1
|
Hossenipour Khodaei S, Sabetnam S, Nozad Charoudeh H, Dizaji Asl K, Rafat A, Mazloumi Z. The effect of mitochondria inhibition on natural killer cells cytotoxicity in triple-negative breast cancer cells. Eur J Pharmacol 2023; 960:176106. [PMID: 37839666 DOI: 10.1016/j.ejphar.2023.176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Triple-Negative Breast Cancer (TNBC), the most common invasive breast cancer, depicts cancer poor response to conventional therapies. The clinical management of TNBC is a challenging issue. Natural killer (NK) cell therapy in the field of cancer treatment is rapidly growing however, regarding the immunogenicity of breast cancer cells, this type of therapy has shown limited efficacy. Recently, targeting tumor biomarkers has revolutionized the field of cancer therapy. Mitochondria affects apoptosis and innate immunity. Therefore, in this study, mitochondria were inhibited with Tigecycline in stimulating the cytotoxicity of NK cells against TNBC cell lines. MDA-MB-468 and MDA-MB-231 were cultured and treated with IC50 (the half-maximal inhibitory concentration) level of Tigecycline for 48 h and afterward co-cultured with peripheral blood NK cells for 5 h. Lastly, the inhibitory effects of mitochondria on the cytotoxicity of NK cells and apoptosis of TNBC cells were evaluated. Moreover, the expression of apoptotic-related genes was studied. The results showed that mitochondria inhibition increased NK cells cytotoxicity against TNBC cells. Moreover, NK cell/mitochondria inhibition in a combinative form improved apoptosis in TNBC cells by the upregulation of Bad and Bid expression. In conclusion, Tigecycline inhibited mitochondria and sensitized TNBC cells to NK cell therapy. Therefore, mitochondria inhibition could help NK cells function properly.
Collapse
Affiliation(s)
- Sepide Hossenipour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Turkey
| | - Shahbaz Sabetnam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Mersin 10, Kyrenia, Turkey; Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | | | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Koch DT, Yu H, Beirith I, Schirren M, Drefs M, Liu Y, Knoblauch M, Koliogiannis D, Sheng W, De Toni EN, Bazhin AV, Renz BW, Guba MO, Werner J, Ilmer M. Tigecycline causes loss of cell viability mediated by mitochondrial OXPHOS and RAC1 in hepatocellular carcinoma cells. J Transl Med 2023; 21:876. [PMID: 38041179 PMCID: PMC10693093 DOI: 10.1186/s12967-023-04615-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/11/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. METHODS Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. RESULTS Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. CONCLUSION Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment.
Collapse
Affiliation(s)
- Dominik T Koch
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Haochen Yu
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Iris Beirith
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Malte Schirren
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Moritz Drefs
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yunfei Liu
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mathilda Knoblauch
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dionysios Koliogiannis
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Enrico N De Toni
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Internal Medicine II, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Markus O Guba
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany.
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
| |
Collapse
|
3
|
Ulusan M, Bireller S, Ertugrul B, Kasarci G, Atas MN, Aydemir L, Ergen A, Cakmakoglu B. What if amoxicillin/clavulanic acid reduces the cisplatin anticancer impact on oral cancer treatment? JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101502. [PMID: 37192700 DOI: 10.1016/j.jormas.2023.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Antibiotics-chemotherapeutics combination have become on the table for many cancer treatments. For this reason, we thought that further progress and development of studies to support chemotherapeutic approaches with the use of antibiotics may be beneficial in the clinical field. Cell lines (SCC-15, HTB-41, and MRC-5) were treated with 5-100 μM/ml concentrations of cisplatin (cisp) and amoxicillin/clavulanic acid (amx/cla) with combination (amx/cla-cisp) and alone in three different incubation periods. The all-cells viability was examined with WST-1 and apoptotic activity of the drugs were investigated via cell death ELISA assay kit. The cytotoxic impact of the 100 μM amx/cla-cisp combination was found to be reduced by up to 21.8%, which was significant given that the cytotoxic effect of only cisplatin therapy was 86.1%. Because our findings demonstrated that solo amx/cla therapy have almost no impact on proliferation or death, we focused on the amx/cla-cisp combination effect. It was found that the amx/cla-cisp combination has reduced the apoptotic fragment when comparing with the solely cisp-treated cells. Due to amx/cla-cisp combination on both cells but significantly on SCC-15 recovered the sole cisplatin effect, we believe that there might be a second thought when prescribing antibiotics while treating cancer patients. Not only the antibiotic's type but also the cancer type might interact to lessen the chemotherapeutic agent's impact which is clinically a dilemma to focus on.
Collapse
Affiliation(s)
- Murat Ulusan
- Department of Otolaryngology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sinem Bireller
- Department of Biochemistry, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Baris Ertugrul
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Goksu Kasarci
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Merve Nur Atas
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Levent Aydemir
- Department of Otolaryngology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Bedia Cakmakoglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
4
|
Li J, Qin Y, Zhao C, Zhang Z, Zhou Z. Tetracycline antibiotics: Potential anticancer drugs. Eur J Pharmacol 2023; 956:175949. [PMID: 37541377 DOI: 10.1016/j.ejphar.2023.175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.
Collapse
Affiliation(s)
- Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; College of Pharmacy, Nankai University, China
| | - Chenhao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
5
|
Liu W, Ji Y, Wang F, Li C, Shi S, Liu R, Li Q, Guo L, Liu Y, Cui H. Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition. BMC Cancer 2023; 23:602. [PMID: 37386395 DOI: 10.1186/s12885-023-11080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The discovery of new anti-melanoma drugs with low side effect is urgently required in the clinic. Recent studies showed that morusin, a flavonoid compound isolated from the root bark of Morus Alba, has the potential to treat multiple types of cancers, including breast cancer, gastric cancer, and prostate cancer. However, the anti-cancer effect of morusin on melanoma cells has not been investigated. METHODS We analyzed the effects of morusin on the proliferation, cell cycle, apoptosis, cell migration and invasion ability of melanoma cells A375 and MV3, and further explored the effects of morusin on tumor formation of melanoma cell. Finally, the effects of morusin on the proliferation, cycle, apoptosis, migration and invasion of A375 cells after knockdown of p53 were detected. RESULTS Morusin effectively inhibits the proliferation of melanoma cells and induces cell cycle arrest in the G2/M phase. Consistently, CyclinB1 and CDK1 that involved in the G2/M phase transition were down-regulated upon morusin treatment, which may be caused by the up-regulation of p53 and p21. In addition, morusin induces cell apoptosis and inhibits migration of melanoma cells, which correlated with the changes in the expression of the associated molecules including PARP, Caspase3, E-Cadherin and Vimentin. Moreover, morusin inhibits tumor growth in vivo with little side effect on the tumor-burden mice. Finally, p53 knockdown partially reversed morusin-mediated cell proliferation inhibition, cell cycle arrest, apoptosis, and metastasis. CONCLUSION Collectively, our study expanded the spectrum of the anti-cancer activity of morusin and guaranteed the clinical use of the drug for melanoma treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China.
