1
|
Deng EZ, Marino GB, Clarke DJB, Diamant I, Resnick AC, Ma W, Wang P, Ma'ayan A. Multiomics2Targets identifies targets from cancer cohorts profiled with transcriptomics, proteomics, and phosphoproteomics. CELL REPORTS METHODS 2024; 4:100839. [PMID: 39127042 PMCID: PMC11384097 DOI: 10.1016/j.crmeth.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.
Collapse
Affiliation(s)
- Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ido Diamant
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA.
| |
Collapse
|
2
|
Liu Y, Chen Y, Gao M, Luo J, Wang Y, Wang Y, Gao Y, Yang L, Wang J, Wang N. Association between glioma and neurodegenerative diseases risk: a two-sample bi-directional Mendelian randomization analysis. Front Neurol 2024; 15:1413015. [PMID: 39015316 PMCID: PMC11250058 DOI: 10.3389/fneur.2024.1413015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Background Earlier observational studies have demonstrated a correlation between glioma and the risk of neurodegenerative diseases (NDs), but the causality and direction of their associations remain unclear. The objective of this study was to ascertain the causal link between glioma and NDs using Mendelian randomization (MR) methodology. Methods Genome-wide association study (GWAS) data were used in a two-sample bi-directional MR analysis. From the largest meta-analysis GWAS, encompassing 18,169 controls and 12,488 cases, summary statistics data on gliomas was extracted. Summarized statistics for NDs, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) were obtained from the GWAS of European ancestry. Inverse variance weighted (IVW) method was elected as the core MR approach with weighted median (WM) method and MR-Egger method as complementary methods. In addition, sensitivity analyses were performed. A Bonferroni correction was used to correct the results. Results Genetically predicted glioma had been related to decreased risk of AD. Specifically, for all glioma (IVW: OR = 0.93, 95% CI = 0.90-0.96, p = 4.88 × 10-6) and glioblastoma (GBM) (IVW: OR = 0.93, 95% CI = 0.91-0.95, p = 5.11 × 10-9). We also found that genetically predicted all glioma has a suggestive causative association with MS (IVW: OR = 0.90, 95% CI = 0.81-1.00, p = 0.045). There was no evidence of causal association between glioma and ALS or PD. According to the results of reverse MR analysis, no discernible causal connection of NDs was found on glioma. Sensitivity analyses validated the robustness of the above associations. Conclusion We report evidence in support of potential causal associations of different glioma subtypes with AD and MS. More studies are required to uncover the underlying mechanisms of these findings.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Youqi Chen
- Bethune First Hospital of Jilin University, Changchun, China
| | - Ming Gao
- Bethune First Hospital of Jilin University, Changchun, China
| | - Jia Luo
- Bethune First Hospital of Jilin University, Changchun, China
| | - Yanan Wang
- Bethune First Hospital of Jilin University, Changchun, China
| | - Yihan Wang
- Bethune Third Hospital of Jilin University, Changchun, China
| | - Yu Gao
- Clinical College, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Laiyu Yang
- Bethune Third Hospital of Jilin University, Changchun, China
| | - Jingning Wang
- Bethune First Hospital of Jilin University, Changchun, China
| | - Ningxin Wang
- Bethune First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
4
|
Zhong J, Xing X, Gao Y, Pei L, Lu C, Sun H, Lai Y, Du K, Xiao F, Yang Y, Wang X, Shi Y, Bai F, Zhang N. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell 2024; 42:968-984.e9. [PMID: 38788719 DOI: 10.1016/j.ccell.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xudong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Lei Pei
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Chenfei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huixin Sun
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yanxing Lai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Kang Du
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Xiuxing Wang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
5
|
Yan Y, Bai S, Han H, Dai J, Niu L, Wang H, Dong Q, Yin H, Yuan G, Pan Y. Knockdown of trem2 promotes proinflammatory microglia and inhibits glioma progression via the JAK2/STAT3 and NF-κB pathways. Cell Commun Signal 2024; 22:272. [PMID: 38750472 PMCID: PMC11094905 DOI: 10.1186/s12964-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1β, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.
Collapse
Affiliation(s)
- Yunji Yan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Shengwei Bai
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Junqiang Dai
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Hongyu Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Qiang Dong
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, No.82, cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, No.82, cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
| |
Collapse
|
6
|
Chen M, Cao C, Ma J. Tumor-related exosomal circ_0001715 promotes lung adenocarcinoma cell proliferation and metastasis via enhancing M2 macrophage polarization by regulating triggering receptor expressed on myeloid cells-2. Thorac Cancer 2024; 15:227-238. [PMID: 38087801 PMCID: PMC10803224 DOI: 10.1111/1759-7714.15182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to mediate tumor-associated macrophages (TAMs) to regulate the development of many cancers, including lung adenocarcinoma (LUAD). However, whether circ_0001715 regulates LUAD progression by mediating TAMs polarization remains uncertain. METHODS Monocytes (THP-1) were treated with PMA to induce M0 macrophages. M0 macrophages were incubated with LUAD cells-derived exosomes and then cocultured with LUAD cells. The levels of circ_0001715, M2 macrophage markers, microRNA (miR)-205-5p, and triggering receptor expressed on myeloid cells-2 (TREM2) were examined using quantitative real-time PCR. Flow cytometry was performed to assess M2 macrophage surface marker CD206. Cell proliferation, migration and invasion were determined using cell counting kit 8, EdU, colony formation and transwell assays. Dual-luciferase reporter assay was used to investigate the interactions between miR-205-5p and circ_0001715 or TREM2. RESULTS Circ_0001715 knockdown inhibited M2 macrophage polarization and its overexpression had an opposite effect. After M0 macrophages transfected with si-circ_0001715 were cocultured with LUAD cells, the proliferation and metastasis of LUAD cells were markedly reduced. Exosomes transferred circ_0001715 between M0 macrophages and LUAD cells. Exosomal circ_0001715 promoted M2 macrophage polarization to increase LUAD cell proliferation and metastasis. In terms of mechanism, circ_0001715 sponged miR-205-5p to positively regulate TREM2. TREM2 upregulation also could promote LUAD cell proliferation and metastasis via increasing M2 macrophage polarization. In addition, TREM2 knockdown reversed the effect of exosomal circ_0001715 on M2 macrophage polarization and LUAD cell progression. CONCLUSION Exosomal circ_0001715 led to LUAD cell proliferation and metastasis by promoting M2 macrophage polarization via the miR-205-5p/TREM2 axis.
Collapse
Affiliation(s)
- Mengjun Chen
- Department of Cardiothoracic SurgeryLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanChina
| | - Chengzhang Cao
- Department of Cardiothoracic SurgeryLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanChina
| | - Jun Ma
- Department of Cardiothoracic SurgeryLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanChina
| |
Collapse
|
7
|
Shi J, Huang S. Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer's Disease. Int J Mol Sci 2023; 25:16. [PMID: 38203185 PMCID: PMC10778632 DOI: 10.3390/ijms25010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Microglia and macrophages are pivotal to the brain's innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer's disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a range of signaling pathways-namely, NF-κB, microRNAs (miRNAs), and TREM2-that regulate the behavior of tumor-associated macrophages (TAMs) in GBM and disease-associated microglia (DAMs) in AD. These pathways are critical to the processes of neuroinflammation, angiogenesis, and apoptosis, which are hallmarks of GBM and AD. We concentrate on the multifaceted regulation of TAMs by NF-κB signaling in GBM, the influence of TREM2 on DAMs' responses to amyloid-beta deposition, and the modulation of both TAMs and DAMs by GBM- and AD-related miRNAs. Incorporating recent advancements in molecular biology, immunology, and AI techniques, through a detailed exploration of these molecular mechanisms, we aim to shed light on their distinct and overlapping regulatory functions in GBM and AD. The review culminates with a discussion on how insights into NF-κB, miRNAs, and TREM2 signaling may inform novel therapeutic approaches targeting microglia and macrophages in these neurodegenerative and neoplastic conditions. This comparative analysis underscores the potential for new, targeted treatments, offering a roadmap for future research aimed at mitigating the progression of these complex diseases.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Shiwei Huang
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Sun R, Han R, McCornack C, Khan S, Tabor GT, Chen Y, Hou J, Jiang H, Schoch KM, Mao DD, Cleary R, Yang A, Liu Q, Luo J, Petti A, Miller TM, Ulrich JD, Holtzman DM, Kim AH. TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma. SCIENCE ADVANCES 2023; 9:eade3559. [PMID: 37172094 PMCID: PMC10181199 DOI: 10.1126/sciadv.ade3559] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/07/2023] [Indexed: 05/14/2023]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1)+CD8+ T cells in the TME. Last, Trem2 deficiency enhanced the effectiveness of anti-PD-1 treatment, which may represent a therapeutic strategy for patients with GBM.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Rowland Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin McCornack
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Saad Khan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haowu Jiang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cleary
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Molgora M, Liu YA, Colonna M, Cella M. TREM2: A new player in the tumor microenvironment. Semin Immunol 2023; 67:101739. [PMID: 36989543 DOI: 10.1016/j.smim.2023.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
