1
|
Li J, Ma X, Xu F, Yan Y, Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. PHARMACEUTICAL BIOLOGY 2024; 62:314-325. [PMID: 38571483 PMCID: PMC10997361 DOI: 10.1080/13880209.2024.2331060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 μg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 μg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.
Collapse
Affiliation(s)
- Jiong Li
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Xiangjun Ma
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Faying Xu
- College of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqing Chen
- Department of General Surgery, The First People’s Hospital of Lin’an District, Hangzhou, China
| |
Collapse
|
2
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
3
|
Alcarranza M, Villegas I, Recio R, Muñoz-García R, Fernández I, Alarcón-de-la-Lastra C. ( R)-8-Methylsulfinyloctyl isothiocyanate from Nasturtium officinale inhibits LPS-induced immunoinflammatory responses in mouse peritoneal macrophages: chemical synthesis and molecular signaling pathways involved. Food Funct 2023. [PMID: 37469300 DOI: 10.1039/d3fo02009f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The aim of this study was to develop an optimal synthetic route to obtain natural (R)-8-methylsulfinyloctyl isothiocyanate ((R)-8-OITC), present in watercress, based on the "DAG methodology" as well as to evaluate its potential antioxidant and immunomodulatory effects, exploring possible signaling pathways that could be involved in an ex vivo model of murine peritoneal macrophages stimulated with LPS. Treatment with (R)-8-OITC inhibited the levels of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-17 and IL-18), intracellular ROS production and expression of pro-inflammatory enzymes (COX-2, iNOS and mPGES-1) through modulation of the expression of Nrf2, MAPKs (p38, JNK and ERK) and JAK/STAT, and the canonical and non-canonical pathways of the inflammasome. Taking all these together, our results provide a rapid and cost-effective synthetic route to obtain natural (R)-8-OITC and demonstrate that it could be a potential nutraceutical candidate for managing immuno-inflammatory pathologies. Therefore, further in vivo trials are warranted.
Collapse
Affiliation(s)
- Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| |
Collapse
|
4
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
5
|
Nie Y, Dai Z, Fozia, Zhao G, Jiang J, Xu X, Ying M, Wang Y, Hu Z, Xu H. Comparative Studies on DNA-Binding Mechanisms between Enantiomers of a Polypyridyl Ruthenium(II) Complex. J Phys Chem B 2022; 126:4787-4798. [PMID: 35731588 DOI: 10.1021/acs.jpcb.2c02104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pair of ruthenium(II) complex enantiomers, Δ- and Λ-[Ru(bpy)2MBIP]2+ (bpy = 2,2'-bipyridine, MBIP = 2-(3-bromophenyl)imidazo[5,6-f]phenanthroline), were designed, synthesized, and characterized. Comparative studies between the enantiomers on their binding behaviors to calf thymus DNA (CT-DNA) were conducted using UV-visible, fluorescence, and circular dichroism spectroscopies, viscosity measurements, isothermal titration calorimetry, a photocleavage experiment, and molecular simulation. The experimental results indicated that both the enantiomers spontaneously bound to CT-DNA through intercalation stabilized by the van der Waals force or the hydrogen bond and driven by enthalpy and that Δ-[Ru(bpy)2MBIP]2+ intercalated into DNA more deeply than Λ-[Ru(bpy)2MBIP]2+ did and exhibited a better DNA photocleavage ability. Molecular simulation further indicated that Δ-[Ru(bpy)2MBIP]2+ more preferentially intercalated between the base pairs of CT-DNA to the major groove, and Λ-[Ru(bpy)2MBIP]2+ more favorably intercalated to the minor groove. These research findings should be very helpful to the understanding of the stereoselectivity mechanism of DNA-bindings of metal complexes, and be useful for the design of novel metal-complex-based antitumor drugs with higher efficacy and lower toxicity.