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China.
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Rok J, Kowalska J, Rzepka Z, Stencel D, Skorek A, Banach K, Wrześniok D. The Assessment of Anti-Melanoma Potential of Tigecycline-Cellular and Molecular Studies of Cell Proliferation, Apoptosis and Autophagy on Amelanotic and Melanotic Melanoma Cells. Cells 2023; 12:1564. [PMID: 37371034 DOI: 10.3390/cells12121564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
High mortality, aggressiveness, and the relatively low effectiveness of therapy make melanoma the most dangerous of skin cancers. Previously published studies presented the promising therapeutic potential of minocycline, doxycycline, and chlortetracycline on melanoma cells. This study aimed to assess the cytotoxicity of tigecycline, a third-generation tetracycline, on melanotic (COLO 829) and amelanotic (A375) melanoma cell lines. The obtained results showed that tigecycline, proportionally to the concentration and incubation time, efficiently inhibited proliferation of both types of melanoma cells. The effect was accompanied by the dysregulation of the cell cycle, the depolarization of the mitochondrial membrane, and a decrease in the reduced thiols and the levels of MITF and p44/42 MAPK. However, the ability to induce apoptosis was only found in COLO 829 melanoma cells. A375 cells appeared to be more resistant to the treatment with tigecycline. The drug did not induce apoptosis but caused an increase in LC3A/B protein levels-an autophagy marker. The observed differences in drug action on the tested cell lines also involved an increase in p21 and p16 protein levels in melanotic melanoma, which was related to cell cycle arrest in the G1/G0 phase. The greater sensitivity of melanotic melanoma cells to the action of tigecycline suggests the possibility of considering the use of the drug in targeted therapy.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dominika Stencel
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Anna Skorek
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Ruiz-Malagón AJ, Hidalgo-García L, Rodríguez-Sojo MJ, Molina-Tijeras JA, García F, Diez-Echave P, Vezza T, Becerra P, Marchal JA, Redondo-Cerezo E, Hausmann M, Rogler G, Garrido-Mesa J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother 2023; 163:114760. [PMID: 37119741 DOI: 10.1016/j.biopha.2023.114760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND and Purpose: Colorectal cancer (CRC) is one of the cancers with the highest incidence in which APC gene mutations occur in almost 80% of patients. This mutation leads to β-catenin aberrant accumulation and an uncontrolled proliferation. Apoptosis evasion, changes in the immune response and microbiota composition are also events that arise in CRC. Tetracyclines are drugs with proven antibiotic and immunomodulatory properties that have shown cytotoxic activity against different tumor cell lines. EXPERIMENTAL APPROACH The effect of tigecycline was evaluated in vitro in HCT116 cells and in vivo in a colitis-associated colorectal cancer (CAC) murine model. 5-fluorouracil was assayed as positive control in both studies. KEY RESULTS Tigecycline showed an antiproliferative activity targeting the Wnt/β-catenin pathway and downregulating STAT3. Moreover, tigecycline induced apoptosis through extrinsic, intrinsic and endoplasmic reticulum pathways converging on an increase of CASP7 levels. Furthermore, tigecycline modulated the immune response in CAC, reducing the cancer-associated inflammation through downregulation of cytokines expression. Additionally, tigecycline favored the cytotoxic activity of cytotoxic T lymphocytes (CTLs), one of the main immune defenses against tumor cells. Lastly, the antibiotic reestablished the gut dysbiosis in CAC mice increasing the abundance of bacterial genera and species, such as Akkermansia and Parabacteroides distasonis, that act as protectors against tumor development. These findings resulted in a reduction of the number of tumors and an amelioration of the tumorigenesis process in CAC. CONCLUSION AND IMPLICATIONS Tigecycline exerts a beneficial effect against CRC supporting the use of this antibiotic for the treatment of this disease.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain; Ciber de Enfermedades Infecciosas, CiberInfecc, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - Eduardo Redondo-Cerezo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Aparato Digestivo. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - José Garrido-Mesa
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
9
|
Yu J, Yin Y, Yu Y, Cheng M, Zhang S, Jiang S, Dong M. Effect of concomitant antibiotics use on patient outcomes and adverse effects in patients treated with ICIs. Immunopharmacol Immunotoxicol 2022; 45:386-394. [PMID: 36382735 DOI: 10.1080/08923973.2022.2145966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiuhang Yu
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yichuang Yin
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
10
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
11
|
Elgazzar D, Aboubakr M, Bayoumi H, Ibrahim AN, Sorour SM, El-Hewaity M, Elsayed AM, Shehata SA, Bayoumi KA, Alsieni M, Behery M, Abdelrahaman D, Ibrahim SF, Abdeen A. Tigecycline and Gentamicin-Combined Treatment Enhances Renal Damage: Oxidative Stress, Inflammatory Reaction, and Apoptosis Interplay. Pharmaceuticals (Basel) 2022; 15:ph15060736. [PMID: 35745655 PMCID: PMC9228782 DOI: 10.3390/ph15060736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), TG14 (tigecycline, 14 mg/kg), GM (gentamicin, 80 mg/kg), TG7+GM, and TG14+GM groups. The combination of TG and GM evoked renal damage seen by the disruption of kidney function tests. The perturbation of renal tissue was mainly confounded to the TG and GM-induced oxidative damage, which was exhibited by marked increases in renal MDA (malondialdehyde) along with a drastic reduction in GSH (reduced-glutathione) content and CAT (catalase) activity compared to their individual treatments. More obvious apoptotic events and inflammation were also revealed by elevating the annexin-V and interleukin-6 (IL-6) levels, aside from the upregulation of renal PCNA (proliferating cell nuclear antigen) expression in the TG and GM concurrent treatment. The principal component analysis indicated that creatinine, urea, annexin-V, IL-6, and MDA all played a role in discriminating the TG and GM combined toxicity. Oxidative stress, inflammatory response, and apoptosis were the key mechanisms involved in this potentiated toxicity.
Collapse
Affiliation(s)
- Dina Elgazzar
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (D.E.); (A.A.)
| | - Mohamed Aboubakr
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Heba Bayoumi
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Amany N. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (A.N.I.); (S.M.S.)
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (A.N.I.); (S.M.S.)
| | - Mohamed El-Hewaity
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32514, Egypt;
| | - Abulmaaty M. Elsayed
- Anatomy and Histology Department, Faculty of Medicine, Mutah University, Mutah 61710, Jordan;
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Khaled A. Bayoumi
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt;
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 21442, Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21442, Saudi Arabia;
| | - Maged Behery
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Doaa Abdelrahaman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (D.A.); (S.F.I.)
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (D.A.); (S.F.I.)
