca 2+ in non-tumorigenic breast epithelial cells, while their tumorigenic and metastatic counterparts have significantly reduced Ca 2+ responses. The non-tumorigenic cells respond to increased Ca 2+ with actin polymerization and localization to cell edges, while the metastatic cells remained unaffected. The increase in intracellular Ca 2+ after ATP stimulation was blunted using a P2Y2 antagonist, which also prevented actin mobilization and caused cell dissemination from spheroids in non-tumorigenic breast epithelial cells. Furthermore, the lack of Ca 2+ concentration changes and actin mobilization in the metastatic breast cancer cells could be due to reduced P2Y2 expression, which correlates with poorer overall survival in breast cancer patients. This study elucidates rapid changes that occur after elevated intracellular Ca 2+ in breast epithelial cells and how metastatic cancer cells have adapted to evade this cellular response.
Collapse
|
3
|
Qin M, Geng E, Wang J, Yu M, Dong T, Li S, Zhang X, Lin J, Shi M, Li J, Zhang H, Chen L, Cao X, Huang L, Wang M, Li Y, Yang XP, Zhao B, Sun S. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat Chem Biol 2024; 20:710-720. [PMID: 38200110 DOI: 10.1038/s41589-023-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Biomolecular condensates have been proposed to mediate cellular signaling transduction. However, the mechanism and functional consequences of signal condensates are not well understood. Here we report that LATS2, the core kinase of the Hippo pathway, responds to F-actin cytoskeleton reduction and forms condensates. The proline-rich motif (PRM) of LATS2 mediates its condensation. LATS2 partitions with the main components of the Hippo pathway to assemble a signalosome for LATS2 activation and for its stability by physically compartmentalizing from E3 ligase FBXL16 complex-dependent degradation, which in turn mediates yes-associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) recruitment and inactivation. This oncogenic FBXL16 complex blocks LATS2 condensation by binding to the PRM region to promote its degradation. Disruption of LATS2 condensation leads to tumor progression. Thus, our study uncovers that the signalosomes assembled by LATS2 condensation provide a compartmentalized and reversible platform for Hippo signaling transduction and protein stability, which have potential implications in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Min Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ershuo Geng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingning Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Yu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjun Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juebei Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huixia Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Cao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Sarkar S, Patranabis S. Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics. Cell Biochem Biophys 2024; 82:379-398. [PMID: 38300375 DOI: 10.1007/s12013-024-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Extracellular vesicles (EVs) are minute lipid-bilayer sacs discharged by cells, encompassing a diverse array of proteins, nucleic acids, and lipids. The identification of EVs as pivotal agents in intercellular communication has sparked compelling research pathways in the realms of cell biology and neurodegenerative diseases. Utilizing EVs for medicinal reasons has garnered interest due to the adaptability of EV-mediated communication. EVs can be classified based on their physical characteristics, biochemical composition, or cell of origin following purification. This review delves into the primary sub-types of EVs, providing an overview of the biogenesis of each type. Additionally, it explores the diverse environmental conditions triggering EV release and the originating cells, including stem cells and those from the Central Nervous System. Within the brain, EVs play a pivotal role as essential mediators of intercellular communication, significantly impacting synaptic plasticity, brain development, and the etiology of neurological diseases. Their potential diagnostic and therapeutic applications in various brain-related conditions are underscored, given their ability to carry specific cargo. Specially engineered EVs hold promise for treating diverse diseases, including neurodegenerative disorders. This study primarily emphasizes the diagnostic and potential therapeutic uses of EVs in neurological disorders such as Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Prions disease. It also summarizes innovative techniques for detecting EVs in the brain, suggesting that EVs could serve as non-invasive biomarkers for early detection, disease monitoring, and prognosis in neurological disorders.