Collapse
Affiliation(s)
- Yanhong Nie
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen 518060, P. R. China
| | - Fozia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Guangyao Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jianrong Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xu Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, P. R. China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
6
|
Mahapatra E, Sengupta D, Kumar R, Dehury B, Das S, Roy M, Mukherjee S. Phenethylisothiocyanate Potentiates Platinum Therapy by Reversing Cisplatin Resistance in Cervical Cancer. Front Pharmacol 2022; 13:803114. [PMID: 35548339 PMCID: PMC9081374 DOI: 10.3389/fphar.2022.803114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Acquired cisplatin resistance in cervical cancer therapy is principally caused by reduction in intracellular drug accumulation, which is exerted by hyperactivation of the oncogenic PI3K/Akt signaling axis and overexpression of cisplatin-exporter MRP2 along with prosurvival effectors NF-κB and IAPs in cervical cancer cells. These activated prosurvival signaling cascades drive drug efflux and evasion of apoptosis for rendering drug-resistant phenotypes. Our study challenges the PI3K/Akt axis in a cisplatin-resistant cervical cancer scenario with phenethylisothiocyanate (PEITC) for chemosensitization of SiHaR, a cisplatin-resistant sub-line of SiHa and 3-methylcholanthrene–induced cervical cancer mice models. SiHaR exhibited higher MRP2, p-AktThr308, NF-κB, XIAP, and survivin expressions which cumulatively compromised cisplatin retention capacity and accumulated PEITC better than SiHa. SiHaR appeared to favor PEITC uptake as its accumulation rates were found to be positively correlated with MRP2 expressions. PEITC treatment in SiHaR for 3 h prior to cisplatin exposure revived intracellular platinum levels, reduced free GSH levels, generated greater ROS, and altered mitochondrial membrane potential compared to SiHa. Western blot and immunofluorescence results indicated that PEITC successfully downregulated MRP2 in addition to suppressing p-AktThr308, XIAP, survivin, and NF-κB expressions. In mice models, administration of 5 mg/kg body-weight PEITC priming dosage prior to treatment with 3 mg/kg body-weight of cisplatin remediated cervical histology and induced tumor regression in contrast to the group receiving the same dosage of cisplatin only. This suggested PEITC as a potential chemosensitizing agent in light of acquired cisplatin resistance in cervical cancer and established its candidature for Phase I clinical trial.
Collapse
Affiliation(s)
- Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ravindra Kumar
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, India
| | - Budheswar Dehury
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Madhumita Roy
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
- *Correspondence: Sutapa Mukherjee, , orcid.org/0000-0002-4411-7257
| |
Collapse
|
7
|
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Apola A, Ekiert H, Szopa A. Impacts of elicitors on metabolite production and on antioxidant potential and tyrosinase inhibition in watercress microshoot cultures. Appl Microbiol Biotechnol 2022; 106:619-633. [PMID: 34985568 PMCID: PMC8763773 DOI: 10.1007/s00253-021-11743-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022]
Abstract
The study has proved the stimulating effects of different strategies of treatments with elicitors on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in watercress (Nasturtium officinale) microshoot cultures. The study also assessed antioxidant and anti-melanin activities. The following elicitors were tested: ethephon (ETH), methyl jasmonate (MeJA), sodium salicylate (NaSA), and yeast extract (YeE) and were added on day 10 of the growth period. Cultures not treated with the elicitor were used as control. The total GSL content estimations and UHPLC-DAD-MS/MS analyses showed that elicitation influenced the qualitative and quantitative profiles of GSLs. MeJA stimulated the production of gluconasturtiin (68.34 mg/100 g dried weight (DW)) and glucobrassicin (65.95 mg/100 g DW). The elicitation also increased flavonoid accumulation (max. 1131.33 mg/100 g DW, for 100 μM NaSA, collection after 24 h). The elicitors did not boost the total polyphenol content. NaSA at 100 μM increased the production of total chlorophyll a and b (5.7 times after 24 h of treatment), and 50 μM NaSA caused a 6.5 times higher production of carotenoids after 8 days of treatment. The antioxidant potential (assessed with the CUPRAC FRAP and DPPH assays) increased most after 24 h of treatment with 100 μM MeJA. The assessment of anti-melanin activities showed that the microshoot extracts were able to cause inhibition of tyrosinase (max. 27.84% for 1250 µg/mL). KEY POINTS: • Elicitation stimulated of the metabolite production in N. officinale microshoots. • High production of pro-health glucosinolates and polyphenols was obtained. • N. officinale microshoots have got tyrosinase inhibition potential. • The antioxidant potential of N. officinale microshoots was evaluated.