TREM2 is a myeloid cell receptor that has been extensively described in the context of neuroinflammation and neurodegenerative diseases. Recently, TREM2 emerged as a crucial regulator of macrophage function in tumors. TREM2-deficiency or blockade provide protection and promote the response to anti-PD1 in different murine models. In human tumors, TREM2-expressing macrophages are present in numerous cohorts and tumor types and are generally associated with immunosuppression and poor prognosis. Here, we provide an overview of the impact of TREM2 in tumors considering current literature, with a focus on both murine models and human cancer.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Yizhou A Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Chen J, Chen S, Li B, Zhou S, Lin H. A pyroptosis-related signature predicts prognosis and indicates immune microenvironment infiltration in glioma. Cancer Med 2023; 12:5071-5087. [PMID: 36161280 PMCID: PMC9972150 DOI: 10.1002/cam4.5247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Glioma, the most common malignant brain tumor, leads to high recurrence rates and disabilities in patients. Pyroptosis is an inflammasomes-induced programmed cell death in response to infection or chemotherapy. However, the role of pyroptosis in glioma has not yet been elucidated. METHODS RNA-seq data and clinical information of 660 gliomas and 847 samples were downloaded from the TCGA and CGGA, respectively. Then, data of 104 normal brain tissues was retrieved from the GTEx for differential expression analysis. Twelve pairs of peritumoral tissue and glioma samples were used for validation. Gene alteration status of differentially expressed pyroptosis-related regulators in gliomas was detected in cBioPortal algorithm. Consensus clustering was employed to classify gliomas based on differentially expressed pyroptosis-related regulators. Subsequently, a PS-signature was constructed using LASSO-congressional analysis for clinical application. The immune infiltration of glioma microenvironment (TME) was explored using ESTIMATE, CIBERSORT, and the other immune signatures. RESULTS cBioPortal algorithm revealed alteration of these regulators was correlated to better prognosis of gliomas. Then, our study showed that pyroptosis-related regulators can be used to sort out patients into two clusters with distinct prognostic outcome and immune status. Moreover, a PS-signature for predicting the prognosis of glioma patients was developed based on the identified subtypes. The high PS-score group showed more abundant inflammatory cell infiltration and stronger immune response, but with poorer prognosis of gliomas. CONCLUSION The findings of this study provide a therapeutic basis for future research on pyroptosis and unravel the relationship between pyroptosis and glioma prognosis. The risk signature can be utilized as a prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Jia Chen
- The Fourth People's Hospital of ChengduChengduChina
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Shanwei Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Shantou University Medical CollegeShantouChina
| | - Bingxian Li
- Department of Neurology, Shantou Central HospitalShantouChina
| | - Shaojiong Zhou
- Department of Neurology, Shantou Central HospitalShantouChina
| | - Han Lin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Specialized functions and sexual dimorphism explain the functional diversity of the myeloid populations during glioma progression. Cell Rep 2023; 42:111971. [PMID: 36640350 DOI: 10.1016/j.celrep.2022.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Malignant gliomas are aggressive, hard-to-treat brain tumors. Their tumor microenvironment is massively infiltrated by myeloid cells, mostly brain-resident microglia, bone marrow (BM)-derived monocytes/macrophages, and dendritic cells that support tumor progression. Single-cell omics studies significantly dissected immune cell heterogeneity, but dynamics and specific functions of individual subpopulations were poorly recognized. We use Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) to precisely dissect myeloid cell identities and functionalities in murine GL261 gliomas. We demonstrate that the diversity of myeloid cells infiltrating gliomas is dictated by cell type and cell state. Glioma-activated microglia are the major source of cytokines attracting other immune cells, whereas BM-derived cells show the monocyte-to-macrophage transition in the glioma microenvironment. This transition is coupled with a phenotypic switch from the IFN-related to antigen-presentation and tumor-supportive gene expression. Moreover, we found sex-dependent differences in transcriptional programs and composition of myeloid cells in murine and human glioblastomas.
Collapse
|
12
|
TREM2 as a Potential Immune-Related Biomarker of Prognosis in Patients with Skin Cutaneous Melanoma Microenvironment. DISEASE MARKERS 2023; 2023:8101837. [PMID: 36741909 PMCID: PMC9897921 DOI: 10.1155/2023/8101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 01/30/2023]
Abstract
Background The skin cutaneous melanoma (SKCM) is a devastating form of skin cancer triggered by genetic and environmental factors, and the incidence of SKCM has rapidly increased in recent years. Immune infiltration of the tumor microenvironment is positively associated with overall survival in many tumors. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and a crucial signaling hub for multiple pathological pathways that mediate immunity. Although numerous evidences suggest a crucial role for TREM2 in tumorigenesis of some tumors, no systematic SKCM analysis of TREM2 is available. Mehods. The relationship between TREM2 expression and diagnostic and prognostic value of SKCM patients via using The Cancer Genome Atlas (TCGA) data. The expression level of TREM2 and clinical characteristic correlation in SKCM patients were assessed by the Wilcoxon rank sum test. The cox regression methods, Kaplan-Meier (KM), and log-rank test were used to assess the impact of TREM2 expression on the overall survival (OS). Furthermore, the Gene Set Enrichment Analysis (GSEA) and TIMER were performed to evaluate the enrichment pathways and potential functions and quantify the immune cell infiltration level for TREM2 expression. Results The TREM2 in SKCM sample expression levels was significantly higher than in normal tissues. Moreover, this expression level of TREM2 was also associated with the BMI of SKCM patients. KM overall survival analysis and OS curve displayed that a high-level TREM2 expression was significantly correlated with a better SKCM prognosis of patients as compared with a low level of TREM2 expression. The GSEA analysis also revealed that TREM2 was associated with immune functions, such as neutrophil activation. Conclusion TREM2 played a crucial role in SKCM, which might be a prognostic biomarker and correlated with immune infifiltrates in SKCM patients.
Collapse
|
13
|
TREM2 as an independent predictor of poor prognosis promotes the migration via the PI3K/AKT axis in prostate cancer. Am J Transl Res 2023; 15:779-798. [PMID: 36915769 PMCID: PMC10006782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/30/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Prostate adenocarcinoma (PRAD) is one of the most common cancers, with high morbidity and mortality. Triggering receptors expressed on myeloid cells 2 (TREM2) is upregulated in various malignancies, however its effect on PRAD remains unknown. This study aimed to investigate the prognostic value of TREM2 in PRAD. METHODS PRAD samples were collected from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), Oncomine, and the Human Protein Atlas (HPA) to analyze the differences in TREM2 expression between normal and tumor tissues. The influence of TREM2 on the clinicopathological characteristics and its prognostic value were evaluated using the Kaplan-Meier curve, Cox regression analysis, ROC (receiver operating characteristic) plot, and nomogram. Gene Ontology (GO), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) were conducted to screen biological functions and pathways. The relationship between TREM2 and tumor microenvironment (TME) characteristics was explored. The TREM2 expression in PRAD specimens and cell lines was assessed by immunohistochemistry staining and western blot. TREM2-specific siRNAs were used to evaluate the effects of TREM2 on cell function. RESULTS TREM2 was upregulated and positively associated with poor clinicopathologic characteristics. Overexpression of TREM2 is an independent biomarker for the prognosis of PFI (progression-free interval). Moreover, TREM2 expression was positively correlated with various TME characteristics. Knockdown of TREM2 inhibited the migration of PRAD cell lines via the PI3K/AKT axis. CONCLUSION High TREM2 expression may represent a novel diagnostic and prognostic biomarker and serve as a potential target gene for PRAD therapy.
Collapse
|
14
|
Expression Analysis of TREM2 and TC2N Genes in Human Breast Cancer Tissues. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Since breast cancer is the most common type of cancer in women around the world, finding new biomarkers for early diagnosis of breast cancer is invaluable. Objectives: This research assessed the mRNA expression of triggering receptors expressed on myeloid cell 2 (TREM2) and tandem C2 domains nuclear protein (TC2N) genes among Iranian patients with breast cancer. Methods: We acquired 50 samples of cancerous breast tumors and corresponding adjacent non-cancerous tissues from Iranian women. The gene expression of TREM2 and TC2N was measured by quantitative real-time polymerase chain reaction (q-RT-PCR). In addition, the association between TREM2 and TC2N levels with various clinicopathologic characteristics was also investigated. Results: The increased levels of TREM2 and TC2N mRNAs were shown in breast cancerous tissues in comparison with adjacent non-cancerous tissues (P < 0.05). Among the clinicopathological characteristics evaluated, tumor size, necrosis, and lymphatic tissue invasion were significantly associated with high TREM2 expression. A significant relationship was also seen between increased TC2N expression and tumor grade. Sensitivity and specificity were shown at 84% and 94%, respectively, for TREM2 and 72% and 100% for TC2N. Conclusions: The data suggest that TREM2 expression, but not TC2N, could be a suitable biomarker for breast cancer diagnosis.