Collapse
|
5
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
6
|
Inactivation of PTEN and ZFHX3 in Mammary Epithelial Cells Alters Patterns of Collective Cell Migration. Int J Mol Sci 2022; 24:ijms24010313. [PMID: 36613756 PMCID: PMC9820126 DOI: 10.3390/ijms24010313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Whole exome sequencing of invasive mammary carcinomas revealed the association of mutations in PTEN and ZFHX3 tumor suppressor genes (TSGs). We generated single and combined PTEN and ZFHX3 knock-outs (KOs) in the immortalized mammary epithelial cell line MCF10A to study the role of these genes and their potential synergy in migration regulation. Inactivation of PTEN, but not ZFHX3, induced the formation of large colonies in soft agar. ZFHX3 inactivation in PTEN KO, however, increased colony numbers and normalized their size. Cell migration was affected in different ways upon PTEN and ZFHX3 KO. Inactivation of PTEN enhanced coordinated cell motility and thus, the collective migration of epithelial islets and wound healing. In contrast, ZFHX3 knockout resulted in the acquisition of uncoordinated cell movement associated with the appearance of immature adhesive junctions (AJs) and the increased expression of the mesenchymal marker vimentin. Inactivation of the two TSGs thus induces different stages of partial epithelial-to-mesenchymal transitions (EMT). Upon double KO (DKO), cells displayed still another motile state, characterized by a decreased coordination in collective migration and high levels of vimentin but a restoration of mature linear AJs. This study illustrates the plasticity of migration modes of mammary cells transformed by a combination of cancer-associated genes.
Collapse
|
7
|
Zhang Y, Li Y, Thompson KN, Stoletov K, Yuan Q, Bera K, Lee SJ, Zhao R, Kiepas A, Wang Y, Mistriotis P, Serra SA, Lewis JD, Valverde MA, Martin SS, Sun SX, Konstantopoulos K. Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis. Nat Commun 2022; 13:6128. [PMID: 36253369 PMCID: PMC9576788 DOI: 10.1038/s41467-022-33683-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.
Collapse
Grants
- R01 CA254193 NCI NIH HHS
- R01 GM134542 NIGMS NIH HHS
- This work was supported, in part, by an NIH/NCI R01 CA254193 (K.K., S.S.M., S.X.S.), R01 GM134542 (S.X.S., K.K.), NSF 2045715 (Y.L.), the Spanish Ministry of Science, Education and Universities through grants RTI2018-099718-B-100 (M.A.V.), an institutional “Maria de Maeztu” Programme for Units of Excellence in R&D and FEDER funds (M.A.V.) and postdoctoral fellowships from the Fonds de recherche du Quebec - Nature et technologies and the Natural Sciences and Engineering Research Council of Canada (A.K.). The opinions, findings, and conclusions, or recommendations expressed are those of the authors and do not necessarily reflect the views of any of the funding agencies.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY, 13902, USA
| | - Keyata N Thompson
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Qinling Yuan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yao Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Selma A Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Miguel A Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Stuart S Martin
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sean X Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Gu S, Lee RM, Benson Z, Ling C, Vitolo MI, Martin SS, Chalfoun J, Losert W. Label-free cell tracking enables collective motion phenotyping in epithelial monolayers. iScience 2022; 25:104678. [PMID: 35856018 PMCID: PMC9287486 DOI: 10.1016/j.isci.2022.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022] Open
Abstract
Collective cell migration is an umbrella term for a rich variety of cell behaviors, whose distinct character is important for biological function, notably for cancer metastasis. One essential feature of collective behavior is the motion of cells relative to their immediate neighbors. We introduce an AI-based pipeline to segment and track cell nuclei from phase-contrast images. Nuclei segmentation is based on a U-Net convolutional neural network trained on images with nucleus staining. Tracking, based on the Crocker-Grier algorithm, quantifies nuclei movement and allows for robust downstream analysis of collective motion. Because the AI algorithm required no new training data, our approach promises to be applicable to and yield new insights for vast libraries of existing collective motion images. In a systematic analysis of a cell line panel with oncogenic mutations, we find that the collective rearrangement metric, D2min, which reflects non-affine motion, shows promise as an indicator of metastatic potential. Versatile AI algorithm identifies individual cell tracks in phase contrast images Motion of cells relative to nearby neighbors may indicate cancer progression