Collapse
Affiliation(s)
- Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, Stefana Żeromskiego 5, 25-369 Kielce, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Anna Apola
- Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Precursor-Boosted Production of Metabolites in Nasturtium officinale Microshoots Grown in Plantform Bioreactors, and Antioxidant and Antimicrobial Activities of Biomass Extracts. Molecules 2021; 26:molecules26154660. [PMID: 34361814 PMCID: PMC8348939 DOI: 10.3390/molecules26154660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL).
Collapse
|
10
|
More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Gómez de Cedrón M, Wagner S, Reguero M, Menéndez-Rey A, Ramírez de Molina A. Miracle Berry as a Potential Supplement in the Control of Metabolic Risk Factors in Cancer. Antioxidants (Basel) 2020; 9:antiox9121282. [PMID: 33333960 PMCID: PMC7765360 DOI: 10.3390/antiox9121282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
The increased incidence of chronic diseases related to altered metabolism has become a social and medical concern worldwide. Cancer is a chronic and multifactorial disease for which, together with genetic factors, environmental factors are crucial. According to the World Health Organization (WHO), up to one third of cancer-related deaths could be prevented by modifying risk factors associated with lifestyle, including diet and exercise. Obesity increases the risk of cancer due to the promotion of low-grade chronic inflammation and systemic metabolic oxidative stress. The effective control of metabolic parameters, for example, controlling glucose, lipid levels, and blood pressure, and maintaining a low grade of chronic inflammation and oxidative stress might represent a specific and mechanistic approach against cancer initiation and progression. Miracle berry (MB) (Synsepalum dulcificum) is an indigenous fruit whose small, ellipsoid, and bright red berries have been described to transform a sour taste into a sweet one. MB is rich in terpenoids, phenolic compounds, and flavonoids, which are responsible for their described antioxidant activities. Moreover, MB has been reported to ameliorate insulin resistance and inhibit cancer cell proliferation and malignant transformation in vitro. Herein, we briefly summarize the current knowledge of MB to provide a scientific basis for its potential use as a supplement in the management of chronic diseases related to altered metabolism, including obesity and insulin resistance, which are well-known risk factors in cancer. First, we introduce cancer as a metabolic disease, highlighting the impact of systemic metabolic alterations, such as obesity and insulin resistance, in cancer initiation and progression. Next, as oxidative stress is closely associated with metabolic stress, we also evaluate the effect of phytochemicals in managing oxidative stress and its relationship with cancer. Finally, we summarize the main biological activities described for MB-derived extracts with a special focus on the ability of miraculin to transform a sour taste into a sweet one through its interaction with the sweet taste receptors. The identification of sweet taste receptors at the gastrointestinal level, with effects on the secretion of enterohormones, may provide an additional tool for managing chronic diseases, including cancer.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-91-727-81-00 (ext. 210) (M.G.d.C.); Fax: +34-91-188-07-56 (M.G.d.C.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain;
| | - Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain
| | - Adrián Menéndez-Rey
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain;
- Biomedical Technology Center, Polytechnic University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-91-727-81-00 (ext. 210) (M.G.d.C.); Fax: +34-91-188-07-56 (M.G.d.C.)
| |
Collapse
|
12
|
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Granica S, Korona-Glowniak I, Ekiert H, Szopa A. Phytochemical and Biological Activity Studies on Nasturtium officinale (Watercress) Microshoot Cultures Grown in RITA ® Temporary Immersion Systems. Molecules 2020; 25:molecules25225257. [PMID: 33187324 PMCID: PMC7696031 DOI: 10.3390/molecules25225257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.
Collapse
Affiliation(s)
- Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis and Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
- Correspondence: ; Tel.: +48-12-620-5436
| |
Collapse
|
13
|
Yi M, Ma Y, Chen Y, Liu C, Wang Q, Deng H. Glutathionylation Decreases Methyltransferase Activity of PRMT5 and Inhibits Cell Proliferation. Mol Cell Proteomics 2020; 19:1910-1920. [PMID: 32868396 DOI: 10.1074/mcp.ra120.002132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 11/06/2022] Open
Abstract
Glutathionylation is an important posttranslational modification that protects proteins from further oxidative damage as well as influencing protein structure and activity. In the present study, we demonstrate that the cysteine-42 residue in protein arginine N-methyltransferase 5 (PRMT5) is glutathionylated in aged mice or in cells that have been exposed to oxidative stress. Deglutathionylation of this protein is catalyzed by glutaredoxin-1 (Grx1). Using mutagenesis and subsequent biochemical analyses, we show that glutathionylation decreased the binding affinity of PRMT5 with methylosome protein-50 (MEP50) and reduced the methyltransferase activity of PRMT5. Furthermore, overexpression of PRMT5-C42A mutant caused a significant increase in histone methylation in HEK293T and A549 cells and promoted cell growth, whereas overexpression of the PRMT5-C42D mutant, a mimic of glutathionylated PRMT5, inhibited cell proliferation. Taken together, our results demonstrate a new mechanism of regulation of PRMT5 methyltransferases activity and suggest that PRMT5 glutathionylation is partly responsible for reactive oxygen species-mediated cell growth inhibition.