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Center of Excellence for Screening of Environmental Contaminants (CESEC), Benha University, Toukh 13736, Egypt
- Correspondence: (D.E.); (A.A.)
| |
Collapse
|
12
|
Tripathi V, Jaiswal P, Assaiya A, Kumar J, Parmar HS. Anti-Cancer Effects of 5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside (AICAR) on Triple-Negative Breast Cancer (TNBC) Cells: Mitochondrial Modulation may be an Underlying Mechanism. Curr Cancer Drug Targets 2022; 22:245-256. [PMID: 35135451 DOI: 10.2174/1568009622666220207101212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is known for Warburg-metabolism and defects in the mitochondria. AMP-dependent kinase (AMPK) activates the downstream transcription factors PGC-1α, PGC-1β, or FOXO1 which participate in mitochondrial biogenesis. 5-aminoimidazole-4-carboxamide riboside (AICAR) is an analog of adenosine monophosphate and is a direct activator of AMPK. OBJECTIVES In the present study, we attempt to understand the influence of AICAR on TNBC cells MDA-MB-231 and the underlying changes in mitochondrial biogenesis, if any. METHODS We investigated AICAR induced changes in cell viability, apoptosis, migratory potential, and changes in the sensitivity of doxorubicin. RESULTS In response to the treatment of MDA-MB-231 breast cancer cells with 750 µM of AICAR for 72 hours, followed by 48 hours in fresh media without AICAR, we observed a decrease in viability via MTT assay, reduction in cell numbers along with the apoptotic appearance, increased cell death by ELISA, decreased lactate in conditioned medium and decrease in migration by scratch and transwell migration assays. These changes in the cancer phenotype were accompanied by an increase in mitochondrial biogenesis, as observed by increased mitochondrial DNA to nuclear DNA ratio, a decrease in lactic acid concentration, increase in mitotracker green and red staining, and increased expression of transcription factors PGC-1α, NRF-1, NRF-2, and TFAM that contribute in mitochondrial biogenesis. Pre-treatment of cells with AICAR for 72 hours followed by 48 hours treatment with 1 µM doxorubicin showed an increased sensitivity to doxorubicin as assessed by MTT assay. CONCLUSION Our results show that AICAR exerts beneficial effects on TNBC cells possibly via switching off the Warburg metabolism and switching on the anti-Warburg metabolism through mitochondrial modulation.
Collapse
Affiliation(s)
- Versha Tripathi
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Pooja Jaiswal
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Anshul Assaiya
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra 411007, India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra 411007, India
| | | |
Collapse
|
13
|
Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: Kinases as a potential target. Br J Clin Pharmacol 2021; 88:64-74. [PMID: 34192364 PMCID: PMC9292808 DOI: 10.1111/bcp.14964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Repurposing the large arsenal of existing non‐cancer drugs is an attractive proposition to expand the clinical pipelines for cancer therapeutics. The earlier successes in repurposing resulted primarily from serendipitous findings, but more recently, drug or target‐centric systematic identification of repurposing opportunities continues to rise. Kinases are one of the most sought‐after anti‐cancer drug targets over the last three decades. There are many non‐cancer approved drugs that can inhibit kinases as “off‐targets” as well as many existing kinase inhibitors that can target new additional kinases in cancer. Identifying cancer‐associated kinase inhibitors through mining commercial drug databases or new kinase targets for existing inhibitors through comprehensive kinome profiling can offer more effective trial‐ready options to rapidly advance drugs for clinical validation. In this review, we argue that drug repurposing is an important approach in modern drug development for cancer therapeutics. We have summarized the advantages of repurposing, the rationale behind this approach together with key barriers and opportunities in cancer drug development. We have also included examples of non‐cancer drugs that inhibit kinases or are associated with kinase signalling as a basis for their anti‐cancer action.
Collapse
Affiliation(s)
- Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Nikola Bowden
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Jennifer Martin
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Richard Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| |
Collapse
|
14
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
15
|
Huang SW, Sun MT, Lee WS, Su YS, Lee YT, Chiang MH, Wang YC, Yang YS, Tzeng SC, Huang YM, Lin FH. Cancer as an infectious disease: A different treatment alternative using a combination of tigecycline and pyrvinium pamoate - An example of breast cancer. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:51-59. [PMID: 33610508 DOI: 10.1016/j.jmii.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tigecycline is an antibiotic that well tolerated for treating complicated infections. It has received attention as an anti-cancer agent and expected to solve two major obstacles, sides effects that accompany chemotherapy and drug resistance, in the breast cancer treatment. However, previous studies reported that the levels in the blood are typically low of tigecycline, so higher doses are needed to treat cancer, that may increase the risk of side effects. To achieve better anti-cancer effects for tigecycline, we need to find a novel adjunct agent. METHODS In this study, we used different concentration of pyrvinium pamoate combined with tigecycline to treat cell. And assess the effect of two drugs in inhibit cell proliferation, induce cell autophagy, or increase cell apoptosis to evaluate the consequent of combined therapy. RESULTS We observed that after the combined therapy, the cell cycle arrest at G1/s phase, the level of p21 increased, but decreased the levels of CDK2. Others, two drugs via different mechanisms to inhibit cancer cell proliferation and with selective cytotoxic to different cell lines. That could enhance the effect of breast cancer treatment. CONCLUSION Combining low dose of tigecycline use with pyrvinium pamoate is a novel approach for breast cancer treatment. Appropriate combined therapy in breast cancer is recommended to improve outcomes. Other problems like drug resistance occur in patients or the microbes surrounding breast tissues would confer susceptibility to cancers then influence the effectiveness of treatment, which could be improved through combined therapy.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan; Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Ming-Tsung Sun
- Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien, 97144, Taiwan.
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taipei, 11608, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 10031, Taiwan
| | - Ying-Shih Su
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taipei, 11608, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 10031, Taiwan.
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Ming-Hsien Chiang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Shian-Chiuan Tzeng
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Min Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 10031, Taiwan.
| | - Feng-Huei Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Miaoli, 35053, Taiwan.