Collapse
Affiliation(s)
- Shuyao Gu
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Rachel M Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Zackery Benson
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Chenyi Ling
- Software and Systems Division, Information Technology Lab, NIST, Gaithersburg, MD 20899, USA
| | - Michele I Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Departments of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Departments of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joe Chalfoun
- Software and Systems Division, Information Technology Lab, NIST, Gaithersburg, MD 20899, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Mathias TJ, Ju JA, Lee RM, Thompson KN, Mull ML, Annis DA, Chang KT, Ory EC, Stemberger MB, Hotta T, Ohi R, Vitolo MI, Moutin MJ, Martin SS. Tubulin Carboxypeptidase Activity Promotes Focal Gelatin Degradation in Breast Tumor Cells and Induces Apoptosis in Breast Epithelial Cells That Is Overcome by Oncogenic Signaling. Cancers (Basel) 2022; 14:1707. [PMID: 35406479 PMCID: PMC8996877 DOI: 10.3390/cancers14071707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Post-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin (VASH1/2) coupled with a small vasohibin-binding protein (SVBP) allows for the functional effect of this tubulin PTM to be directly tested for the first time. Our studies revealed the immortalized breast epithelial cell line MCF10A undergoes apoptosis following transfection with TCP constructs, but the addition of oncogenic KRas or Bcl-2/Bcl-xL overexpression prevents subsequent apoptotic induction in the MCF10A background. Functionally, an increase in deTyr-Tub via TCP transfection in MDA-MB-231 and Hs578t breast cancer cells leads to enhanced focal gelatin degradation. Given the elevated deTyr-Tub at invasive tumor fronts and the correlation with poor breast cancer survival, these new discoveries help clarify how the TCP synergizes with oncogene activation, increases focal gelatin degradation, and may correspond to increased tumor cell invasion. These connections could inform more specific microtubule-directed therapies to target deTyr-tubulin.
Collapse
Affiliation(s)
- Trevor J. Mathias
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Medical Scientist Training Program (MSTP), University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rachel M. Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France;
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Yang R, Li Y, Wang H, Qin T, Yin X, Ma X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. MOLECULAR BIOMEDICINE 2022; 3:8. [PMID: 35243562 PMCID: PMC8894518 DOI: 10.1186/s43556-022-00071-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer, with estrogen receptor, human epidermal growth factor receptor 2 and progesterone receptor negative. TNBC is characterized by high heterogeneity, high rates of metastasis, poor prognosis, and lack of therapeutic targets. Now the treatment of TNBC is still based on surgery and chemotherapy, which is effective only in initial stage but almost useless in advanced stage. And due to the lack of hormone target, hormonal therapies have little beneficial effects. In recent years, signaling pathways and receptor-specific targets have been reported to be effective in TNBC patients under specific clinical conditions. Now targeted therapies have been approved for many other cancers and even other subtypes of breast cancer, but treatment options for TNBC are still limited. Most of TNBC patients showed no response, which may be related to the heterogeneity of TNBC, therefore more effective treatments and predictive biomarkers are needed. In the present review, we summarize potential treatment opinions for TNBC based on the dysregulated receptors and signaling pathways, which play a significant role in multiple stages of TNBC development. We also focus on the application of immunotherapy in TNBC, and summarize the preclinical and clinical trials of therapy for patients with TNBC. We hope to accelerate the research and development of new drugs for TNBC by understanding the relevant mechanisms, and to improve survival.