Collapse
Affiliation(s)
- Meiqi Yi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, MOE Key Laboratory of Bioinformatics, Beijing, China
| | - Yingying Ma
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, MOE Key Laboratory of Bioinformatics, Beijing, China
| | - Chongdong Liu
- Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, MOE Key Laboratory of Bioinformatics, Beijing, China.
| |
Collapse
|
14
|
Zhang Q, Chen M, Cao L, Ren Y, Guo X, Wu X, Xu K. Phenethyl isothiocyanate synergistically induces apoptosis with Gefitinib in non-small cell lung cancer cells via endoplasmic reticulum stress-mediated degradation of Mcl-1. Mol Carcinog 2020; 59:590-603. [PMID: 32189414 DOI: 10.1002/mc.23184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Isothiocyanates (ITCs) are natural compounds abundant in cruciferous vegetables. Numerous studies have shown that ITCs exhibit anticancer activity by affecting multiple pathways including apoptosis and oxidative stress, and are expected to be developed into novel anticancer drugs. In our previous studies, we demonstrated that ITCs effectively inhibit the proliferation of non-small cell lung cancer (NSCLC) cells, also induce apoptosis and autophagy. In the present study, we found that phenethyl isothiocyanate (PEITC) had significant synergistic effects with epidermal growth factor receptor tyrosine kinase inhibitor Gefitinib in NSCLC cell lines NCI-H1299 and SK-MES-1; and the degradation of antiapoptotic factor myeloid cell leukemia 1 (Mcl-1) caused by PEITC treatment played key roles in the sensitivity of NSCLC cells to Gefitinib. We further illustrated that PEITC regulated the expression of Mcl-1 through protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2α-CHOP-Noxa pathway by a posttranscriptional modulation. Pretreatment with endoplasmic reticulum stress (ER stress) inhibitor tauroursodeoxycholic acid and knockdown of PERK expression attenuated the degradation of Mcl-1 caused by PEITC. In in vivo study, nude mice bearing NCI-H1299 xenograft were administrated with PEITC (50 mg/kg, ip) and Gefitinib (50 mg/kg, ig) for 15 days, the PEITC-Gefitinib combination treatment resulted in a significant synergistic reduction in tumor growth, and significantly induced both ER stress and Mcl-1 degradation in tumor tissues. In conclusion, we explored the prospect of PEITC in improving the efficacy of targeted drug therapy and demonstrated the synergistic effects and underlined mechanisms of PEITC combined with Gefitinib in NSCLC cells treatment. This study provided useful information for developing novel therapy strategies by combination treatment of PEITC with targeted drugs.
Collapse
Affiliation(s)
- Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueru Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Artichoke Polyphenols Sensitize Human Breast Cancer Cells to Chemotherapeutic Drugs via a ROS-Mediated Downregulation of Flap Endonuclease 1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7965435. [PMID: 31998443 PMCID: PMC6969650 DOI: 10.1155/2020/7965435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/22/2019] [Indexed: 01/20/2023]
Abstract
Combined treatment of several natural polyphenols and chemotherapeutic agents is more effective comparing to the drug alone in inhibiting cancer cell growth. Polyphenolic artichoke extracts (AEs) have been shown to have anticancer properties by triggering apoptosis or reactive oxygen species- (ROS-) mediated senescence when used at high or low doses, respectively. Our aim was to explore the chemosensitizing potential of AEs in order to enhance the efficacy of conventional chemotherapy in breast cancer cells. We employed breast cancer cell lines to assess the potential synergistic effect of a combined treatment of AEs/paclitaxel (PTX) or AEs/adriamycin (ADR) and to determine the underlying mechanisms correlated to this potential therapeutic approach. Our data shows that AEs/PTX reduced cell proliferation by increasing DNA damage response (DDR) mediated by Flap endonuclease 1 (FEN1) downregulation that results into enhanced breast cancer cell sensitivity to chemotherapeutic drugs. We demonstrated that ROS/Nrf2 and p-ERK pathways are two molecular mechanisms involved in the synergistic effect of AEs plus PTX treatment. To highlight the role of ROS herein, we report that the addition of antioxidant N-acetylcysteine (NAC) significantly decreased the antiproliferative effect of the combined treatment. A combined therapy could be able to reduce the dose of chemotherapeutic drugs, minimizing toxicity and side effects. Our results suggest the use of artichoke polyphenols as ROS-mediated sensitizers of chemotherapy paving the way for innovative and promising natural compound-based therapeutic strategies in oncology.