Collapse
|
15
|
Bandow K, Smith A, Garlick J. Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) positively regulates lipopolysaccharide-induced expression of CXC chemokine ligand 10 and 11 in mouse macrophages. Biochem Biophys Res Commun 2022; 635:227-235. [DOI: 10.1016/j.bbrc.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|
16
|
Combined single-cell RNA-seq and bulk RNA-seq to analyze the expression and role of TREM2 in bladder cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:23. [PMID: 36445493 DOI: 10.1007/s12032-022-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Currently, reprogramming macrophages has emerged as one of the most promising therapeutic strategies in cancer treatment. Many studies have found that myeloid trigger receptor-2 (TREM2) is mainly expressed on tumor-associated macrophages (TAMs), and targeting TREM2 promotes reprogramming of TAMs and enhances the immunotherapeutic effect of tumors. Nevertheless, the expression and role of TREM2 in different tumor tissues are still controversial. For example, some studies have found that TREM2 can also be expressed on tumor cells and exert pro-tumor functions. It has also been found that TREM2 expression can inhibit tumorigenesis and progression. In fact, there are still no relevant studies on the expression and role of TREM2 in bladder cancer (BLCA). Therefore, the present study combined single-cell RNA-seq and bulk RNA-seq to analyze the expression, role, and molecular mechanism of TREM2 in BLCA. We found that TREM2 was predominantly expressed on TAMs in BLCA, followed by tumor epithelial cells. This finding could be useful for further exploration of the role and mechanism of TREM2. Moreover, TREM2 expression correlates with clinical progression and immunotherapy efficacy, and is an important predictor of prognosis for BLCA patients. Not only that, we also found that TREM2 may exert its effects by promoting epithelial mesenchymal transition (EMT) and T-cell exhaustion. TREM2+ TAMs may play an important pro-tumor role through PTN, ANGPTL, and VISFATIN pathways. In conclusion, our study found that TREM2 is not only a predictor of BLCA prognosis, but also a potential therapeutic target for BLCA.
Collapse
|
17
|
Wolf EM, Fingleton B, Hasty AH. The therapeutic potential of TREM2 in cancer. Front Oncol 2022; 12:984193. [PMID: 36119485 PMCID: PMC9479103 DOI: 10.3389/fonc.2022.984193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer continues to be a substantial health concern and a leading cause of death in the United States and around the world. Therefore, it is important to continue to explore the potential of novel therapeutic targets and combinatorial therapies. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that associates with DNAX activation protein (DAP) 12 and DAP10 to propagate signals within the cell. TREM2 has primarily been recognized for its expression on cells in the monocyte-macrophage lineage, with the majority of work focusing on microglial function in Alzheimer’s Disease. However, expansion of TREM2 research into the field of cancer has revealed that epithelial tumor cells as well as intratumoral macrophages and myeloid regulatory cells also express TREM2. In this review, we discuss evidence that TREM2 contributes to tumor suppressing or oncogenic activity when expressed by epithelial tumor cells. In addition, we discuss the immunosuppressive role of TREM2-expressing intratumoral macrophages, and the therapeutic potential of targeting TREM2 in combination with immune checkpoint therapy. Overall, the literature reveals TREM2 could be considered a novel therapeutic target for certain types of cancer.
Collapse
Affiliation(s)
- Elysa M. Wolf
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Barbara Fingleton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Tennessee Healthcare System, Nashville, TN, United States
- *Correspondence: Alyssa H. Hasty,
| |
Collapse
|
18
|
Wang Y, Wang Z, Shao C, Lu G, Xie M, Wang J, Duan H, Li X, Yu W, Duan W, Yan X. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis. J Pineal Res 2022; 73:e12813. [PMID: 35661247 DOI: 10.1111/jpi.12813] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Melatonin is a hormone synthesized in the pineal gland and has widespread physiological and pharmacological functions. Moreover, it can activate protective receptor-dependent processes. These processes can prevent tissue carcinogenesis and inhibit malignant tumor progression and metastasis. Therefore, we investigated the regulatory effects of melatonin on dysregulated circular RNAs in human lung adenocarcinoma (LUAD) cells. In this study, we treated LUAD cells with melatonin and measured the expression of hsa_circ_0017109, miR-135b-3p, and TOX3 by quantitative reverse transcription polymerase chain reaction. Colony formation and cell counting kit-8 assays were used to determine cell proliferation. The wound-healing assay and Transwell experiment were carried out to evaluate the migration potential and invasive capacity of LUAD cells. Also, cell apoptosis was detected using a cell apoptosis kit, and protein production was identified by Western blot. It was suggested that melatonin could inhibit LUAD progression in vivo and in vitro, and the role of TOX3 in this process was explored. Additionally, hsa_circ_0017109 was found to sponge miR-135b-3p, a downstream factor of circ_0017109, which was demonstrated to target TOX3 in LUAD cells and could promote the Hippo pathway and epithelial-mesenchymal transition pathway. To summarize, we demonstrated that melatonin decreases the expression of circ_0017109 and suppresses the non-small-cell lung cancer cell migration, invasion, and proliferation through decreasing TOX3 expression via direct activation of miR-135b-3p.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wanpeng Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Dahlberg D, Rummel J, Distante S, De Souza GA, Stensland ME, Mariussen E, Rootwelt H, Voie Ø, Hassel B. Glioblastoma microenvironment contains multiple hormonal and non-hormonal growth-stimulating factors. Fluids Barriers CNS 2022; 19:45. [PMID: 35659255 PMCID: PMC9166426 DOI: 10.1186/s12987-022-00333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
Background The growth of malignant tumors is influenced by their microenvironment. Glioblastoma, an aggressive primary brain tumor, may have cysts containing fluid that represents the tumor microenvironment. The aim of this study was to investigate whether the cyst fluid of cystic glioblastomas contains growth-stimulating factors. Identification of such growth factors may pave the way for the development of targeted anti-glioblastoma therapies. Methods We performed hormone analysis of cyst fluid from 25 cystic glioblastomas and proteomics analysis of cyst fluid from another 12 cystic glioblastomas. Results Glioblastoma cyst fluid contained hormones within wide concentration ranges: Insulin-like growth factor 1 (0–13.7 nmol/L), insulin (1.4–133 pmol/L), erythropoietin (4.7–402 IU/L), growth hormone (0–0.93 µg/L), testosterone (0.2–10.1 nmol/L), estradiol (0–1.0 nmol/L), triiodothyronine (1.0–11.5). Tumor volume correlated with cyst fluid concentrations of growth hormone and testosterone. Survival correlated inversely with cyst fluid concentration of erythropoietin. Several hormones were present at concentrations that have been shown to stimulate glioblastoma growth in vitro. Concentrations of erythropoietin and estradiol (in men) were higher in cyst fluid than in serum, suggesting formation by tumor or brain tissue. Quantitatively, glioblastoma cyst fluid was dominated by serum proteins, illustrating blood–brain barrier leakage. Proteomics identified several proteins that stimulate tumor cell proliferation and invasiveness, others that inhibit apoptosis or mediate adaption to hypoxia and some that induce neovascularization or blood–brain barrier leakage. Conclusion The microenvironment of glioblastomas is rich in growth-stimulating factors that may originate from the circulation, the tumor, or the brain. The wide variation in cyst fluid hormone concentrations may differentially influence tumor growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00333-z.
Collapse
Affiliation(s)
- Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Nydalen, PO box 4950, 0424, Oslo, Norway.
| | - Jutta Rummel
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway
| | - Sonia Distante
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Gustavo Antonio De Souza
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway.,Department of Biochemistry, Universidade Federal Do Rio Grande Do Norte, Natal, RN, Brazil
| | - Maria Ekman Stensland
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
| | - Espen Mariussen
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Øyvind Voie
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway.,Norwegian Defence Research Establishment (FFI), Kjeller, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Zhou L, Wang M, Guo H, Hou J, Zhang Y, Li M, Wu X, Chen X, Wang L. Integrated Analysis Highlights the Immunosuppressive Role of TREM2+ Macrophages in Hepatocellular Carcinoma. Front Immunol 2022; 13:848367. [PMID: 35359989 PMCID: PMC8963870 DOI: 10.3389/fimmu.2022.848367] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Recently, attention has been focused on the central role of TREM2 in diverse pathologies. However, the role of TREM2 signaling in the tumor microenvironment of hepatocellular carcinoma (HCC) remains poorly understood. Herein, we systematically investigated the single-cell transcriptomes of human HCC tissues and found that TREM2 was predominantly expressed by a macrophage subpopulation enriched in tumor tissues that resemble lipid-associated macrophages (LAMs). The accumulation of TREM2+ LAM-like cells in HCC was confirmed in two additional cohorts using scRNA-seq analysis and immunohistochemistry. High expression of TREM2 correlated with high infiltrating macrophage abundance and poor prognosis. Based on systematic interrogations of transcriptional profiles and cellular interactions, TREM2+ LAM-like cells were identified to mainly originate from S100A8+ monocytes and represented an immunosuppressive state. TREM2+ LAM-like cells recruited suppressive Treg cells, facilitating microenvironment remodeling. Furthermore, gene regulatory analysis and in vitro functional assays indicated that activation of LXR signaling could promote the reprogramming of TREM2+ LAM-like cells. Correlation analysis of bulk RNA-sequencing data demonstrated that the enrichment of TREM2+ LAM-like cells was an independent indicator of adverse clinical outcomes in HCC patients. Our comprehensive analyses provide deeper insights into the immunosuppressive role of TREM2+ LAM-like cells in HCC.