Collapse
Affiliation(s)
- Ruoning Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.,Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Hang Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Taolin Qin
- West China Hospital, West China Medical School Sichuan University, Chengdu, PR, China
| | - Xiaomeng Yin
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.
| |
Collapse
|
11
|
Lee RM, Vitolo MI, Losert W, Martin SS. Distinct roles of tumor associated mutations in collective cell migration. Sci Rep 2021; 11:10291. [PMID: 33986306 PMCID: PMC8119502 DOI: 10.1038/s41598-021-89130-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 02/03/2023] Open
Abstract
Recent evidence suggests that groups of cells are more likely to form clinically dangerous metastatic tumors, emphasizing the importance of understanding mechanisms underlying collective behavior. The emergent collective behavior of migrating cell sheets in vitro has been shown to be disrupted in tumorigenic cells but the connection between this behavior and in vivo tumorigenicity remains unclear. We use particle image velocimetry to measure a multidimensional migration phenotype for genetically defined human breast epithelial cell lines that range in their in vivo behavior from non-tumorigenic to aggressively metastatic. By using cells with controlled mutations, we show that PTEN deletion enhances collective migration, while Ras activation suppresses it, even when combined with PTEN deletion. These opposing effects on collective migration of two mutations that are frequently found in patient tumors could be exploited in the development of novel treatments for metastatic disease. Our methods are based on label-free phase contrast imaging, and thus could easily be applied to patient tumor cells. The short time scales of our approach do not require potentially selective growth, and thus in combination with label-free imaging would allow multidimensional collective migration phenotypes to be utilized in clinical assessments of metastatic potential.
Collapse
Affiliation(s)
- Rachel M. Lee
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.164295.d0000 0001 0941 7177Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Michele I. Vitolo
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Wolfgang Losert
- grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.164295.d0000 0001 0941 7177Department of Physics, University of Maryland, College Park, MD 20742 USA
| | - Stuart S. Martin
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
12
|
Pratt SJP, Lee RM, Chang KT, Hernández-Ochoa EO, Annis DA, Ory EC, Thompson KN, Bailey PC, Mathias TJ, Ju JA, Vitolo MI, Schneider MF, Stains JP, Ward CW, Martin SS. Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca 2+ signals that are inhibited by oncogenic KRas. Proc Natl Acad Sci U S A 2020; 117:26008-26019. [PMID: 33020304 PMCID: PMC7584994 DOI: 10.1073/pnas.2009495117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Rachel M Lee
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Katarina T Chang
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - David A Annis
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Eleanor C Ory
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Keyata N Thompson
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Patrick C Bailey
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Trevor J Mathias
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Julia A Ju
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Michele I Vitolo
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Christopher W Ward
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
- School of Nursing, University of Maryland, Baltimore, MD 21201
| | - Stuart S Martin
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
13
|
Wu HZ, Xiao JQ, Xiao SS, Cheng Y. KRAS: A Promising Therapeutic Target for Cancer Treatment. Curr Top Med Chem 2019; 19:2081-2097. [PMID: 31486755 DOI: 10.2174/1568026619666190905164144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jia-Qi Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
14
|
Ghaemi Z, Soltani BM, Mowla SJ. MicroRNA-326 Functions as a Tumor Suppressor in Breast Cancer by Targeting ErbB/PI3K Signaling Pathway. Front Oncol 2019; 9:653. [PMID: 31417861 PMCID: PMC6682688 DOI: 10.3389/fonc.2019.00653] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/03/2019] [Indexed: 01/04/2023] Open
Abstract
Breast cancer represents the most common malignancy in women worldwide and the ErbB/PI3K pathway has been found to play a crucial role in regulation of the cancer cell growth. MicroRNAs have been implicated in regulating diverse cellular pathways and therefore, understanding the link between the regulatory microRNAs and the ErbB/PI3K signaling pathway could potentially be helpful for breast cancer prevention and treatment. The aim of this study is to examine the regulatory effect of miR-326 on ErbB/PI3K signaling pathway in breast cancer development and progression. The results of qRT-PCR, RNA seq, and array data indicated that miR-326 was remarkably down-regulated in breast tumor tissues and correlated with poor survival outcome. Importantly, very low levels of miR-326 expression were