Collapse
|
16
|
Hayashi M, Kawakubo H, Fukuda K, Mayanagi S, Nakamura R, Suda K, Hayashida T, Wada N, Kitagawa Y. THUMP domain containing 2 protein possibly induces resistance to cisplatin and 5-fluorouracil in in vitro human esophageal squamous cell carcinoma cells as revealed by transposon activation mutagenesis. J Gene Med 2019; 21:e3135. [PMID: 31656051 DOI: 10.1002/jgm.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although chemotherapy is a core treatment for esophageal cancer, some patients develop drug resistance. Gene screening with transposons (i.e. mobile genetic elements) is a novel procedure for identifying chemotherapy-resistant genes. Transposon insertion can randomly affect nearby gene expression. By identifying the affected genes, candidate genes can be found. The present study aimed to identify cisplatin (CDDP)/5-fluorouracil (5-FU)-resistant genes in in vitro human esophageal squamous cell carcinoma with transposons. METHODS After establishing transposon-tagged cells, we obtained CDDP/5-FU-resistant colonies. A polymerase chain reaction and sequencing were used to identify the transposon inserted site and candidate CDDP/5-FU resistant genes. Focusing on one candidate gene, we confirmed CDDP/5-FU resistance by comparing the IC50 between drug-resistant and wild-type cells. Furthermore, we investigated gene expression by a real-time polymerase chain reaction. Finally, we mediated the candidate gene level with small interfering RNA to confirm the resistance. RESULTS Thirty-nine candidate genes for CDDP/5-FU resistance were identified. Nineteen were for CDDP resistance and 27 were for 5-FU resistance. Seven genes, THUMP domain-containing protein 2 (THUMPD2), nuclear factor interleukin-3-regulated protein (NFIL3), tyrosine-protein kinase transmembrane receptor 2 (ROR2), C-X-C chemokine receptor type 4 (CXCR4), thrombospondin type-1 domain-containing protein 2 (THSD7B) alpha-parvin (PARVA) and TEA domain transcription factor 1 (TEAD1), were detected as candidate genes in both colonies. Regarding THUMPD2, its expression was downregulated and knocking down THUMPD2 suggested drug resistance in both drugs. CONCLUSIONS Thirty-nine candidate genes were identified with transposons. The downregulation of THUMPD2 was suggested to play a role in multidrug resistance in in vitro esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Masato Hayashi
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Shuhei Mayanagi
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Rieko Nakamura
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Koichi Suda
- Department of Surgery, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Testu Hayashida
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Norihito Wada
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
CDK7 inhibitor THZ1 inhibits MCL1 synthesis and drives cholangiocarcinoma apoptosis in combination with BCL2/BCL-XL inhibitor ABT-263. Cell Death Dis 2019; 10:602. [PMID: 31399555 PMCID: PMC6688996 DOI: 10.1038/s41419-019-1831-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease without effective targeted therapy. We screened a small-molecule library of 116 inhibitors targeting different targets of the cell cycle and discovered several kinases, including Cyclin-dependent kinase 7 (CDK7) as vulnerabilities in CCA. Analysis of multiple CCA data sets demonstrated that CDK7 was overexpressed in CCA tissues. Further studies demonstrated that CDK7 inhibitor THZ1 inhibited cell viability and induced apoptosis in CCA cells. We also showed that THZ1 inhibited CCA cell growth in a xenograft model. RNA-sequencing followed by Gene ontology analysis showed a striking impact of THZ1 on DNA-templated transcriptional programs. THZ1 downregulated CDK7-mediated phosphorylation of RNA polymerase II, indicative of transcriptional inhibition. A number of oncogenic transcription factors and survival proteins, like MCL1, FOSL1, and RUNX1, were repressed by THZ1. MCL1, one of the antiapoptotic BCL2 family members, was significantly inhibited upon THZ1 treatment. Accordingly, combining THZ1 with a BCL2/BCL-XL inhibitor ABT-263 synergized in impairing cell growth and driving apoptosis. Our results demonstrate CDK7 as a potential target in treating CCA. Combinations of CDK7 inhibition and BCL2/BCL-XL inhibition may offer a novel therapeutic strategy for CCA.