Collapse
Affiliation(s)
- Lisha Zhou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meiling Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
| | - Hanrui Guo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Yingna Zhang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Man Li
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Lianghai Wang, ; Xueling Chen,
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Lianghai Wang, ; Xueling Chen,
| |
Collapse
|
21
|
Bekeschus S, Ispirjan M, Freund E, Kinnen F, Moritz J, Saadati F, Eckroth J, Singer D, Stope MB, Wende K, Ritter CA, Schroeder HWS, Marx S. Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue. Cancers (Basel) 2022; 14:cancers14030813. [PMID: 35159079 PMCID: PMC8834374 DOI: 10.3390/cancers14030813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Despite treatment advances, glioblastoma multiforme (GBM) remains an often-fatal disease, motivating novel therapeutic avenues. Gas plasma is a technology that has been recently employed in preclinical oncology research and acts primarily via reactive oxygen-species-induced cell death. In addition, the modulation of immune processes and inflammation have been ascribed to gas plasma exposure. This is the first study that extends those observations from in vitro investigations to a set of 16 patient-derived GBM tumor biopsies analyzed after gas plasma treatment ex vivo. Besides cell culture results showing cell cycle arrest and apoptosis induction, an immunomodulatory potential was identified for gas plasma exposure in vitro and cultured GBM tissues. The proapoptotic action shown in this study might be an important step forward to the first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology. Abstract Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Correspondence:
| | - Mikael Ispirjan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frederik Kinnen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Juliane Moritz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Jacqueline Eckroth
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmaceutics, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany;
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
22
|
The emerging role of triggering receptor expressed on myeloid cell-2 in malignant tumor. Cent Eur J Immunol 2022; 47:373-381. [PMID: 36817396 PMCID: PMC9901261 DOI: 10.5114/ceji.2022.124387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 02/05/2023] Open
Abstract
Triggering receptor expressed on myeloid cell-2 (TREM2) is a transmembrane receptor which is specifically expressed on myeloid cells. To date, TREM2 has been confirmed as a key factor in many pathologies, such as Alzheimer's disease, obesity-related metabolic syndrome, fatty liver and atherosclerosis. However, the role of TREM2 in tumors remains poorly understood. TREM2 is highly expressed in more than 200 primary and metastatic tumors, a feature that makes TREM2 a potential clinical target for tumor immunotherapy. The tumor microenvironment (TME) is the "soil" which tumors survive on and exhibits immunosuppressive characteristics. During the development of a tumor, TME will secrete various chemotactic factors to recruit myeloid cells. It is clear now that cancer progression and metastasis depend on the interactions between cancer cells and myeloid cell infiltration in TME. As an important receptor involved in inflammatory suppression signaling pathways, TREM2 may play an important role in immune escape by the tumor. Recently, several studies have illustrated that TREM2 expressed on tumor infiltrated myeloid cells acts as a crucial regulator of the antitumor immune response. In this review, we systematically summarize recent publications about the latest advances in knowledge of TREM2 in cancer, especially focusing on its role in tumor associated myeloid cells and tumor immunotherapy.
Collapse
|
23
|
Qiu H, Shao Z, Wen X, Jiang J, Ma Q, Wang Y, Huang L, Ding X, Zhang L. TREM2: Keeping Pace With Immune Checkpoint Inhibitors in Cancer Immunotherapy. Front Immunol 2021; 12:716710. [PMID: 34539652 PMCID: PMC8446424 DOI: 10.3389/fimmu.2021.716710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
To date, immune checkpoint inhibitors have been successively approved and widely used in clinical cancer treatments, however, the overall response rates are very low and almost all cancer patients eventually progressed to drug resistance, this is mainly due to the intricate tumor microenvironment and immune escape mechanisms of cancer cells. One of the main key mechanisms leading to the evasion of immune attack is the presence of the immunosuppressive microenvironment within tumors. Recently, several studies illustrated that triggering receptor expressed on myeloid cells-2 (TREM2), a transmembrane receptor of the immunoglobulin superfamily, was a crucial pathology-induced immune signaling hub, and it played a vital negative role in antitumor immunity, such as inhibiting the proliferation of T cells. Here, we reviewed the recent advances in the study of TREM2, especially focused on its regulation of tumor-related immune signaling pathways and its role as a novel target in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinghua Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinggong Ma
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
De Palma A, Agresta AM, Viglio S, Rossi R, D’Amato M, Di Silvestre D, Mauri P, Iadarola P. A Shotgun Proteomic Platform for a Global Mapping of Lymphoblastoid Cells to Gain Insight into Nasu-Hakola Disease. Int J Mol Sci 2021; 22:9959. [PMID: 34576123 PMCID: PMC8472724 DOI: 10.3390/ijms22189959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nasu-Hakola Disease (NHD) is a recessively inherited systemic leukodystrophy disorder characterized by a combination of frontotemporal presenile dementia and lytic bone lesions. NHD is known to be genetically related to a structural defect of TREM2 and DAP12, two genes that encode for different subunits of the membrane receptor signaling complex expressed by microglia and osteoclast cells. Because of its rarity, molecular or proteomic studies on this disorder are absent or scarce, only case reports based on neuropsychological and genetic tests being reported. In light of this, the aim of this paper is to provide evidence on the potential of a label-free proteomic platform based on the Multidimensional Protein Identification Technology (MudPIT), combined with in-house software and on-line bioinformatics tools, to characterize the protein expression trends and the most involved pathways in NHD. The application of this approach on the Lymphoblastoid cells from a family composed of individuals affected by NHD, healthy carriers and control subjects allowed for the identification of about 3000 distinct proteins within the three analyzed groups, among which proteins anomalous to each category were identified. Of note, several differentially expressed proteins were associated with neurodegenerative processes. Moreover, the protein networks highlighted some molecular pathways that may be involved in the onset or progression of this rare frontotemporal disorder. Therefore, this fully automated MudPIT platform which allowed, for the first time, the generation of the whole protein profile of Lymphoblastoid cells from Nasu-Hakola subjects, could be a valid approach for the investigation of similar neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Anna Maria Agresta
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Simona Viglio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Maura D’Amato
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Paolo Iadarola
- Biochemistry Unit, Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
25
|
Taank Y, Agnihotri N. Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex. Clin Transl Oncol 2021; 23:2448-2459. [PMID: 34426910 DOI: 10.1007/s12094-021-02686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Aberrant Wnt/β-catenin signaling is central to colorectal cancer carcinogenesis. The well-known potential of targeting the canonical Wnt signaling pathway for the treatment of CRC is largely attributed to the ability of this pathway to regulate various cellular processes such as cell proliferation, metastasis, drug resistance, immune response, apoptosis, and cellular metabolism. However, with the current approach of targeting this pathway, none of the Wnt-targeted agents have been successfully implicated in clinical practice. Instead of using classical approaches to target this pathway, there is a growing need to find new and modified approaches to achieve the same. For this, a better understanding of the regulation of β-catenin, a major effector of the canonical Wnt pathway is a must. The present review addresses the importance of understanding the regulation of β-catenin beyond the destruction complex. Few recently discovered β-catenin regulators such as ZNF281, TTPAL, AGR2, ARHGAP25, TREM2, and TIPE1 showed significant potential in regulating the development of CRC through modulation of the Wnt/β-catenin signaling pathway in both in vitro and in vivo studies. Although the expression and activity of β-catenin is influenced by many protein regulators, the abovementioned proteins not only influence its expression and activation but are also directly involved in the development of CRC and various other solid tumors. Therefore, we hypothesise that focusing the current research on finding the detailed mechanism of action of these regulators may assist in providing with a better treatment approach or improve the current therapeutic regimens.
Collapse
Affiliation(s)
- Y Taank
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - N Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
26
|
Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F, Rodrigues PM, Zhuravleva E, O'Rourke CJ, Hijona E, Jimenez-Agüero R, Riaño I, Landa A, La Casta A, Zaki MYW, Munoz-Garrido P, Azkargorta M, Elortza F, Vogel A, Schabbauer G, Aspichueta P, Andersen JB, Knapp S, Mann DA, Bujanda L, Banales JM, Perugorria MJ. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut 2021; 70:1345-1361. [PMID: 32907830 PMCID: PMC8223629 DOI: 10.1136/gutjnl-2019-319227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.
Collapse
Affiliation(s)
- Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Omar Sharif
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ana Landa
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Patricia Munoz-Garrido
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Mikel Azkargorta
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sylvia Knapp
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
| | - Jesus Maria Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maria Jesus Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell WK, Jonasch E, Johnson JE, Roth M, Beckermann KE, Rini BI, McKiernan J, Califano A, Drake CG. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 2021; 184:2988-3005.e16. [PMID: 34019793 PMCID: PMC8479759 DOI: 10.1016/j.cell.2021.04.038] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.
Collapse
MESH Headings
- Adult
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cohort Studies
- Female
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kidney/metabolism
- Kidney Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/pathology
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sequence Analysis, RNA/methods
- Single-Cell Analysis/methods
- Tumor Microenvironment
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/physiology
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Nivedita Chowdhury
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Casey Ager
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - David H Aggen
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | | | - Eric Jonasch
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Marc Roth
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Brian I Rini
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, HICC, New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; HICC, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY; Department of Biomedical Informatics, Columbia University, New York, NY, USA; Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, New York, NY, USA.
| | - Charles G Drake
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA.