found in aggressive breast cells compared to less-aggressive cell types. Mechanistically, a gene network including EGFR, ErbB2, ErbB3, AKT1, AKT2, and AKT3 targeted by miR-326, thereby providing suppression of ErbB/PI3K pathway, detected by RT-qPCR, and dual luciferase assay. In addition, Western blot analysis revealed that miR-326 upregulation decreased PI3K signaling activity by decreasing total AKT and p-AKT protein level in SKBR3 cell lines. Interestingly, up regulation of ErbB2 rescued the effect of miR-326 on miR-326 target genes. Further functional assays demonstrated that up regulation of miR-326 significantly suppressed cell growth as evidenced by cell cycle, cell cycle associated genes expression, colony formation and MTT assays and induced apoptosis, detected by Annexin V-PI. In addition, EMT markers RT-qPCR, scratch, and Transwell assays showed inhibited cellular migration and invasion following miR-326 upregulation. Altogether, our results revealed that miR-326 play a tumor-suppressive role in breast cancer through inhibiting ErbB/PI3K pathway and miR-326 may serve as a potential therapeutic target for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
15
|
Yankaskas CL, Thompson KN, Paul CD, Vitolo MI, Mistriotis P, Mahendra A, Bajpai VK, Shea DJ, Manto KM, Chai AC, Varadarajan N, Kontrogianni-Konstantopoulos A, Martin SS, Konstantopoulos K. A microfluidic assay for the quantification of the metastatic propensity of breast cancer specimens. Nat Biomed Eng 2019; 3:452-465. [PMID: 31061459 PMCID: PMC6563615 DOI: 10.1038/s41551-019-0400-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/05/2019] [Indexed: 12/27/2022]
Abstract
The challenge of predicting which patients with breast cancer will develop metastases leads to the overtreatment of patients with benign disease and to the inadequate treatment of the aggressive cancers. Here, we report the development and testing of a microfluidic assay that quantifies the abundance and proliferative index of migratory cells in breast-cancer specimens, for the assessment of their metastatic propensity and for the rapid screening of potential antimetastatic therapeutics. On the basis of the key roles of cell motility and proliferation in cancer metastasis, the device accurately predicts the metastatic potential of breast-cancer cell lines and of patient-derived xenografts. Compared to unsorted cancer cells, highly motile cells isolated by the device exhibited similar tumourigenic potential but markedly increased metastatic propensity in vivo. RNA sequencing of the highly motile cells revealed an enrichment of motility-related and survival-related genes. The approach might be developed into a companion assay for the prediction of metastasis in patients and for the selection of effective therapeutic regimens.
Collapse
Affiliation(s)
- Christopher L Yankaskas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Keyata N Thompson
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Colin D Paul
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Michele I Vitolo
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Ankit Mahendra
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Vivek K Bajpai
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Kristen M Manto
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Andreas C Chai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Aikaterini Kontrogianni-Konstantopoulos
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart S Martin
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA. .,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA. .,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Oncosuppressor-Mutated Cells as a Liquid Biopsy Test for Cancer-Screening. Sci Rep 2019; 9:2384. [PMID: 30787346 PMCID: PMC6382857 DOI: 10.1038/s41598-019-38736-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
We reported on the ability of immortalized or oncosuppressor-mutated cells (OMCs) to uptake circulating cancer-factors and give tumors when transplanted into mice. This led to the first biological based liquid biopsy test, which we called MATER-D platform. In the present study, we showed for the first time that a different type of OMCs (PTEN-deficient human epithelial MCF10A cells) turn malignant when exposed to cancer patient’s sera, confirming the concept that different cells with diverse oncosuppressor mutations can uptake cancer factors and be used in biological based liquid biopsy tests. Our observations were confirmed in a large variety of solid and haematological malignancies. This test was able to detect dysplasia and carcinomas in situ lesions in different organs and circulating factors in cancer patients years after the removal of their lesions. To our knowledge, this ability is unique and not shared by other liquid biopsy platforms. Immunohistochemistry analysis of the xenotransplants revealed identical patterns of differentiation regardless of the cancer type, showing that differentiation through horizontal transfer might be dependent on the nature of the target cells rather than the type of cancer factors. These data strengthen the notion that OMC-based liquid biopsy tests might be promising platforms for cancer screening.