Collapse
|
18
|
Mori A, Masuda K, Ohtsuka H, Shijo M, Ariake K, Fukase K, Sakata N, Mizuma M, Morikawa T, Hayashi H, Nakagawa K, Motoi F, Naitoh T, Fujishima F, Unno M. FBXW7 modulates malignant potential and cisplatin-induced apoptosis in cholangiocarcinoma through NOTCH1 and MCL1. Cancer Sci 2018; 109:3883-3895. [PMID: 30302867 PMCID: PMC6272118 DOI: 10.1111/cas.13829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin ligase F‐box and WD repeat domain‐containing 7 (FBXW7) is responsible for degrading diverse oncoproteins and is considered a tumor suppressor in many human cancers. Inhibiting FBXW7 enhances the malignant potential of several cancers. In this study, we aimed to investigate the role of FBXW7 in cholangiocarcinoma. We found that FBXW7 expression was associated with clinicopathological outcomes in cholangiocarcinoma patients. Both disease‐free and overall survival were significantly worse in the low‐FBXW7 group than in the high‐FBXW7 group (P = .001 and P < .001, respectively). Multivariate analysis with the Cox proportional hazards model indicated that FBXW7 was the most important independent prognostic factor for disease‐free (P = .006) and overall (P = .0004) survival. We also showed that the two FBXW7 substrates, NOTCH1 and myeloid cell leukemia sequence 1 (MCL1), regulate cholangiocarcinoma progression. Depletion of FBXW7 resulted in NOTCH1 accumulation and increased cholangiocarcinoma cell migration and self‐renewal. Interestingly, when cells were stimulated with cis‐diamminedichloridoplatinum(II) (cisplatin), FBXW7 suppression induced MCL1 upregulation, which reduced the sensitivity of cholangiocarcinoma cells to apoptosis, indicating that FBXW7‐mediated ubiquitylation is context‐dependent. These results indicate that FBXW7 modulates the malignant potential of cholangiocarcinoma through independent regulation of NOTCH1 and MCL1.
Collapse
Affiliation(s)
- Akiko Mori
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Shijo
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoaki Sakata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Hayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
20
|
Obrist F, Michels J, Durand S, Chery A, Pol J, Levesque S, Joseph A, Astesana V, Pietrocola F, Wu GS, Castedo M, Kroemer G. Metabolic vulnerability of cisplatin-resistant cancers. EMBO J 2018; 37:embj.201798597. [PMID: 29875130 DOI: 10.15252/embj.201798597] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 01/09/2023] Open
Abstract
Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin-resistant non-small human cell lung cancer and ovarian cancer cell lines. Cisplatin-resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin-sensitive controls. The susceptibility of cisplatin-resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin-resistant clones, and glutamine supplementation rescued cisplatin-resistant clones from starvation-induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin-resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin-resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.