| |
Collapse
|
28
|
Li C, Hou X, Yuan S, Zhang Y, Yuan W, Liu X, Li J, Wang Y, Guan Q, Zhou Y. High expression of TREM2 promotes EMT via the PI3K/AKT pathway in gastric cancer: bioinformatics analysis and experimental verification. J Cancer 2021; 12:3277-3290. [PMID: 33976737 PMCID: PMC8100818 DOI: 10.7150/jca.55077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Background: To date, the pathogenesis of gastric cancer (GC) remains unclear. We combined public database resources and bioinformatics analysis methods, explored some novel genes and verified the experiments to further understand the pathogenesis of GC and to provide a promising target for anti-tumor therapy. Methods: We downloaded the chip data related to GC from the Gene Expression Omnibus (GEO) database, extracted differentially expressed genes (DEGs), and then determined the key genes in the development of GC via PPI networks and model analysis. Functional annotation via GO and KEGG enrichment of DEGs was used to understand the latent roles of DEGs. The expression of the triggering receptor expressed on myeloid cells 2 (TREM2) gene in GC cell lines was verified via RT-PCR and western blotting. Moreover, the CCK-8, wound healing assay, and transwell migration and invasion assays were used to understand the changes in the proliferation, migration, and invasion abilities of GC cells after silencing TREM2. Western blotting verified the interaction between TREM2 and PI3K predict of the string website, as well as the effect of TREM2 on EMT. Finally, a lung metastasis model was used to explore the relationship between TREM2 and metastasis. Results: Our study identified 16 key genes, namely BGN, COL1A1, COL4A1, COL5A2, NOX4, SPARC, HEYL, SPP1, TIMP1, CTHRC1, TREM2, SFRP4, FBXO32, GPX3, KIF4A, and MMP9 genes associated with GC. The EMT-related pathway was the most significantly altered pathway. TREM2 expression was higher in GC cell lines and was remarkably associated with tumor invasion depth, TNM stage, histological grade, histological type, anatomic subdivision, and Helicobacter pylori state. Knockdown of TREM2 expression inhibited the proliferation, migration, and invasion of GC cells as well as the progression of EMT by PI3K/AKT signaling in vitro. In addition, lung metastasis were decreased in vivo. Conclusions: We identified some important genes associated with the progression of GC via public database analysis, explored and verified the effects of proto-oncogene TREM2 on EMT via the PI3K/AKT pathway. TREM2 may be a novel target in the GC therapy.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shuqiao Yuan
- Department of medical laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenzhen Yuan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoguang Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Rheumatology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Cheng X, Wang X, Nie K, Cheng L, Zhang Z, Hu Y, Peng W. Systematic Pan-Cancer Analysis Identifies TREM2 as an Immunological and Prognostic Biomarker. Front Immunol 2021; 12:646523. [PMID: 33679809 PMCID: PMC7925850 DOI: 10.3389/fimmu.2021.646523] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and a crucial signaling hub for multiple pathological pathways that mediate immunity. Although increasing evidence supports a vital role for TREM2 in tumorigenesis of some cancers, no systematic pan-cancer analysis of TREM2 is available. Thus, we aimed to explore the prognostic value, and investigate the potential immunological functions, of TREM2 across 33 cancer types. Based on datasets from The Cancer Genome Atlas, and the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and Human Protein Atlas, we employed an array of bioinformatics methods to explore the potential oncogenic roles of TREM2, including analyzing the relationship between TREM2 and prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and immune cell infiltration of different tumors. The results show that TREM2 is highly expressed in most cancers, but present at low levels in lung cancer. Further, TREM2 is positively or negatively associated with prognosis in different cancers. Additionally, TREM2 expression was associated with TMB and MSI in 12 cancer types, while in 20 types of cancer, there was a correlation between TREM2 expression and DNA methylation. Six tumors, including breast invasive carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney renal clear cell carcinoma, lung squamous cell carcinoma, skin cutaneous melanoma, and stomach adenocarcinoma, were screened out for further study, which demonstrated that TREM2 gene expression was negatively correlated with infiltration levels of most immune cells, but positively correlated with infiltration levels of M1 and M2 macrophages. Moreover, correlation with TREM2 expression differed according to T cell subtype. Our study reveals that TREM2 can function as a prognostic marker in various malignant tumors because of its role in tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Hu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Sun H, Feng J, Tang L. Function of TREM1 and TREM2 in Liver-Related Diseases. Cells 2020; 9:2626. [PMID: 33297569 PMCID: PMC7762355 DOI: 10.3390/cells9122626] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
TREM1 and TREM2 are members of the triggering receptors expressed on myeloid cells (TREM) family. Both TREM1 and TREM2 are immunoglobulin superfamily receptors. Their main function is to identify foreign antigens and toxic substances, thereby adjusting the inflammatory response. In the liver, TREM1 and TREM2 are expressed on non-parenchymal cells, such as liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, and cells which infiltrate the liver in response to injury including monocyte-derived macrophages and neutrophils. The function of TREM1 and TREM2 in inflammatory response depends on Toll-like receptor 4. TREM1 mainly augments inflammation during acute inflammation, while TREM2 mainly inhibits chronic inflammation to protect the liver from pathological changes. Chronic inflammation often induces metabolic abnormalities, fibrosis, and tumorigenesis. The above physiological changes lead to liver-related diseases, such as liver injury, nonalcoholic steatohepatitis, hepatic fibrosis, and hepatocellular carcinoma. Here, we review the function of TREM1 and TREM2 in different liver diseases based on inflammation, providing a more comprehensive perspective for the treatment of liver-related diseases.
Collapse
Affiliation(s)
- Huifang Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
31
|
Zhang Y, Wu Q, Zhong L, Wang L, Gong D. Echinacoside promotes the proliferation of human renal tubular epithelial cells by blocking the HBX/TREM2‑mediated NF‑κB signalling pathway. Mol Med Rep 2020; 22:1137-1144. [PMID: 32626964 PMCID: PMC7339676 DOI: 10.3892/mmr.2020.11201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus X (HBX) protein is required for the replication of HBV and plays a role in the progression of hepatitis in humans. However, the underlying function of HBX during HBV‑induced chronic glomerulonephritis (HBV‑GN) is unknown. Echinacoside (ECH) is a phenylethanoid glycoside from the Cistanche genus, which possesses strong antiapoptosis and neuroprotective activities. In the present study, the function of HBX and the relationship between HBX and ECH in human renal tubular epithelial cells (RTECs; HK‑2 cell line) were explored. Reverse transcription‑quantitative PCR and western blot analyses were used to quantify the mRNA and protein expression levels of HBX in HK‑2 cells, respectively. The Cell Counting Kit‑8 assay was performed to analyse cell proliferation. Flow cytometry analysis was used to determine the rate of apoptosis. HBX showed antiproliferative and proapoptotic effects in HK‑2 cells and was positively associated with triggering receptor expressed on myeloid cells 2 (TREM2) expression. Furthermore, ECH disrupted the function of HBX in HK‑2 cells, functioning as an HBX suppressor. Moreover, a specific NF‑κB inhibitor, PDTC, was used to further examine the relationship between HBX and NF‑κB. The results suggested that NF‑κB was involved in the HBX/TREM2 signaling pathway and negatively regulated TREM2 expression in RTECs. The present study provided novel insights into the function of HBX, and also indicated the potential value of ECH as a therapeutic agent for HBV‑GN.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Traditional Chinese Medicine, Yangpu District Kongjiang Hospital, Shanghai 200093, P.R. China
| | - Qinfang Wu
- Department of Paediatrics, Yangpu District Kongjiang Hospital, Shanghai 200093, P.R. China
| | - Limin Zhong
- Department of Pharmacy, Yangpu District Kongjiang Hospital, Shanghai 200093, P.R. China
| | - Lei Wang
- Department of Rehabilitation, Yangpu District Kongjiang Hospital, Shanghai 200093, P.R. China
| | - Dongwei Gong
- Department of Surgery, Yangpu District Kongjiang Hospital, Shanghai 200093, P.R. China
| |
Collapse
|
32
|
TREM-1 and TREM-2 Expression on Blood Monocytes Could Help Predict Survival in High-Grade Glioma Patients. Mediators Inflamm 2020; 2020:1798147. [PMID: 32684831 PMCID: PMC7350089 DOI: 10.1155/2020/1798147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Objective In recent years, the role of the modern inflammatory markers TREM-1 (triggering receptors expressed on myeloid cells) and HMGB1 (high mobility group box 1 protein) in tumorigenesis has begun to be studied. Their role in gliomas is not clear. The aim of our study was to find the role of inflammation in gliomas. Patients and Methods. In 63 adult patients with gliomas and 31 healthy controls, the expressions of TREM-1 and TREM-2 on CD14+ blood cells (method: flow cytometry) and the levels of soluble sTREM-1, HMGB1, IL-6, and IL-10 (Elisa tests) were analyzed. Results Cox proportional hazard analysis showed that a TREM-1/TREM-2 ratio was associated with reduced overall survival (HR = 1.001, P = 0.023). Patients with a TREM-1/TREM-2 ratio above 125 survived significantly shorter than patients with a TREM-1/TREM-2 ratio below 125. The percentage of CD14+ TREM-1+ cells was strongly associated with a plasma IL-6/IL-10 ratio (positively) and with IL-10 (negatively). Conversely, we found a higher percentage of CD14+ TREM-2+ monocytes in better surviving patients; these cells could downregulate the exaggerated inflammation and potentiate the phagocytosis in the tumor. The serum levels of HMGB1 negatively correlated with the percentage of CD14+ TREM-1+ cells and with the TREM-1/TREM-2 ratio. The positive correlation between the serum levels of a late proinflammatory cytokine HMGB1 with the percentage of TREM2+ CD14+ monocytes can be explained as an effort for suppression of systemic inflammation by anti-inflammatory acting CD14+ TREM-2+ cells. Conclusion We showed that the TREM-1/TREM-2 ratio (expression on the surface of blood monocytes) could help predict prognosis in patients with gliomas, especially in high-grade gliomas, and that systemic inflammation has an impact on the patient's overall survival. This is the first study that showed that TREM expression on monocytes in peripheral blood could help predict prognosis in patients with gliomas.