| |
Collapse
|
16
|
Li L, Dong Z, Shi P, Tan L, Xu J, Huang P, Wang Z, Cui H, Yang L. Bruceine D inhibits Cell Proliferation Through Downregulating LINC01667/MicroRNA-138-5p/Cyclin E1 Axis in Gastric Cancer. Front Pharmacol 2021; 11:584960. [PMID: 33390953 PMCID: PMC7774499 DOI: 10.3389/fphar.2020.584960] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Gastric cancer is one of the most common malignant tumors. Bruceine D (BD) is one of the extracts of Brucea javanica. In recent years, it has been reported that BD has anti-tumor activity in some human cancers through different mechanisms. Here, this study try to explore the effect of BD on gastric cancer and its regulatory mechanism. Methods: Cell proliferation ability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays, 5-bromo-2-deoxyuridine (BrdU) staining and soft agar colony formation assay, respectively. The tumor xenograft model was used to verify the effect of BD on the tumorigenicity of gastric cancer cells in vivo. Flow cytometry analysis and Western blot assay were performed to detect cell cycle and apoptosis. Gastric cancer cells were analyzed by transcriptome sequencing. The interaction between LINC01667, microRNA-138-5p (miR-138-5p) and Cyclin E1 was verified by dual luciferase experiment and RT-PCR assays. Results: We found that BD significantly inhibited cell proliferation and induced cell cycle arrest at S phase in gastric cancer cells. Transcriptome analysis found that the expression of a long non-coding RNA, LINC01667, were significantly down-regulated after BD treatment. Mechanically, it was discovered that LINC01667 upregulated the expression of Cyclin E1 by sponging miR-138-5p. Furthermore, BD enhanced the chemosensitivity of gastric cancer cells to doxorubicin, a clinically used anti-cancer agent. Conclusion: BD inhibit the growth of gastric cancer cells by downregulating the LINC01667/miR-138-5p/Cyclin E1 axis. In addition, BD enhances the chemosensitivity of gastric cancer cells to doxorubicin. This study indicates that BD may be used as a candidate drug for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Department of Immunology, School of Basic Medicine, Southwest Medical University, Luzhou, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Li N, Zhao Z, Liu P, Zheng Y, Cai S, Sun Y, Wang B. Upregulation of deubiquitinase USP7 by transcription factor FOXO6 promotes EC progression via targeting the JMJD3/CLU axis. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:583-595. [PMID: 33768140 PMCID: PMC7972937 DOI: 10.1016/j.omto.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
Esophageal carcinoma (EC) is recognized as one of the most frequently occurring malignancies worldwide, and its high morbidity rate motivates efforts to identify potential therapeutic targets. Notably, forkhead box (FOX) family genes are highlighted as possible biomarkers for diagnostics, prognostics, and therapeutics of various malignancies, including EC. Our present study was performed to investigate the underlying mechanism of FOXO6 on the development of EC. We observed a significant upregulation of FOXO6 in EC tissues, contributing to the migration and proliferation in EC cells through gain- and loss-of-function assays. FOXO6 directly interacted with the ubiquitin-specific processing protease 7 (USP7) gene promoter and enhanced its transcriptional activity, which resulted in suppressed cancer cell apoptosis as revealed by chromatin immunoprecipitation (ChIP)-qPCR. USP7 enhanced the ubiquitination of Jumonji domain-containing protein D3 (JMJD3), elevated JMJD3-promoted growth of EC cells, and transcriptionally activated clusterin (CLU) expression at the promoter region via histone H3 lysine 27 tri-methyl (H3K27me3) demethylation, according to immunoprecipitation and ubiquitination assays. Finally, we verified that FOXO6 mediated effects on the USP7/JMJD3/CLU axis to exert an oncogenic role in vivo, which was blocked by USP7 and JMJD3 inhibitor. Our findings demonstrate an important role of the FOXO6/USP7/JMJD3/CLU pathway in EC progression and thus provide attractive potential therapeutic targets for EC patients.
Collapse
Affiliation(s)
- Nuo Li
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
| | - Zhifeng Zhao
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
| | - Pengliang Liu
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
| | - Yan Zheng
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
| | - Shuang Cai
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
| | - Yin Sun
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
| | - Baoming Wang
- Interventional Department, The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning Province, P.R. China
- Corresponding author: Baoming Wang, Interventional Department, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang 110032, Liaoning Province, P.R. China.
| |
Collapse
|
18
|
Aminzadeh-Gohari S, Weber DD, Catalano L, Feichtinger RG, Kofler B, Lang R. Targeting Mitochondria in Melanoma. Biomolecules 2020; 10:biom10101395. [PMID: 33007949 PMCID: PMC7599575 DOI: 10.3390/biom10101395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Drastically elevated glycolytic activity is a prominent metabolic feature of cancer cells. Until recently it was thought that tumor cells shift their entire energy production from oxidative phosphorylation (OXPHOS) to glycolysis. However, new evidence indicates that many cancer cells still have functional OXPHOS, despite their increased reliance on glycolysis. Growing pre-clinical and clinical evidence suggests that targeting mitochondrial metabolism has anti-cancer effects. Here, we analyzed mitochondrial respiration and the amount and activity of OXPHOS complexes in four melanoma cell lines and normal human dermal fibroblasts (HDFs) by Seahorse real-time cell metabolic analysis, immunoblotting, and spectrophotometry. We also tested three clinically approved antibiotics, one anti-parasitic drug (pyrvinium pamoate), and a novel anti-cancer agent (ONC212) for effects on mitochondrial respiration and proliferation of melanoma cells and HDFs. We found that three of the four melanoma cell lines have elevated glycolysis as well as OXPHOS, but contain dysfunctional mitochondria. The antibiotics produced different effects on the melanoma cells and HDFs. The anti-parasitic drug strongly inhibited respiration and proliferation of both the melanoma cells and HDFs. ONC212 reduced respiration in melanoma cells and HDFs, and inhibited the proliferation of melanoma cells. Our findings highlight ONC212 as a promising drug for targeting mitochondrial respiration in cancer.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| |
Collapse
|
19
|
Yang J, Dong Z, Ren A, Fu G, Zhang K, Li C, Wang X, Cui H. Antibiotic tigecycline inhibits cell proliferation, migration and invasion via down-regulating CCNE2 in pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:4245-4260. [PMID: 32141702 PMCID: PMC7171345 DOI: 10.1111/jcmm.15086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/17/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, many researches have reported that antibiotic tigecycline has significant effect on cancer treatment. However, biomedical functions and molecular mechanisms of tigecycline in human pancreatic ductal adenocarcinoma (PDAC) remain unclear. In the current study, we tried to assess the effect of tigecycline in PDAC cells. AsPC‐1 and HPAC cells were treated with indicated concentrations of tigecycline for indicated time, and then, MTT, BrdU and soft agar assay were used to test cell proliferation. The effect of tigecycline on cell cycle and cellular apoptosis was tested by cytometry. Migration and invasion were detected by wound healing assay and transwell migration/invasion assay. Expressions of cell cycle‐related and migration/invasion‐related protein were determined by using Western blot. The results revealed that tigecycline observably suppressed cell proliferation by inducing cell cycle arrest at G0/G1 phase and blocked cell migration/invasion via holding back the epithelial‐mesenchymal transition (EMT) process in PDAC. In addition, tigecycline also remarkably blocked tumorigenecity in vivo. Furthermore, the effects of tigecycline alone or combined with gemcitabine in vitro or on PDAC xenografts were also performed. The results showed that tigecycline enhanced the chemosensitivity of PDAC cells to gemcitabine. Interestingly, we found CCNE2 expression was declined distinctly after tigecycline treatment. Then, CCNE2 was overexpressed to rescue tigecycline‐induced effect. The results showed that CCNE2 overexpression significantly rescued tigecycline‐inhibited cell proliferation and migration/invasion. Collectively, we showed that tigecycline inhibits cell proliferation, migration and invasion via down‐regulating CCNE2, and tigecycline might be used as a potential drug for PDAC treatment alone or combined with gemcitabine.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Aishu Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Gang Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiangwei Wang
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
20
|
Dandu K, Kallamadi PR, Thakur SS, Rao CM. Drug Repurposing for Retinoblastoma: Recent Advances. Curr Top Med Chem 2019; 19:1535-1544. [PMID: 30659544 DOI: 10.2174/1568026619666190119152706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Retinoblastoma is the intraocular malignancy that occurs during early childhood. The current standard of care includes chemotherapy followed by focal consolidative therapies, and enucleation. Unfortunately, these are associated with many side and late effects. New drugs and/or drug combinations need to be developed for safe and effective treatment. This compelling need stimulated efforts to explore drug repurposing for retinoblastoma. While conventional drug development is a lengthy and expensive process, drug repurposing is a faster, alternate approach, where an existing drug, not meant for treating cancer, can be repurposed to treat retinoblastoma. The present article reviews various attempts to test drugs approved for different purposes such as calcium channels blockers, non-steroidal antiinflammatory drugs, cardenolides, antidiabetic, antibiotics and antimalarial for treating retinoblastoma. It also discusses other promising candidates that could be explored for repurposing for retinoblastoma.