Collapse
|
17
|
Emerging ways to treat breast cancer: will promises be met? Cell Oncol (Dordr) 2018; 41:605-621. [PMID: 30259416 DOI: 10.1007/s13402-018-0409-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer among women and it is responsible for more than 40,000 deaths in the United States and more than 500,000 deaths worldwide each year. In previous decades, the development of improved screening, diagnosis and treatment methods has led to decreases in BC mortality rates. More recently, novel targeted therapeutic options, such as the use of monoclonal antibodies and small molecule inhibitors that target specific cancer cell-related components, have been developed. These components include ErbB family members (HER1, HER2, HER3 and HER4), Ras/MAPK pathway components (Ras, Raf, MEK and ERK), VEGF family members (VEGFA, VEGFB, VEGFC, VEGF and PGF), apoptosis and cell cycle regulators (BAK, BAX, BCL-2, BCL-X, MCL-1 and BCL-W, p53 and PI3K/Akt/mTOR pathway components) and DNA repair pathway components such as BRCA1. In addition, long noncoding RNA inhibitor-, microRNA inhibitor/mimic- and immunotherapy-based approaches are being developed for the treatment of BC. Finally, a novel powerful technique called CRISPR-Cas9-based gene editing is emerging as a precise tool for the targeted treatment of cancer, including BC. CONCLUSIONS Potential new strategies that are designed to specifically target BC are presented. Several clinical trials using these strategies are already in progress and have shown promising results, but inherent limitations such as off-target effects and low delivery efficiencies still have to be resolved. By improving the clinical efficacy of current therapies and exploring new ones, it is anticipated that novel ways to overcome BC may become attainable.
Collapse
|
18
|
Effects of PTEN Loss and Activated KRAS Overexpression on Mechanical Properties of Breast Epithelial Cells. Int J Mol Sci 2018; 19:ijms19061613. [PMID: 29848992 PMCID: PMC6032141 DOI: 10.3390/ijms19061613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/21/2022] Open
Abstract
It has previously been shown that the simultaneous activation of PI3K (phosphatidylinositol 3-kinase) and Ras/MAPK (mitogen-activated protein kinases) pathways facilitate tumor growth despite only inducing cancer cell dormancy individually. Determining the impacts on cellular mechanics each pathway incites alone and in unison is critical to developing non-toxic cancer therapies for triple-negative breast cancers. PTEN (phosphatase and tensin homolog) knockout and activated KRAS (Kristen rat sarcoma viral oncogene homolog) overexpression in healthy MCF-10A human breast epithelial cells activated the PI3K and Ras/MAPK pathways, respectively. Cell stiffness and fluidity were simultaneously measured using atomic force microscopy. Results suggest that PTEN knockout reduced cell stiffness and increased cell fluidity independent of PI3K activation. Effects of activated KRAS overexpression on cell stiffness depends on rigidity of cell culture substrate. Activated KRAS overexpression also counteracts the effects of PTEN knockout.