Collapse
|
33
|
Deczkowska A, Weiner A, Amit I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020; 181:1207-1217. [DOI: 10.1016/j.cell.2020.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
34
|
Rao CV, Asch AS, Carr DJJ, Yamada HY. "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease. Aging Cell 2020; 19:e13109. [PMID: 31981470 PMCID: PMC7059149 DOI: 10.1111/acel.13109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of cell cycle transitions. A CDK inhibitor, flavopiridol/alvocidib, is an FDA-approved drug for acute myeloid leukemia. Alzheimer's disease (AD) is another serious issue in contemporary medicine. The cause of AD remains elusive, although a critical role of latent amyloid-beta accumulation has emerged. Existing AD drug research and development targets include amyloid, amyloid metabolism/catabolism, tau, inflammation, cholesterol, the cholinergic system, and other neurotransmitters. However, none have been validated as therapeutically effective targets. Recent reports from AD-omics and preclinical animal models provided data supporting the long-standing notion that cell cycle progression and/or mitosis may be a valid target for AD prevention and/or therapy. This review will summarize the recent developments in AD research: (a) Mitotic re-entry, leading to the "amyloid-beta accumulation cycle," may be a prerequisite for amyloid-beta accumulation and AD pathology development; (b) AD-associated pathogens can cause cell cycle errors; (c) thirteen among 37 human AD genetic risk genes may be functionally involved in the cell cycle and/or mitosis; and (d) preclinical AD mouse models treated with CDK inhibitor showed improvements in cognitive/behavioral symptoms. If the "amyloid-beta accumulation cycle is an AD drug target" concept is proven, repurposing of cancer drugs may emerge as a new, fast-track approach for AD management in the clinic setting.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Adam S. Asch
- Stephenson Cancer CenterDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Daniel J. J. Carr
- Department of OphthalmologyUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| |
Collapse
|
35
|
Cheray M, Stratoulias V, Joseph B, Grabert K. The Rules of Engagement: Do Microglia Seal the Fate in the Inverse Relation of Glioma and Alzheimer's Disease? Front Cell Neurosci 2019; 13:522. [PMID: 31824268 PMCID: PMC6879422 DOI: 10.3389/fncel.2019.00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
Microglia, the immune cells of the brain, play a major role in the maintenance of brain homeostasis and constantly screen the brain environment to detect any infection or damage. Once activated by a stimulus, microglial cells initiate an immune response followed by the resolution of brain inflammation. A failure or deviation in the housekeeping function of these guardian cells can lead to multiple diseases, including brain cancer and neurodegenerative diseases such as Alzheimer's disease (AD). A small number of studies have investigated the causal relation of both diseases, thereby revealing an inverse relationship where cancer patients have a reduced risk to develop AD and vice versa. In this review, we aim to shed light on the role of microglia in the fate to develop specifically glioma as one type of cancer or AD. We will examine the common and/or opposing genetic predisposition as well as associated pathways of these diseases to unravel a possible involvement of microglia in the occurrence of either disease. Lastly, a set of guidelines will be proposed for future research and diagnostics to clarify and improve the knowledge on the role of microglia in the decision toward one pathology or another.
Collapse
Affiliation(s)
- Mathilde Cheray
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vassilis Stratoulias
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kathleen Grabert
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Wang Z, Chen N, Yang J, Wang Q, Li A. Microarray gene profiling analysis of glioblastoma cell line U87 reveals suppression of the FANCD2/Fanconi anemia pathway by the combination of Y15 and temozolomide. Arch Med Sci 2019; 15:1035-1046. [PMID: 31360198 PMCID: PMC6657253 DOI: 10.5114/aoms.2019.86063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION A recent study showed that a combination of Y15 (a FAK autophosphorylation inhibitor) with temozolomide (TMZ) treatment was effective in glioblastoma (GBM) therapy. In this study, we further investigated the pathways and genes that are differentially expressed in Y15 and TMZ treated U87 cells via bioinformatics analysis. MATERIAL AND METHODS The microarray gene profiling analysis screened out genes with differential expression in U87 cells treated with TMZ and Y15. Gene set enrichment analysis (GSEA) identified the key GO terms and KEGG pathways in TMZ + Y15 treated U87 cells. The functional partner genes of TMZ were predicted by the STICH database. FANCD2 expression in U87 cells was detected by qRT-PCR. MTT assay and colony formation assay were conducted for cell viability detection, and flow cytometry was performed for cell apoptosis detection. Western blot was conducted to determine the expression levels of the downstream proteins of the Fanconi anemia (FA) pathway, FAN1 and BRCA2. RESULTS The FA pathway was suppressed in U87 cells after treatment with TMZ and Y15. Genes involved in this pathway, including FANCD2, were also down-regulated. FANCD2 knockdown could restrain viability and promote apoptosis of U87 cells, as well as enhancing the inhibitory effect of TMZ + Y15 treatment. FANCD2 could regulate the FA pathway as the protein expression levels of FAN1 and BRCA2 were modulated by FANCD2. CONCLUSIONS The FA pathway and FANCD2 are down-regulated in U87 cells treated with TMZ and Y15. FANCD2 down-regulation by TMZ + Y15 treatment suppressed growth of U87 cells through inhibiting the FA pathway.
Collapse
Affiliation(s)
- Zichuan Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Nan Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Jin Yang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Qingzhong Wang
- Department of Neurosurgery, People’s Hospital of Guanyun County, Jiangsu, China
| | - Aimin Li
- Department of Neurosurgery, First People’s Hospital of Lianyungang, Jiangsu, China
| |
Collapse
|
37
|
Schramm HM. The Epithelial-Myeloid-Transition (EMyeT) of cancer cells as a wrongly perceived primary inflammatory process eventually progressing to a bone remodeling malignancy: the alternative pathway for Epithelial- Mesenchymal-Transition hypothesis (EMT)? J Cancer 2019; 10:3798-3809. [PMID: 31333797 PMCID: PMC6636288 DOI: 10.7150/jca.31364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells express multiple markers expressed by mesenchymal as well as myeloid cells in common and in addition specific markers of the myeloid lineages, especially those of dendritic cells, macrophages and preosteoclasts. It has also been possible to identify monocyte-macrophage gene clusters in cancer cell specimens as well as in cancer cell lines. Accordingly, like myeloid cells cancer cells often express pro-inflammatory cytokines, and consequently the carcinoma may be perceived by the organism as a primary inflammatory process comparable to the immune inflammatory reactions in the eye or in the case of arthritis. This would explain why a carcinoma may induce a certain alarm state in the organism by increasing a fatal sympathetic tone in the patient, supplying the carcinomas with nutrients at the cost of other requirements, inducing tolerance against the cancer cells mistaken as myeloid cells, provoking fibrosis and neoangiogenesis, and increasing inflammatory cells at the carcinoma site. This seemingly inflammatory process of Epithelial-Myeloid-Transition (EMyeT) is superimposed by the progression of part of the myeloid cancer cells to stages comparable to preosteoclasts and osteoclasts, and their development to metastasizing carcinomas often at the site of bone. This concept of carcinogenesis and malignant progression described here challenges the widely accepted EMT-hypotheses and could deliver the rationale for the various peculiar aspects of cancer and the variety of therapeutic antitumoral measures.
Collapse
Affiliation(s)
- Henning M Schramm
- Institute for Integral Cancer Research (IFIK), CH-4144 Arlesheim/Switzerland
| |
Collapse
|
38
|
Robles Bayón A, Gude Sampedro F. New evidence of the relative protective effects of neurodegenerative diseases and cancer against each other. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
39
|
Yin AA, He YL, Etcheverry A, Liu YH, Aubry M, Barnholtz-Sloan J, Liu BL, Mosser J, Lu ZF, Zhang X. Novel predictive epigenetic signature for temozolomide in non-G-CIMP glioblastomas. Clin Epigenetics 2019; 11:76. [PMID: 31088577 PMCID: PMC6515684 DOI: 10.1186/s13148-019-0670-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022] Open
Abstract
Objective To identify novel epigenetic signatures that could provide predictive information that is complementary to promoter methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) gene for predicting temozolomide (TMZ) response, among glioblastomas (GBMs) without glioma-CpGs island methylator phenotype (G-CIMP) Methods Different cohorts of primary non-G-CIMP GBMs with genome-wide DNA methylation microarray data were included for discovery and validation of a multimarker signature, combined using a RISK score model. Different statistical analyses and functional experiments were performed for clinical and biological validation. Results By employing discovery cohorts with radiotherapy (RT) and TMZ versus RT alone and a strict multistep selection strategy, we identified seven CpGs, each of which was significantly correlated with overall survival (OS) of non-G-CIMP GBMs with RT/TMZ, independent of age, MGMT promoter methylation status, and other identified CpGs. A RISK score signature of the 7 CpGs was developed and validated to distinguish non-G-CIMP GBMs with differential survival outcomes to RT/TMZ, but not to RT alone. The interaction analyses also showed differential outcomes to RT/TMZ versus RT alone within the RISK score-based subgroups. The signature could also improve the risk classification by age and MGMT promoter methylation status. Functional experiments showed that HSBP2 appeared to be epigenetically regulated by one identified CpG and was associated with TMZ resistance, but it was not associated with cell proliferation or apoptosis in GBM cell lines. The predictive value of the single CpG methylation of HSBP2 by pyrosequencing was observed in a local cohort of isocitrate dehydrogenase 1 (IDH1) R132H wild-type GBMs. Conclusions This novel epigenetic signature might be a promising predictive (but not a general prognostic) biomarker and be helpful for refining the MGMT-based guiding approach to TMZ usage in non-G-CIMP GBMs. Electronic supplementary material The online version of this article (10.1186/s13148-019-0670-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- An-An Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, West Road, No. 169 Xi'an, Changle, 710032, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi Province, China.,Department of Neurosurgery, the 960th Hospital of the People's Liberation Army, Taian, Shandong Province, China
| | - Ya-Long He
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, West Road, No. 169 Xi'an, Changle, 710032, Shaanxi Province, China
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), 35043, Rennes, France.,UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, 35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, 35033, Rennes, France
| | - Yu-He Liu
- Department of Neurosurgery, the 960th Hospital of the People's Liberation Army, Taian, Shandong Province, China
| | - Marc Aubry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), 35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, 35033, Rennes, France
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Bo-Lin Liu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), 35043, Rennes, France.,UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, 35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, 35033, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes 1, 35043, Rennes, France
| | - Zi-Fan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi Province, China.