Collapse
Affiliation(s)
- Florine Obrist
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Judith Michels
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Department of Medical Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif Paris-Sud University, Villejuif, France
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Alexis Chery
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Sarah Levesque
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Adrien Joseph
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Valentina Astesana
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Federico Pietrocola
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Gen Sheng Wu
- Departments of Oncology and Pathology, Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maria Castedo
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France .,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France .,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Guidi N, Longo VD. Periodic fasting starves cisplatin-resistant cancers to death. EMBO J 2018; 37:embj.201899815. [PMID: 29875131 DOI: 10.15252/embj.201899815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Novella Guidi
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| |
Collapse
|
22
|
Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress) - a review. Fitoterapia 2018; 129:283-292. [PMID: 29852261 DOI: 10.1016/j.fitote.2018.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
Abstract
The herb of Nasturtium officinale is a raw material that has long been used in the traditional medicine of Iran, Azerbaijan, Morocco and Mauritius. Nowadays, this raw material is the object of numerous professional pharmacological studies that have demonstrated its antioxidant, anticancer, antibacterial, anti-inflammatory and cardioprotective properties. These therapeutic effects are caused by glucosinolates present in the plant, isothiocyanates, polyphenols (flavonoids, phenolic acids, proanthocyanidins), terpenes (including carotenoids), vitamins (B1, B2, B3, B6, E, C) and bioelements. The article presents the current state of phytochemical research on the generative and vegetative organs of the plant. A special spotlight is put on the main N. officinale secondary metabolites - glucosinolates. Attention is drawn to the important position of N. officinale in the production of healthy foods and in the production of cosmetics. A large part of the article is devoted to the importance of this species in phytoremediation processes used in the protection of soil environments and water reservoirs. The biotechnological research on this species has also been reviewed. Those studies are of particular importance not only due to the attractiveness of this species in phytotherapy and cosmetology, but also due to the deteriorating natural state of this species and the threat of extinction. The aim of this review is to promote N. officinale as a very valuable species, not yet fully discovered by global medicine.
Collapse
|
23
|
Bai Z, Gao M, Xu X, Zhang H, Xu J, Guan Q, Wang Q, Du J, Li Z, Zuo D, Zhang W, Wu Y. Overcoming resistance to mitochondrial apoptosis by BZML-induced mitotic catastrophe is enhanced by inhibition of autophagy in A549/Taxol cells. Cell Prolif 2018; 51:e12450. [PMID: 29493085 DOI: 10.1111/cpr.12450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Our previous in vitro study showed that 5-(3, 4, 5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti-cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML-treated A549 and A549/Taxol cells. METHODS Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC-1 staining, Annexin V-FITC/PI double-staining, a caspase-9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity. RESULTS Our data showed that BZML also exhibited desirable anti-cancer activity against drug-resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS-mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non-protective type of autophagy during BZML-induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML-induced MC in A549/Taxol cells. CONCLUSIONS Our data suggest that the anti-apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML-induced MC to overcome resistance to mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Meiqi Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Huijuan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianan Du
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
24
|
Yang F, Yi M, Liu Y, Wang Q, Hu Y, Deng H. Glutaredoxin-1 Silencing Induces Cell Senescence via p53/p21/p16 Signaling Axis. J Proteome Res 2018; 17:1091-1100. [DOI: 10.1021/acs.jproteome.7b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fan Yang
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meiqi Yi
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Liu
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Yadong Hu
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Renmin South Road, Chengdu 610000, China
| | - Haiteng Deng
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
26
|
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2017; 413:122-134. [PMID: 29113871 DOI: 10.1016/j.canlet.2017.11.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
27
|
Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017; 8:15996-16016. [PMID: 27911871 PMCID: PMC5362541 DOI: 10.18632/oncotarget.13723] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
All classic, non-surgical anticancer approaches like chemotherapy, radiotherapy or photodynamic therapy kill cancer cells by inducing severe oxidative stress. Even tough chemo- and radiotherapy are still a gold standard in cancer treatment, the identification of non-toxic compounds that enhance their selectivity, would allow for lowering their doses, reduce side effects and risk of second cancers. Many natural products have the ability to sensitize cancer cells to oxidative stress induced by chemo- and radiotherapy by limiting antioxidant capacity of cancer cells. Blocking antioxidant defense in tumors decreases their ability to balance oxidative insult and results in cell death. Though one should bear in mind that the same natural compound often exerts both anti-oxidant and pro-oxidant properties, depending on concentration used, cell type, exposure time and environmental conditions. Here we present a comprehensive overview of natural products that inhibit major antioxidant defense mechanisms in cancer cells and discuss their potential in clinical application.