Collapse
|
19
|
Zohrap N, Saatci Ö, Ozes B, Coban I, Atay HM, Battaloglu E, Şahin Ö, Bugra K. SIK2 attenuates proliferation and survival of breast cancer cells with simultaneous perturbation of MAPK and PI3K/Akt pathways. Oncotarget 2018; 9:21876-21892. [PMID: 29774109 PMCID: PMC5955149 DOI: 10.18632/oncotarget.25082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Salt Inducible Kinase2 (SIK2) has been shown to contribute to tumorigenesis in multiple tumor types in a dichotomous manner. However, little is known about its contribution to breast malignancies. Here, we report SIK2 as a potential tumor suppressor in breast cancer whose expression was reduced in tumor tissues and breast cancer cell lines compared to normal counterparts. In vitro loss- and gain-of-function experiments combined with xenograft studies demonstrated that SIK2-mediated attenuation of proliferation and survival of breast cancer cells with parallel inhibition of both Ras/Erk and PI3K/Akt pathways. Our findings elucidated that SIK2 has also an inhibitory role in migration/invasion ability of breast cancer cells through regulation of epithelial mesenchymal transition. Immunostaining of patient tumors revealed that SIK2 protein level is frequently downregulated in invasive mammary carcinomas and negatively correlated with the mitotic activity of the cells in triple negative breast cancers and hormone positive tumors. Strikingly, patient survival analysis indicated that higher levels of SIK2 are significantly associated with better survival, especially in basal breast cancer cases. Overall, our findings suggest SIK2 as a potential tumor suppressor in the control of breast tumorigenesis, at least in part, via inhibiting PI3K/Akt and Ras/ERK signaling cascades simultaneously and a novel prognostic marker, especially in basal subtypes of breast cancer.
Collapse
Affiliation(s)
- Neslihan Zohrap
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Burcak Ozes
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Ipek Coban
- Department of Pathology, Istanbul Florence-Nightingale Hospital, Istanbul, Turkey
| | - Hasan Murat Atay
- Department of General Surgery, Gayrettepe Florence-Nightingale Hospital, Istanbul, Turkey
| | - Esra Battaloglu
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Kuyas Bugra
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.,Life Sciences Center, Bogazici University, Istanbul, Turkey
| |
Collapse
|
20
|
Ory EC, Chen D, Chakrabarti KR, Zhang P, Andorko JI, Jewell CM, Losert W, Martin SS. Extracting microtentacle dynamics of tumor cells in a non-adherent environment. Oncotarget 2017; 8:111567-111580. [PMID: 29340075 PMCID: PMC5762343 DOI: 10.18632/oncotarget.22874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
During metastasis, tumor cells dynamically change their cytoskeleton to traverse through a variety of non-adherent microenvironments, including the vasculature or lymphatics. Due to the challenges of imaging drift in non-adhered tumor cells, the dynamic cytoskeletal phenotypes are poorly understood. We present a new approach to analyze the dynamic cytoskeletal phenotypes of non-adhered cells that support microtentacles (McTNs), which are cell surface projections implicated in metastatic reattachment. Combining a recently-developed cell tethering method with a novel image analysis framework allowed McTN attribute extraction. Full cell outlines, number of McTNs, and distance of McTN tips from the cell body boundary were calculated by integrating a rotating anisotropic filtering method for identifying thin features with retinal segmentation and active contour algorithms. Tethered cells behave like free-floating cells; however tethering reduces cell drift and improves the accuracy of McTN measurements. Tethering cells does not significantly alter McTN number, but rather allows better visualization of existing McTNs. In drug treatment experiments, stabilizing tubulin with paclitaxel significantly increases McTN length, while destabilizing tubulin with colchicine significantly decreases McTN length. Finally, we quantify McTN dynamics by computing the time delay autocorrelations of 2 composite phenotype metrics (cumulative McTN tip distance, cell perimeter:cell body ratio). Our automated analysis demonstrates that treatment with paclitaxel increases total McTN amount and colchicine reduces total McTN amount, while paclitaxel also reduces McTN dynamics. This analysis method enables rapid quantitative measurement of tumor cell drug responses within non-adherent microenvironments, using the small numbers of tumor cells that would be available from patient samples.