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, West Road, No. 169 Xi'an, Changle, 710032, Shaanxi Province, China.
| |
Collapse
|
40
|
TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogenesis 2019; 8:9. [PMID: 30683932 PMCID: PMC6350080 DOI: 10.1038/s41389-018-0115-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in nonmalignant pathological processes. However, TREM2’s function in malignant diseases, especially in hepatocellular carcinoma (HCC) remains unknown. In the present study, we report that TREM2 is a novel tumor suppressor in HCC. TREM2 expression was obviously decreased in hepatoma cells (especially metastatic HCC cells), and in most human HCC tissues (especially extrahepatic metastatic tumors). Reduced tumor TREM2 expression was correlated with poor prognosis of HCC patients, and with aggressive pathological features (BCLC stage, tumor size, tumor encapsulation, vascular invasion, and tumor differentiation). TREM2 knockdown substantially promoted cell growth, migration, and invasion in vitro and in vivo, while TREM2 overexpression produced the opposite effect. TREM2 suppressed HCC metastasis by inhibiting epithelial-mesenchymal transition, accompanied by abnormal expression of epithelial and mesenchymal markers. Further study revealed that downregulation of TREM2 in HCC was regulated by miR-31-5p. Moreover, by directly interacting with β-catenin, TREM2 attenuated oncogenic and metastatic behaviors by inhibiting Akt and GSK3β phosphorylation, and activating β-catenin. TREM2 suppressed carcinogenesis and metastasis in HCC by targeting the PI3K/Akt/β-catenin pathway. Thus, we propose that TREM2 may be a candidate prognostic biomarker in malignant diseases and TREM2 restoration might be a prospective strategy for HCC therapy.
Collapse
|
41
|
Abstract
Background: Cancer mortality and Alzheimer’s disease (AD) mortality increase with age, but some studies have shown an inverse relationship of the two diseases, that is, older persons with cancer have a reduced risk of AD and vice versa. However, other analyses suggest that AD and brain tumor might be positively correlated. Objective: In the current study, we wished to determine the relationship of AD mortality to malignant brain tumor mortality in US states and counties. Methods: Data and maps of malignant brain tumor mortality and Alzheimer’s disease mortality (1999–2016) are from the CDC Wonder tool (https://wonder.cdc.gov/cmf-icd10.html). Data on malignant brain tumor types and their frequencies are from the Surveillance, Epidemiology, and End Results Program (SEER, https://seer.cancer.gov). Data on the genetics of lower grade glioma are from the TCGA Lower Grade Glioma (LGG) dataset in TCGA (The Cancer Genome Atlas). Results: SEER data indicate that astrocytomas make up 58.2% of malignant brain tumors in patients 65 and older; glioblastoma and anaplastic astrocytoma make up 41.6%. We found a significant positive correlation between AD mortality rate and malignant brain tumor mortality rate 1999–2016 in persons age 65 and older in A) 1,101 US counties, p < 0.001 and B) 50 US states, p < 0.001. Conclusion: Adult malignant brain tumors may share some environmental risks with AD. Malignant brain tumors and AD also have some genes in common: TREM2, SPI1, CD33, and INPP5D. The interaction of environment and genetics is complex and overlaps in malignant brain tumors and AD.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
42
|
Zeng L, Yang C, Ming Y, Luo S, Chen L. Bioinformatics Analysis Reveals Potential Candidate Genes for Different Glioma Subtypes (Astrocytoma, Ependymoma, and Oligodendroglioma). Cancer Biother Radiopharm 2018. [DOI: 10.1089/cbr.2018.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liangnan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changmei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shihong Luo
- Department of Neurosurgery, Hospital of Stomatology Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
43
|
Ye Y, Song Y, Zhuang J, Wang G, Ni J, Xia W. Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. J Cell Physiol 2018; 234:1880-1888. [PMID: 30067868 DOI: 10.1002/jcp.27063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Echinacoside (ECH) is a phenylethanoid glycoside extracted from a Chinese herbal medicine, Cistanches salsa. ECH possesses many biological properties, including anti-inflammation, neural protection, liver protection, and antitumor. In the current study, we aimed to explore the effects of ECH on hepatocellular carcinoma (HCC) and the underlying mechanisms. The results showed that ECH could attenuate diethylnitrosamine (DEN)-induced HCC in mice, and exerted antiproliferative and proapoptotic functions on HepG2 HCC cell line. ECH exposure in HepG2 cells dose-dependently reduced the phosphorylation of AKT (p-AKT) and enhanced the expression of p21 (a cell cycle inhibitor) and Bax (a proapoptotic protein). Furthermore, ECH significantly suppressed insulin-like growth factor-1-induced p-AKT and cell proliferation. These data indicated that phosphoinositide 3-kinase (PI3K)/AKT signaling was involved in the anti-HCC activity of ECH. Gene set enrichment analysis results revealed a positive correlation between the PI3K pathway and triggering receptors expressed on myeloid cells 2 (TREM2) expression in HCC tissues. ECH exposure significantly decreased TREM2 protein levels in HepG2 cells and DEN-induced HCC. Furthermore, ECH-mediated proliferation inhibition and AKT signaling inactivation were notably attenuated by TREM2 overexpression. In conclusion, ECH exerted its antitumor activity via decreasing TREM2 expression and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, Janus P, Łasut B, Rusin M. The Alzheimer's disease-associated TREM2 gene is regulated by p53 tumor suppressor protein. Neurosci Lett 2018; 681:62-67. [PMID: 29842899 DOI: 10.1016/j.neulet.2018.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/27/2022]
Abstract
TREM2 mutations evoke neurodegenerative disorders, and recently genetic variants of this gene were correlated to increased risk of Alzheimer's disease. The signaling cascade originating from the TREM2 membrane receptor includes its binding partner TYROBP, BLNK adapter protein, and SYK kinase, which can be activated by p53. Moreover, in silico identification of a putative p53 response element (RE) at the TREM2 promoter led us to hypothesize that TREM2 and other pathway elements may be regulated in p53-dependent manner. To stimulate p53 in synergistic fashion, we exposed A549 lung cancer cells to actinomycin D and nutlin-3a (A + N). In these cells, exposure to A + N triggered expression of TREM2, TYROBP, SYK and BLNK in p53-dependent manner. TREM2 was also activated by A + N in U-2 OS osteosarcoma and A375 melanoma cell lines. Interestingly, nutlin-3a, a specific activator of p53, acting alone stimulated TREM2 in U-2 OS cells. Using in vitro mutagenesis, chromatin immunoprecipitation, and luciferase reporter assays, we confirmed the presence of the p53 RE in TREM2 promoter. Furthermore, activation of TREM2 and TYROBP by p53 was strongly inhibited by CHIR-98014, a potent and specific inhibitor of glycogen synthase kinase-3 (GSK-3). We conclude that TREM2 is a direct p53-target gene, and that activation of TREM2 by A + N or nutlin-3a may be critically dependent on GSK-3 function.
Collapse
Affiliation(s)
- Artur Zajkowicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Patryk Janus
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Barbara Łasut
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland.