Collapse
Affiliation(s)
- Alicja Sznarkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Kostecka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Meller
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Piotr Bielawski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
28
|
Li X, Jiang Z, Feng J, Zhang X, Wu J, Chen W. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino) phenyl carbamoylsulfanyl] propionic acid, a glutathione reductase inhibitor, induces G 2/M cell cycle arrest through generation of thiol oxidative stress in human esophageal cancer cells. Oncotarget 2017; 8:61846-61860. [PMID: 28977909 PMCID: PMC5617469 DOI: 10.18632/oncotarget.18705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant cancer with poor response to both of chemotherapy and radiotherapy. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino) phenyl carbamoylsulfanyl] propionic acid (2-AAPA), an irreversible inhibitor of glutathione reductase (GR), is able to induce intracellular oxidative stress, and has shown anticancer activity in many cancer cell lines. In this study, we investigated the effects of 2-AAPA on the cell proliferation, cell cycle and apoptosis and aimed to explore its mechanism of action in human esophageal cancer TE-13 cells. It was found that 2-AAPA inhibited growth of ESCC cells in a dose-dependent manner and it did not deplete reduced glutathione (GSH), but significantly increased the oxidized form glutathione (GSSG), resulting in decreased GSH/GSSG ratio. In consequence, significant reactive oxygen species (ROS) production was observed. The flow cytometric analysis revealed that 2-AAPA inhibited growth of esophageal cancer cells through arresting cell cycle in G2/M phase, but apoptosis-independent mechanism. The G2/M arrest was partially contributed by down-regulation of protein expression of Cdc-25c and up-regulation of phosphorylated Cdc-2 (Tyr15), Cyclin B1 (Ser147) and p53. Meanwhile, 2-AAPA-induced thiol oxidative stress led to increased protein S-glutathionylation, which resulted in α-tubulin S-glutathionylation-dependent depolymerization of microtubule in the TE-13 cells. In conclusion, we identified that 2-AAPA as an effective thiol oxidative stress inducer and proliferation of TE-13 cells were suppressed by G2/M phase cell cycle arrest, mainly, through α-tubulin S-glutathionylation-mediated microtubule depolymerization. Our results may introduce new target and approach for esophageal cancer therapy through generation of GR-mediated thiol oxidative stress.
Collapse
Affiliation(s)
- Xia Li
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Zhiming Jiang
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jianguo Feng
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | | | - Junzhou Wu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wei Chen
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
29
|
Lawson AP, Bak DW, Shannon DA, Long MJC, Vijaykumar T, Yu R, Oualid FE, Weerapana E, Hedstrom L. Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry. Oncotarget 2017; 8:51296-51316. [PMID: 28881649 PMCID: PMC5584250 DOI: 10.18632/oncotarget.17261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/22/2017] [Indexed: 01/14/2023] Open
Abstract
Cruciferous vegetables such as broccoli and kale have well documented chemopreventative and anticancer effects that are attributed to the presence of isothiocyanates (ITCs). ITCs modulate the levels of many oncogenic proteins, but the molecular mechanisms of ITC action are not understood. We previously reported that phenethyl isothiocyanate (PEITC) inhibits two deubiquitinases (DUBs), USP9x and UCH37. DUBs regulate many cellular processes and DUB dysregulation is linked to the pathogenesis of human diseases including cancer, neurodegeneration, and inflammation. Using SILAC assisted quantitative mass spectrometry, here we identify 9 new PEITC-DUB targets: USP1, USP3, USP10, USP11, USP16, USP22, USP40, USP48 and VCPIP1. Seven of these PEITC-sensitive DUBs have well-recognized roles in DNA repair or chromatin remodeling. PEITC both inhibits USP1 and increases its ubiquitination and degradation, thus decreasing USP1 activity by two mechanisms. The loss of USP1 activity increases the level of mono-ubiquitinated DNA clamp PCNA, impairing DNA repair. Both the inhibition/degradation of USP1 and the increase in mono-ubiquitinated PCNA are new activities for PEITC that can explain the previously recognized ability of ITCs to enhance cancer cell sensitivity to cisplatin treatment. Our work also demonstrates that PEITC reduces the mono-ubiquityl histones H2A and H2B. Understanding the mechanism of action of ITCs should facilitate their use as therapeutic agents.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, Waltham, MA 02453-9110, USA
| | - Daniel W Bak
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - D Alexander Shannon
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, MA 02453-9110, USA.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tushara Vijaykumar
- Graduate Program in Molecular and Cellular Biology, Brandeis University, Waltham, MA 02453-9110, USA.,Current address: Sanofi Genzyme, Framingham, MA 01701, USA
| | - Runhan Yu
- Department of Chemistry, Brandeis University, Waltham, MA 02453-9110, USA
| | | | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, MA 02453-9110, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02453-9110, USA
| |
Collapse
|