Collapse
Affiliation(s)
- Eleanor C. Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Desu Chen
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
| | - Kristi R. Chakrabarti
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James I. Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, Baltimore, MD 21201, USA
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Li X, Zhou Y, Liu Y, Zhang X, Chen T, Chen K, Ba Q, Li J, Liu H, Wang H. Preclinical Efficacy and Safety Assessment of Artemisinin-Chemotherapeutic Agent Conjugates for Ovarian Cancer. EBioMedicine 2016; 14:44-54. [PMID: 27939426 PMCID: PMC5161434 DOI: 10.1016/j.ebiom.2016.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023] Open
Abstract
Artemisinin (ARS) and its derivatives, which are clinically used antimalarial agents, have shown antitumor activities. Their therapeutic potencies, however, are limited by their low solubility and poor bioavailability. Here, through a pharmacophore hybridization strategy, we synthesized ARS-drug conjugates, in which the marketed chemotherapeutic agents chlorambucil, melphalan, flutamide, aminoglutethimide, and doxifluridine, were separately bonded to Dihydroartemisinin (DHA) through various linkages. Of these, the artemisinin-melphalan conjugate, ARS4, exhibited most toxicity to human ovarian cancer cells but had low cytotoxicity to normal cells. ARS4 inhibited the growth and proliferation of ovarian cancer cells and resulted in S-phase arrest, apoptosis, and inhibition of migration; these effects were stronger than those of its parent drugs, DHA and melphalan. Furthermore, ARS4 modulated the expression of proteins involved in cell cycle progression, apoptosis, and the epithelial–mesenchymal transition (EMT). Moreover, in mice, ARS4 inhibited growth and intraperitoneal dissemination and metastasis of ovarian cancer cells without observable toxic effects. Our results provide a basis for development of the compound as a chemotherapeutic agent. Research in context Artemisinin compounds have recently received attention as anticancer agents because of their clinical safety profiles and broad efficacy. However, their therapeutic potencies are limited by low solubility and poor bioavailability. Here, we report that ARS4, an artemisinin-melphalan conjugate, possesses marked in-vitro and in-vivo antitumor activity against ovarian cancer, the effects of which are stronger than those for its parent drugs, Dihydroartemisinin and melphalan. In mice, ARS4 inhibits localized growth of ovarian cancer cells and intraperitoneal dissemination and metastasis without appreciable host toxicity. Thus, for patients with ovarian cancer, ARS4 is a promising chemotherapeutic agent. Artemisinin-drug conjugates were designed via pharmacophore hybridization strategy ARS4 induced apoptosis of ovarian cancer cells and cell cycle arrest and reversed the EMT polarity In mice, ARS4 inhibited growth and intraperitoneal dissemination of ovarian cancer cells with no appreciable host toxicity
Collapse
Affiliation(s)
- Xiaoguang Li
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanling Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu Zhang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kerong Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qian Ba
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingquan Li
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Wang
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
22
|
You L, Ren X, Du Y, Zhao W, Cui M, Chen G, Zhao Y. c-Fos/ERK promotes the progression from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Oncol Rep 2016; 36:3413-3420. [PMID: 27748943 DOI: 10.3892/or.2016.5169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/03/2016] [Indexed: 11/05/2022] Open
Abstract
Pathogenesis of pancreatic ductal adenocarcinoma (PDAC) is thought to develop through the progression of precursor lesions, known as pancreatic intraepithelial neoplasias (PanIN). In the present study, we showed that c-Fos promoted proliferation, cell cycle and migration in pancreatic cancer cells. Caerulein was used to accelerate the pathogenesis of Pdx-cre; KrasG12D mice. During PanIN formation and development of PDAC, the expression of ERK and c-Fos increased concomitantly. When ERK activity was inhibited by U0126, the expression of c-Fos also decreased. Inactivation of ERK/c-Fos suppressed pancreatic lesions concurrently through proliferation, inflammation and apoptosis. Our findings suggest that the ERK/c-Fos pathway is required for PDAC initiation and progression.
Collapse
Affiliation(s)
- Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoxia Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yongxing Du
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenjing Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ge Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
23
|
Mutlu M, Saatci Ö, Ansari SA, Yurdusev E, Shehwana H, Konu Ö, Raza U, Şahin Ö. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci Rep 2016; 6:32541. [PMID: 27600857 PMCID: PMC5013276 DOI: 10.1038/srep32541] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Merve Mutlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Suhail A Ansari
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Emre Yurdusev
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|