Collapse
Affiliation(s)
- Kamakshi Dandu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Prathap R Kallamadi
- School of Life Sciences. University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500 046, India
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
21
|
Wang Y, Xie F, Chen D, Wang L. Inhibition of mitochondrial respiration by tigecycline selectively targets thyroid carcinoma and increases chemosensitivity. Clin Exp Pharmacol Physiol 2019; 46:890-897. [PMID: 31209921 DOI: 10.1111/1440-1681.13126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 01/07/2023]
Abstract
The role of mitochondria in cancer and mitochondria-targeted therapy has been gaining attention for its effectiveness and selectivity between cancer and normal cells. In line with this notion, our work demonstrates that inducing mitochondrial dysfunction by tigecycline, a FDA-approved antibiotic, selectively targets thyroid cancer and enhances chemosensitivity. We found that tigecycline inhibited proliferation and induced apoptosis in a panel of thyroid cancer cell lines. Consistently, tigecycline inhibited thyroid cancer growth in mice without causing significant toxicity. The combination of tigecycline with paclitaxel achieved greater efficacy than paclitaxel alone in vitro and in vivo. Mechanistically, tigecycline inhibited mitochondrial respiration and ATP reduction through decreasing mitochondrial membrane potential and inhibiting mitochondrial translation, leading to oxidative stress and damage. In contrast, tigecycline was ineffective in mitochondrial respiration-deficient cells, confirming that tigecycline acts on thyroid cancer via inhibiting mitochondrial respiration. Interestingly, although tigecycline inhibited mitochondrial respiration in both thyroid cancer and normal thyroid cells in a similar manner, tigecycline was more effective in thyroid cancer than normal thyroid cells, suggesting that thyroid cancer cells are more dependent on mitochondrial functions than normal thyroid cells. This was supported by our observations that thyroid cancer cells had higher level of mitochondrial biogenesis compared to normal thyroid cells. Our work is the first to demonstrate that the combination of chemotherapy with tigecycline is a potential sensitizing strategy for thyroid cancer treatment. Our findings also highlight the higher dependence of thyroid cancer cells on mitochondrial functions than normal thyroid cells.
Collapse
Affiliation(s)
- Yuehua Wang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, China
| | - Fei Xie
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, China
| | - Dejie Chen
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, China
| | - Ling Wang
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, China
| |
Collapse
|
22
|
Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Int J Mol Sci 2019; 20:ijms20143577. [PMID: 31336613 PMCID: PMC6678986 DOI: 10.3390/ijms20143577] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
As an FDA-approved drug, glycylcycline tigecycline has been used to treat complicated microbial infections. However, recent studies in multiple hematologic and malignant solid tumors reveal that tigecycline treatment induces cell cycle arrest, apoptosis, autophagy and oxidative stress. In addition, tigecycline also inhibits mitochondrial oxidative phosphorylation, cell proliferation, migration, invasion and angiogenesis. Importantly, combinations of tigecycline with chemotherapeutic or targeted drugs such as venetoclax, doxorubicin, vincristine, paclitaxel, cisplatin, and imatinib, have shown to be promising strategies for cancer treatment. Mechanism of action studies reveal that tigecycline leads to the inhibition of mitochondrial translation possibly through interacting with mitochondrial ribosome. Meanwhile, this drug also interferes with several other cell pathways/targets including MYC, HIFs, PI3K/AKT or AMPK-mediated mTOR, cytoplasmic p21 CIP1/Waf1, and Wnt/β-catenin signaling. These evidences indicate that antibiotic tigecycline is a promising drug for cancer treatment alone or in combination with other anticancer drugs. This review summarizes the biological function of tigecycline in the treatment of tumors and comprehensively discusses its mode of action.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China.
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
23
|
Hu H, Dong Z, Wang X, Bai L, Lei Q, Yang J, Li L, Li Q, Liu L, Zhang Y, Ji Y, Guo L, Liu Y, Cui H. Dehydrocorydaline inhibits cell proliferation, migration and invasion via suppressing MEK1/2-ERK1/2 cascade in melanoma. Onco Targets Ther 2019; 12:5163-5175. [PMID: 31456643 PMCID: PMC6620435 DOI: 10.2147/ott.s183558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Alkaloids are naturally occurring chemical compounds that are widely distributed in plants, and have pharmaceutical values and low toxicity. In recent years, some of them have been demonstrated to be promising therapeutic drug candidates for cancer treatment. Herein, we tried to explore the antitumor effect of dehydrocorydaline (DHC), a natural alkaloid isolated from Corydalis, on malignant melanoma. Methods: We treated two malignant metastatic melanoma cell lines, A375 and MV3, and a normal melanocyte cell line, PIG1, with various concentrations of DHC for set amounts of time, and detected cell proliferation, migration, and invasion by using MTT, BrdU, transwell, Western blot and soft agar assay in vitro and tumorigenicity in the xenografts in vivo. Results: Our results showed that DHC dramatically blocked cell proliferation and led to cell cycle arrest at G0/G1 phase and downregulated the expressions of cell cycle regulators CDK6 and Cyclin D1 in melanoma cells. However, DHC had little inhibitory effect on normal melanocyte cell line PIG-1. Meanwhile, DHC suppressed cell invasion and migration through modulating the epithelial–mesenchymal transition (EMT) markers including E-cadherin, vimentin, as well as β-catenin. In addition, DHC also significantly attenuated tumor growth in vivo. The expressions of cell cycle-related and metastasis-related proteins were further confirmed by immunohistochemical staining in the xenografts. Importantly, MEK1/2-ERK1/2 cascade was inactivated after DHC treatment and ERK activator t-butylhydroquinone (tBHQ) treatment rescued DHC-induced cell proliferation inhibition. Conclusions: Our results indicated that DHC inhibited cell proliferation and migration/invasion via inactivating MAPK signaling, and showed that DHC might be a potential novel drug to treat malignant melanoma.