| |
Collapse
|
45
|
Li C, Zhao B, Lin C, Gong Z, An X. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018; 43:360-372. [PMID: 29663649 PMCID: PMC7379930 DOI: 10.1002/cbin.10975] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the effects of triggering receptor expressed on myeloid cell‐2 (TREM2) on the production of pro‐inflammatory mediators and cytokines induced by lipopolysaccharide (LPS) in BV2 microglia. TREM2 expression or TREM2‐specific siRNA were used to induce TREM2 overexpression or silencing. The BV2 cells were pre‐treated with the PI3 K inhibitor of LY294002 for 1 h and stimulated with LPS for 24 h. Then, the cell viability, apoptosis, phagocytosis, nitric oxide (NO), lactate dehydrogenase (LDH), and cytokine production, as well as the activation of AKT and NF‐kB were determined, respectively. We found LPS stimulation significantly reduced BV2 cell viability, enhanced BV2 cell phagocytosis and apoptosis compared to the control groups. In addition, LPS stimulation significantly increased the production of NO, LDH, TNF‐α, IL‐1β, and the activation of AKT and NF‐kB, while decreased the levels of IL‐10 and TGF‐β1. However, these pro‐inflammatory effects were significantly attenuated by TREM2 overexpression or pre‐treatment with LY294002, while enhanced by TREM2 silencing. Thus, we concluded that TREM2 inhibited neuroinflammation by down‐regulating PI3 K/AKT and NF‐kB signaling in BV2 microglia. Above all, therapeutic enhanced TREM2 expression may be a new strategy for intervention of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Caixia Li
- Department of Anesthesiology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouP. R. China
- Department of Anesthesiology, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuP. R. China
| | - Bing Zhao
- Department of Anesthesiology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouP. R. China
| | - Caizhao Lin
- Department of Anesthesiology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouP. R. China
| | - Zhiping Gong
- Department of Anesthesiology, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuP. R. China
| | - Xiaoxia An
- Department of Anesthesiology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouP. R. China
| |
Collapse
|
46
|
Liu Q, Wang XY, Qin YY, Yan XL, Chen HM, Huang QD, Chen JK, Zheng JM. SPOCD1 promotes the proliferation and metastasis of glioma cells by up-regulating PTX3. Am J Cancer Res 2018; 8:624-635. [PMID: 29736308 PMCID: PMC5934553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/12/2018] [Indexed: 06/08/2023] Open
Abstract
Gliomas are the most prevalent type of primary brain tumors in adults, accounting for more than 40% of neoplasms in the central nervous system. The spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) has been recently identified and found to discriminate progressive from non-progressive bladder cancers. In this study, we detected high-level of SPOCD1 expression in glioma and its high expression significantly associated with advanced tumor grade and poor prognosis. In vitro assays showed that knockdown of SPOCD1 significantly inhibited cell proliferation and colony formation capacities in U373 and U87 cells. In a xenograft model of glioma, SPOCD1 was also found to inhibit tumor growth. In addition, knockdown of SPOCD1 was shown to inhibit cell migration and invasion in glioma U373 and U87 cells. SPOCD1 positively regulated the expression of Pentraxin 3 (PTX3), whereas overexpression of PTX3 attenuated SPOCD1 knockdown-mediated inhibition of cell proliferation, migration and invasion in glioma cells. Our observations suggest that SPOCD1 promotes the proliferation and metastasis of glioma cells through regulating PTX3. Our data might provide novel evidence for the diagnosis and treatment of glioma in clinic.
Collapse
Affiliation(s)
- Quan Liu
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| | - Xiao-Yu Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Yuan-Yuan Qin
- Department of Anesthesiology, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| | - Xian-Lei Yan
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| | - Hong-Mou Chen
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| | - Qi-Dan Huang
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| | - Jia-Kang Chen
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| | - Jie-Min Zheng
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical UniversityLiuzhou 545005, Guangxi, China
| |
Collapse
|
47
|
Zhang X, Wang W, Li P, Wang X, Ni K. High TREM2 expression correlates with poor prognosis in gastric cancer. Hum Pathol 2018; 72:91-99. [DOI: 10.1016/j.humpath.2017.10.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
|
48
|
siRNA Library Screening Identifies a Druggable Immune-Signature Driving Esophageal Adenocarcinoma Cell Growth. Cell Mol Gastroenterol Hepatol 2018; 5:569-590. [PMID: 29930979 PMCID: PMC6009761 DOI: 10.1016/j.jcmgh.2018.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Effective therapeutic approaches are urgently required to tackle the alarmingly poor survival outcomes in esophageal adenocarcinoma (EAC) patients. EAC originates from within the intestinal-type metaplasia, Barrett's esophagus, a condition arising on a background of gastroesophageal reflux disease and associated inflammation. METHODS This study used a druggable genome small interfering RNA (siRNA) screening library of 6022 siRNAs in conjunction with bioinformatics platforms, genomic studies of EAC tissues, somatic variation data of EAC from The Cancer Genome Atlas data of EAC, and pathologic and functional studies to define novel EAC-associated, and targetable, immune factors. RESULTS By using a druggable genome library we defined genes that sustain EAC cell growth, which included an unexpected immunologic signature. Integrating Cancer Genome Atlas data with druggable siRNA targets showed a striking concordance and an EAC-specific gene amplification event associated with 7 druggable targets co-encoded at Chr6p21.1. Over-representation of immune pathway-associated genes supporting EAC cell growth included leukemia inhibitory factor, complement component 1, q subcomponent A chain (C1QA), and triggering receptor expressed on myeloid cells 2 (TREM2), which were validated further as targets sharing downstream signaling pathways through genomic and pathologic studies. Finally, targeting the triggering receptor expressed on myeloid cells 2-, C1q-, and leukemia inhibitory factor-activated signaling pathways (TYROBP-spleen tyrosine kinase and JAK-STAT3) with spleen tyrosine kinase and Janus-activated kinase inhibitor fostamatinib R788 triggered EAC cell death, growth arrest, and reduced tumor burden in NOD scid gamma mice. CONCLUSIONS These data highlight a subset of genes co-identified through siRNA targeting and genomic studies of expression and somatic variation, specifically highlighting the contribution that immune-related factors play in support of EAC development and suggesting their suitability as targets in the treatment of EAC.
Collapse
Key Words
- ATCC, American Type Culture Collection
- BE, Barrett’s esophagus
- Barrett’s Esophagus
- EAC, esophageal adenocarcinoma
- ERBB2, erb-b2 receptor tyrosine kinase 2
- ESCC, esophageal squamous cell carcinoma
- Esophageal Adenocarcinoma
- FCS, fetal calf serum
- GEM, gene expression microarray
- GERD, gastroesophageal reflux disease
- GO, gene ontology
- HGD, high-grade dysplastic
- IL, interleukin
- Inflammation
- JAK-STAT, Janus kinase/signal transducer-and-activator of transcription
- LIF, leukemia inhibitory factor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, phosphate-buffered saline
- RA, rheumatoid arthritis
- SV, somatic variation
- SYK, spleen tyrosine kinase
- TCGA, The Cancer Genome Atlas
- TREM2, triggering receptor expressed on myeloid cells 2
- Therapeutic Targets
- VEGFA, vascular endothelial growth factor A
- mRNA, messenger RNA
- siRNA, small interfering RNA
Collapse
|
49
|
Zagradišnik B, Krgović D, Herodež ŠS, Zagorac A, Ćižmarević B, Vokač NK. Identification of genomic copy number variations associated with specific clinical features of head and neck cancer. Mol Cytogenet 2018; 11:5. [PMID: 29371888 PMCID: PMC5769503 DOI: 10.1186/s13039-018-0354-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Background Copy number variations (CNSs) of large genomic regions are an important mechanism implicated in the development of head and neck cancer, however, for most changes their exact role is not well understood. The aim of this study was to find possible associations between gains/losses of genomic regions and clinically distinct subgroups of head and neck cancer patients. Results Array comparative genomic hybridization (aCGH) analysis was performed on DNA samples in 64 patients with cancer in oral cavity, oropharynx or hypopharynx. Overlapping genomic regions created from gains and losses were used for statistical analysis. Following regions were overrepresented: in tumors with stage I or II a gain of 2.98 Mb on 6p21.2-p11 and a gain of 7.4 Mb on 8q11.1-q11.23; in tumors with grade I histology a gain of 1.1 Mb on 8q24.13, a loss of a large part of p arm of chromosome 3, a loss of a 1.24 Mb on 6q14.3, and a loss of terminal 32 Mb region of 8p23.3; in cases with affected lymph nodes a gain of 0.75 Mb on 3q24, and a gain of 0.9 Mb on 3q26.32-q26.33; in cases with unaffected lymph nodes a gain of 1.1 Mb on 8q23.3, in patients not treated with surgery a gain of 12.2 Mb on 7q21.3-q22.3 and a gain of 0.33 Mb on 20q11.22. Conclusions Our study identified several genomic regions of interest which appear to be associated with various clinically distinct subgroups of head and neck cancer. They represent a potentially important source of biomarkers useful for the clinical management of head and neck cancer. In particular, the PIK3CA and AGTR1 genes could be singled out to predict the lymph node involvement.
Collapse
Affiliation(s)
- Boris Zagradišnik
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Danijela Krgović
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Špela Stangler Herodež
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Andreja Zagorac
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Bogdan Ćižmarević
- 2Department of Otorhinolaryngology, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Nadja Kokalj Vokač
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| |
Collapse
|
50
|
Mao XY, Tokay T, Zhou HH, Jin WL. Long-range and short-range tumor-stroma networks synergistically contribute to tumor-associated epilepsy. Oncotarget 2017; 7:33451-60. [PMID: 26967053 PMCID: PMC5078109 DOI: 10.18632/oncotarget.7962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
Epileptic seizures are frequently caused by brain tumors. Traditional anti-epileptic treatments do not acquire satisfactory responses. Preoperative and postoperative seizures seriously influence the quality of life of patients. Thus, tumor-associated epilepsy (TAE) is an important subject of the current research. The delineation of the etiology of epileptogenesis in patients with primary brain tumor may help to find the novel and effective drug targets for treating this disease. In this review, we describe the current status of treatment of TAE. More importantly, we focus on the factors that are involved in the functional connectivity between tumors and stromal cells. We propose that there exist two modes, namely, long-range and short-range modes, which likely trigger neuronal hyperexcitation and subsequent epileptic seizures. The long-range mode is referred to as factors released by tumors including glutamate and GABA, binding to the corresponding receptor on the cellular membrane and causing neuronal hyperactivity, while the short-range mode is considered to involve direct intracellular communication between tumor cells and stromas. Gap junctions and tunneling nanotube network are involved in cellular interconnections. Future investigations focused on those two modes may find a potential novel therapeutic target for treating TAE.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Tursonjan Tokay
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|