Collapse
Affiliation(s)
- Huanrong Hu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Xianxing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Longchang Bai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Li
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Lichao Liu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Yanli Zhang
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yacong Ji
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Leiyang Guo
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yaling Liu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
24
|
Inhibition of mitochondrial translation selectively targets osteosarcoma. Biochem Biophys Res Commun 2019; 515:9-15. [PMID: 31118131 DOI: 10.1016/j.bbrc.2019.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
The unique dependence of cancer cells on mitochondrial metabolism has been exploited therapeutically in various cancers but not osteosarcoma. In this work, we demonstrate that inhibition of mitochondrial translation is effective and selective in targeting osteosarcoma. We firstly showed that tigecycline at pharmacological achievable concentrations inhibited growth and induced apoptosis of multiple osteosarcoma cell lines while sparing normal osteoblast cells. Similarly, tigecycline at effective doses that delayed osteosarcoma growth did not cause significant toxicity to mice. We next showed that tigecycline specifically inhibits mitochondrial translation, resulting in defective mitochondrial respiration in both osteosarcoma and normal osteoblast cells. We further confirm mitochondrial respiration as the target of tigecycline using three independent approaches. In addition, we demonstrate that compared to normal osteoblasts, osteosarcoma cells have higher mitochondrial biogenesis. We finally show that specific inhibition of mitochondrial translation via EF-Tu depletion produces the similar anti-osteosarcoma effects of tigecycline. Our work highlights the therapeutic value of targeting mitochondrial metabolism in osteosarcoma and tigecycline as a useful addition to the treatment of osteosarcoma.
Collapse
|
25
|
Hu B, Guo Y. Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance. Biochem Biophys Res Commun 2018; 509:373-378. [PMID: 30591219 DOI: 10.1016/j.bbrc.2018.12.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Aberrant increase in mitochondrial biogenesis is common in human ovarian cancer and has great therapeutic value. In this work, we demonstrate that tigecycline, a FDA-approved broad spectrum antibiotic, selectively targets ovarian cancer cells through inhibition of mitochondrial translation. Tigecycline dose-dependently inhibits proliferation of ovarian cancer cells via arresting them at G2/M phase and induces apoptosis through caspase pathway. At the same concentration, tigecycline either does not or inhibits normal cells in a less extent than ovarian cancer cells. Mechanistically, tigecycline specifically inhibits translation by mitochondrial ribosome but not nuclear or cytosolic ribosome, leading to mitochondrial dysfunction, oxidative stress and damage, AMPK activation and inhibition of mTOR signaling in ovarian cancer cells. We further show that the inhibitory effects on ovarian cancer cell by tigecycline is mediated by its suppression of mitochondrial respiration. Importantly, the combination of tigecycline and cisplatin at sublethal concentration results in much greater efficacy than cisplatin alone in vitro and in vivo. Additionally, the effective dose of tigecycline in ovarian cancer is clinically achievable. Our study suggests that tigecycline is a useful addition to the treatment of ovarian cancer. Our work also highlights the targeted therapeutic potential of mitochondrial respiration in ovarian cancer.
Collapse
Affiliation(s)
- Bo Hu
- Department of Oncology, Xiangyang No.1 People's Hospital, Affiliated Hospital of Hubei University of Medicine, Xiangyang, People's Republic of China.
| | - Yue Guo
- Department of Oncology, Xiangyang No.1 People's Hospital, Affiliated Hospital of Hubei University of Medicine, Xiangyang, People's Republic of China.
| |
Collapse
|
26
|
Zhao H, Han L, Jian Y, Ma Y, Yan W, Chen X, Xu H, Li L. Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis. Onco Targets Ther 2018; 11:8995-9006. [PMID: 30588012 PMCID: PMC6294058 DOI: 10.2147/ott.s186247] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Resveratrol is known as a natural phytoalexin found in grapes and wine, which has significant antitumor activity under in vitro and in vivo conditions. In recent years, great progress has been made in understanding the underlying mechanisms of resveratrol in inducing cellular apoptosis of melanoma cells. Our previous study has shown that the apoptosis regulation of resveratrol in melanoma cells was independent of activation of classical apoptosis-related protein p53. Materials and methods MTT assay and 5-bromo-2′-deoxyuridine staining assay were used to analyze cell viability and proliferation. Immunofluorescence analysis of γ-H2AX was employed to clarify DNA damages. Annexin V–propidine iodide/fluorescein isothiocyanate assay was performed to evaluate the cell apoptosis. The mechanisms underlying the activation of M2-type pyruvate kinase (PKM2) by Erk1/2 to stabilize and maintain Bcl-2 signaling was investigated by subcellular fractionation analyses, immunofluorescence analysis, co-immunoprecipitation assay, ubiquitination assay, and glutathione S-transferase pull-down assay. Results In the present study, we found that resveratrol dramatically inhibited melanoma cell proliferation and induced cell apoptosis through upregulation of p53 in a concentration-dependent manner. Conversely, p53 downregulation by short hairpin RNA couldn’t rescue resveratrol-induced cell proliferation inhibition or apoptosis enlargement. Additionally, we found that resveratrol downregulated antiapoptotic protein Bcl-2 and activated Bax in the protein levels by promoting Bcl-2 degradation and cytochrome c release. Moreover, we discovered that PKM2, had a key role in cell apoptosis triggered by resveratrol through interacting with Bcl-2. Based on these results, we overexpressed PKM2 in melanoma cells and found that this prevented resveratrol-induced apoptosis by stabilizing the protein level of Bcl-2. Conclusion Taken together, our results provided a novel mechanism accounting for the apoptosis induction of resveratrol in melanoma cells and suggested that downregulating Erk/PKM2/Bcl-2 axis appears to be a new approach for the prevention or treatment of melanoma.
Collapse
Affiliation(s)
- Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China,
| | - Limin Han
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China,
| | - Yi Jian
- The First Clinical Institute, The School of Medicine and Science, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Yuntao Ma
- The First Clinical Institute, The Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Wanyue Yan
- The First Clinical Institute, The Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Xiaowen Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China,
| | - Haiyan Xu
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China,
| | - Lijuan Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China,
| |
Collapse
|
27
|
Demethylzeylasteral inhibits glioma growth by regulating the miR-30e-5p/MYBL2 axis. Cell Death Dis 2018; 9:1035. [PMID: 30305611 PMCID: PMC6180101 DOI: 10.1038/s41419-018-1086-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/25/2023]
Abstract
Glioma is the most common and malignant form of primary brain tumour, and is characterised by high proliferation and extensive invasion and neurological destruction. Demethylzeylasteral (T-96), which is extracted from Tripterygium wilfordii, is considered to have immunosuppressive, anti-inflammatory and anti-angiogenic effects. Here, the anti-tumour effect of T-96 on glioma was evaluated. Our results demonstrated that T-96 significantly inhibited glioma cell growth and induced cell cycle arrest in G1 phase but did not induce apoptosis. Cell invasion and migration were dramatically suppressed after treatment with T-96. Almost all genes related to cell cycle and DNA replication were downregulated after treatment with T-96. Our results showed that miR-30e-5p was noticeably upregulated after T-96 treatment, and MYBL2, which is involved in cell cycle progression and is a target gene of miR-30e-5p, was significantly reduced in synchrony. Overexpression of MYBL2 partially rescued the T-96-induced inhibition of cell growth and proliferation. Moreover, a miR-30e-5p antagomir significantly reduced the upregulation of miR-30e-5p expression induced by T-96, leading to recovery of MYBL2 expression, and partially rescued the T-96-induced inhibition of cell growth and proliferation. More important, T-96 effectively upregulated miR-30e-5p expression and downregulated MYBL2 expression, thus inhibiting LN-229 cell tumour growth in a mouse model. These results indicated that T-96 might inhibit glioma cell growth by regulating the miR-30e-5p/MYBL2 axis. Our study demonstrated that T-96 might act as a promising agent for malignant glioma therapy.
Collapse
|
28
|
Ma R, Zhang Y, Wang W, Wu J, Yang Q, Xu W, Jiang S, Han Y, Yu K, Zhang S. Inhibition of autophagy enhances the antitumour activity of tigecycline in multiple myeloma. J Cell Mol Med 2018; 22:5955-5963. [PMID: 30247801 PMCID: PMC6237591 DOI: 10.1111/jcmm.13865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence shows that tigecycline, a first‐in‐class glycylcycline, has potential antitumour properties. Here, we found that tigecycline dramatically inhibited the proliferation of multiple myeloma (MM) cell lines RPMI‐8226, NCI‐H929 and U266 in a dose and time‐dependent manner. Meanwhile, tigecycline also potently impaired the colony formation of these three cell lines. Mechanism analysis found that tigecycline led to cell cycle arrest at G0/G1 with down‐regulation of p21, CDK2 and cyclin D1, rather than induced apoptosis, in MM cells. Importantly, we found that tigecycline induced autophagy and an autophagy inhibitor bafilomycin A1 further amplified the tigecycline‐induced cytotoxicity, suggesting that autophagy plays a cytoprotective role in tigecycline‐treated MM cells. Mechanisms modulating autophagy found that tigecycline enhanced the phosphorylation of AMPK, but did not decrease the phosphorylation of Akt, to inhibit the phosphorylation of mTOR and its two downstream effectors p70S6K1 and 4E‐BP1. Tigecycline effectively inhibited tumour growth in the xenograft tumour model of RPMI‐8226 cells. Autophagy also occurred in tigecycline‐treated tumour xenograft, and autophagy inhibitor chloroquine and tigecycline had a synergistic effect against MM cells in vivo. Thus, our results suggest that tigecycline may be a promising candidate in the treatment of MM.
Collapse
Affiliation(s)
- Ruye Ma
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Hematology, Taizhou Municipal Hospital, Taizhou, China
| | - Junqing Wu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Yang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanling Xu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Clinical Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv 2018; 36:583-602. [PMID: 29339119 DOI: 10.1016/j.biotechadv.2018.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The hallmarks of tumor tissue are not only genetic aberrations but also the presence of metabolic and oxidative stress as a result of hypoxia and lactic acidosis. The stress activates several prosurvival pathways including metabolic remodeling, autophagy, antioxidant response, mitohormesis, and glutaminolysis, whose upregulation in tumors is associated with a poor survival of patients, while their activation in healthy tissue with statins, metformin, physical activity, and natural compounds prevents carcinogenesis. This review emphasizes the dual role of stress response pathways in cancer and suggests the integrative understanding as a basis for the development of rational therapy targeting the stress response.
Collapse
|
30
|
Fu X, Liu W, Huang Q, Wang Y, Li H, Xiong Y. Targeting mitochondrial respiration selectively sensitizes pediatric acute lymphoblastic leukemia cell lines and patient samples to standard chemotherapy. Am J Cancer Res 2017; 7:2395-2405. [PMID: 29312795 PMCID: PMC5752682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023] Open
Abstract
The clinical management of pediatric acute lymphoblastic leukemia (ALL) is still changeling and identification of agents that can sensitize standard chemotherapy is needed for its better management. In this work, we demonstrate that tigecycline, a FDA-approved antibiotic, is an attractive candidate for ALL treatment. Tigecycline inhibits growth and induces apoptosis of multiple ALL cell lines. Compared to normal hematopoietic cells, tigecycline is more active against primary lymphocytes and CD34 progenitors from ALL patients through decreasing survival and clonogenic growth. Notably, tigecycline significantly augments the efficacy of chemotherapeutic drugs, such as doxorubicin and vincristine, in ALL cell lines, primary samples and xenograft mouse model. Tigecycline acts on ALL via inhibiting mitochondrial respiration, leading to energy crisis and oxidative stress and damage. We show that the enhanced mitochondrial biogenesis and increased oxygen consumption rate in ALL versus normal hematopoietic cells are important for their different sensitivity to tigecycline. We further show that ATP production and growth rate are largely affected in mitochondrial respiration-deficient ρ0 ALL cells. Our work provides pre-clinical evidence for repurposing tigecycline for ALL treatment and highlights the therapeutic value of targeting mitochondrial metabolism in sensitizing ALL to chemotherapy.
Collapse
Affiliation(s)
- Xuedong Fu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Wei Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Qian Huang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Yanjun Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Huijuan Li
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| | - Ying Xiong
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
31
|
Wu X, Li F, Wang X, Li C, Meng Q, Wang C, Huang J, Chen S, Zhu Z. Antibiotic bedaquiline effectively targets growth, survival and tumor angiogenesis of lung cancer through suppressing energy metabolism. Biochem Biophys Res Commun 2017; 495:267-272. [PMID: 29107691 DOI: 10.1016/j.bbrc.2017.10.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Tumor angiogenesis plays essential roles during lung cancer progression and metastasis. Therapeutic agent that targets both tumor cell and vascular endothelial cell may achieve additional anti-tumor efficacy. We demonstrate that bedaquiline, a FDA-approved antibiotic drug, effectively targets lung cancer cells and angiogenesis. Bedaquiline dose-dependently inhibits proliferation and induces apoptosis of a panel of lung cancer cell lines regardless of subtypes and molecular heterogeneity. Bedaquiline also inhibits capillary network formation of human lung tumor associated-endothelial cell (HLT-EC) on Matrigel and its multiple functions, such as spreading, proliferation and apoptosis, even in the presence of vascular endothelial growth factor (VEGF). We further demonstrate that bedaquiline acts on lung cancer cells and HLT-EC via inhibiting mitochondrial respiration and glycolysis, leading to ATP reduction and oxidative stress. Consistently, oxidative damage on DNA, protein and lipid were detected in cells exposed to bedaquiline. Importantly, the results obtained in in vitro cell culture are reproducible in in vivo xenograft lung cancer mouse model, confirming that bedaquiline suppresses lug tumor growth and angiogenesis, and increases oxidative stress. Our findings demonstrating that energy depletion is effectively against lung tumor cells and angiogenesis. Our work also provide pre-clinical evidence to repurpose antibiotic bedaquiline for lung cancer treatment.
Collapse
Affiliation(s)
- Xiaomu Wu
- Department of Neurology, The Central Hospital of Wuhan, Wuhan, People's Republic of China
| | - Fajiu Li
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Xiaojiang Wang
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Chenghong Li
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Qinghua Meng
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Chuanhai Wang
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Jie Huang
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Shi Chen
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Ziyang Zhu
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China.
| |
Collapse
|
32
|
The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells. Biochem Biophys Res Commun 2017; 493:77-84. [PMID: 28919418 DOI: 10.1016/j.bbrc.2017.09.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023]
Abstract
Melanoma is the most common primary malignant neoplasm in adults, causing more deaths than any other skin cancer, necessitating the development of new target-based approaches. Current evidence suggests SIRT1, the mammalian nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, and nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthetic enzyme, together comprise a novel systemic regulatory network to play a pivotal role in cell proliferation and apoptosis. Nevertheless, how the regulation of this cofactor interfaces with signal transduction network remains poorly understood in melanoma. Here, we report NAMPT is highly expressed in melanomaassociated with poor overall survival in patients. Pharmacological and genetic inhibition of NAMPT decreased NAD+ levels and melanoma cell proliferation capacity, and NAMPT knockdown induced apoptosis through the activity of the tumor suppressor p53. Next, we demonstrate NAMPT regulates the transcription factor E2F family member 2 (E2F2) in the apoptosis process. Downstream, E2F2 control the mRNA and protein levels of SIRT1. Finally, we find NAMPT mediates the apoptosis resistance of melanoma cells through NAMPT-E2F2-SIRT1 axis, more than NAD+-driven transcriptional program. Accordingly, our results demonstrated that NAMPT is a prognostic marker in melanoma, and the identificationofNAMPT-E2F2-SIRT1 pathway establishes another link between NAMPT and apoptosis events in melanoma, with therapeutic implications for this deadly cancer.
Collapse
|
33
|
Kohrman AQ, Matus DQ. Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol 2017; 27:12-25. [PMID: 27634432 PMCID: PMC5186408 DOI: 10.1016/j.tcb.2016.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/30/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Cell invasion through the basement membrane (BM) occurs during normal embryonic development and is a fundamental feature of cancer metastasis. The underlying cellular and genetic machinery required for invasion has been difficult to identify, due to a lack of adequate in vivo models to accurately examine invasion in single cells at subcellular resolution. Recent evidence has documented a functional link between cell cycle arrest and invasive activity. While cancer progression is traditionally thought of as a disease of uncontrolled cell proliferation, cancer cell dissemination, a critical aspect of metastasis, may require a switch from a proliferative to an invasive state. In this work, we review evidence that BM invasion requires cell cycle arrest and discuss the implications of this concept with regard to limiting the lethality associated with cancer metastasis.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
34
|
Xu Z, Yan Y, Li Z, Qian L, Gong Z. The Antibiotic Drug Tigecycline: A Focus on its Promising Anticancer Properties. Front Pharmacol 2016; 7:473. [PMID: 27994551 PMCID: PMC5133451 DOI: 10.3389/fphar.2016.00473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023] Open
Abstract
Tigecycline (TIG), the first member of glycylcycline bacteriostatic agents, has been approved to treat complicated infections in the clinic because of its expanded-spectrum antibiotic potential. Recently, an increasing number of studies have emphasized the anti-tumor effects of TIG. The inhibitory effects of TIG on cancer depend on several activating signaling pathways and abnormal mitochondrial function in cancer cells. The aim of this review is to summarize the cumulative anti-tumor evidence supporting TIG activity against different cancer types, including acute myeloid leukemia (AML), glioma, non-small cell lung cancer (NSCLC), among others. In addition, the efficacy and side effects of TIG in cancer patients are summarized in detail. Future clinical trials are also to be discussed that will evaluate the security and validate the underlying the tumor-killing properties of TIG.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China; Department of Pathology, School of Basic Medicine, Central South UniversityChangsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, China; Institute of Hospital Pharmacy, Central South UniversityChangsha, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, China; Institute of Hospital Pharmacy, Central South UniversityChangsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, China; Institute of Hospital Pharmacy, Central South UniversityChangsha, China
| |
Collapse
|
35
|
Esner M, Graifer D, Lleonart ME, Lyakhovich A. Targeting cancer cells through antibiotics-induced mitochondrial dysfunction requires autophagy inhibition. Cancer Lett 2016; 384:60-69. [PMID: 27693455 DOI: 10.1016/j.canlet.2016.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
A significant part of current research studies utilizes various cellular models which imply specific antibiotics-containing media as well as antibiotics used for clonal selection or promoter de/activation. With the great success of developing such tools, mitochondria, once originated from bacteria, can be effectively targeted by antibiotics. For that reason, some studies propose antibiotics-targeting of mitochondria as part of anticancer therapy. Here, we have focused on the effects of various classes of antibiotics on mitochondria in cancer and non-cancer cells and demonlow mitochondrial membrane potential, reduced ATP production, altered morphology and lowered respiration rate which altogether suggested mitochondrial dysfunction (MDF). This was in parallel with increased level of reactive oxygen species (ROS) and decreased activity of mitochondrial respiration complexes. However, both survival and repopulation capacity of cancer cells was not significantly affected by the antibiotics, perhaps due to a glycolytic shift or activated autophagy. In turn, simultaneous inhibition of autophagy and treatment with antibiotics largely reduced tumorigenic properties of cancer cells suggesting potential strategy for anticancer therapy.
Collapse
Affiliation(s)
- Milan Esner
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dmitry Graifer
- Novosibirsk State University, Novosibirsk, Pirogova 2, 630090, Russia
| | - Matilde E Lleonart
- Translational Research in Cancer Stem Cells, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Alex Lyakhovich
- Translational Research in Cancer Stem Cells, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Novosibirsk Institute of Molecular Biology and Biophysics, Novosibirsk, Russia; ICRC-FNUSA, International Clinical Research Center and St. Anne's University Hospital Brno, Czech Republic.
| |
Collapse
|
36
|
Ozsvári B, Lamb R, Lisanti MP. Repurposing of FDA-approved drugs against cancer - focus on metastasis. Aging (Albany NY) 2016; 8:567-568. [PMID: 27038638 PMCID: PMC4925811 DOI: 10.18632/aging.100941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Béla Ozsvári
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, CRUK Manchester Institute, University of Manchester, Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, CRUK Manchester Institute, University of Manchester, Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, CRUK Manchester Institute, University of Manchester, Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, CRUK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|