1
|
Zeng F, Du S, Wu M, Dai C, Li J, Wang J, Hu G, Cai P, Wang L. The oncogenic kinase TOPK upregulates in psoriatic keratinocytes and contributes to psoriasis progression by regulating neutrophils infiltration. Cell Commun Signal 2024; 22:386. [PMID: 39090602 PMCID: PMC11292866 DOI: 10.1186/s12964-024-01758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive. METHODS GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice. RESULTS We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression. CONCLUSIONS This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuaixian Du
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zeng F, Lu H, Wu M, Dai C, Li J, Wang J, Hu G. Topical application of TOPK inhibitor OTS514 suppresses psoriatic progression by inducing keratinocytes cell cycle arrest and apoptosis. Exp Dermatol 2023; 32:1823-1833. [PMID: 37578092 DOI: 10.1111/exd.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
T-LAK cell-oriented protein kinase (TOPK) potently promotes malignant proliferation of tumour cells and is considered as a maker of tumour progression. Psoriasis is a common inflammatory skin disease characterized by abnormal proliferation of keratinocytes. However, the role of TOPK in psoriasis has not been well elucidated. This study aims to investigate the expression and role of TOPK in psoriasis, and the role of TOPK inhibitor in psoriasis attenuation. Gene Expression Omnibus datasets derived from psoriasis patients and psoriatic model mice were screened for analysis. Skin specimens from psoriasis patients were collected for TOPK immunohistochemical staining to investigate the expression and localization of TOPK. Next, psoriatic mice model was established to further confirm TOPK expression pattern. Then, TOPK inhibitor was applied to investigate the role of TOPK in psoriasis progression. Finally, cell proliferation assay, apoptosis assay and cell cycle analysis were performed to investigate the potential mechanism involved. Our study showed that TOPK was upregulated in the lesions of both psoriasis patients and psoriatic model mice, and TOPK levels were positively associated with psoriasis progression. TOPK was upregulated in psoriatic lesions and expressed predominantly by epidermal keratinocytes. In addition, TOPK levels in epidermal keratinocytes were positively correlated with epidermal hyperplasia. Furthermore, topical application of TOPK inhibitor OTS514 obviously alleviated disease severity and epidermal hyperplasia. Mechanismly, inhibiting TOPK induces G2/M phase arrest and apoptosis of keratinocytes, thereby attenuating epidermal hyperplasia and disease progression. Collectively, this study identifies that upregulation of TOPK in keratinocytes promotes psoriatic progression, and inhibiting TOPK attenuates epidermal hyperplasia and psoriatic progression.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhang H, Dong QQ, Shu HP, Tu YC, Liao QQ, Yao LJ. TOPK Activation Exerts Protective Effects on Cisplatin-induced Acute Kidney Injury. Curr Med Sci 2022; 42:742-753. [PMID: 35678915 DOI: 10.1007/s11596-022-2545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE T-LAK-cell-originated protein kinase (TOPK), a PSD95-Disc large-ZO1 (PDZ) binding kinase (PBK), is a novel member of the mitogen-activated protein kinase (MAPK) family. Studies have shown that TOPK plays a critical role in the function of tumor cells, including apoptosis and mitosis. However, little is known on the effect of TOPK in cisplatin-induced acute kidney injury (CP-AKI). This study aimed to investigate the role and mechanism of TOPK in CP-AKI. METHODS Cisplatin was administered to C57BL/6 mice and cultured kidney tubular epithelial cells (TECs) to establish the CP-AKI murine or cellular models. TECs were then stimulated with the specific inhibitor of TOPK OTS514 or transfected with the recombinant-activated plasmid TOPK-T9E to inhibit or activate TOPK. The TECs were treated with AKT inhibitor VIII following stimulation with OTS514 or cisplatin. Western blotting and flow cytometry were used to evaluate the cell cycle and apoptosis of TECs. RESULTS The analysis revealed that the TOPK activity was significantly suppressed by cisplatin, both in vivo and in vitro. Furthermore, the pharmacological inhibition of TOPK by OTS514, a specific inhibitor of TOPK, exacerbated the cisplatin-induced cell cycle arrest in the G2/M phase and apoptosis of cultured TECs. Moreover, the TOPK activation via the TOPK-T9E plasmid transfection could partially reverse the cell cycle arrest at the G2/M phase and apoptosis of cisplatin-treated TECs. In addition, AKT/protein kinase B (PKB), as a TOPK target protein, was inhibited by cisplatin in cultured TECs. The pharmaceutical inhibition of AKT further aggravated the apoptosis of TECs induced by cisplatin or TOPK inhibition. TOPK systematically mediated the apoptosis via the AKT pathway in the CP-AKI cell model. CONCLUSION These results indicate that TOPK activation protects against CP-AKI by ameliorating the G2/M cell cycle arrest and cell apoptosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing-Qing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Pan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian-Qian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
5
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
6
|
Wang L, Zhang Z, Ge R, Zhang J, Liu W, Mou K, Lv S, Mu X. Gossypetin Inhibits Solar-UV Induced Cutaneous Basal Cell Carcinoma Through Direct Inhibiting PBK/TOPK Protein Kinase. Anticancer Agents Med Chem 2020; 19:1029-1036. [PMID: 30827262 DOI: 10.2174/1871520619666190301123131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/23/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Skin photoaging, skin inflammation and skin cancer are related with excessive exposure to solar UV. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a member of the serine/threonine protein kinase, which regulates the signaling cascades of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal regulated kinase 1/2 (ERK1/2). PBK/TOPK plays a significant role in solar-UV-induced cutaneous basal cell carcinoma (BCC), and targeting PBK/TOPK can be supposed to treat and prevent cutaneous BCC. METHODS The pathological feature and the expression level of PBK/TOPK in cutaneous BCC tissues of human were studied in clinical samples. SUV-induced the phosphorylation of p38 MAPK and ERK1/2 were demonstrated ex vivo. Moreover, the interaction between Gossypetin and PBK/TOPK were detected by in vitro kinase assay and Microscale thermophoresis (MST) assay. Furthermore, the effect of Gossypetin to solar UV-induced the activity of PBK/TOPK were detected ex vivo and in vivo. RESULTS The clinical samples showed that the expression levels of PBK/TOPK, phosphor-p38 MAPK and phosphor- ERK1/2 were up-regulated in cutaneous BCC tissues of human. The expression of phosphor-p38 MAPK or phosphor-ERK1/2 increased in a dose and time dependent manner after solar UV treatment in HaCaT cells. MTT cytotoxicity assay results showed that Gossypetin has no effect on HaCaT cells. In vitro kinase assay and MST assay results showed that Gossypetin bound with PBK/TOPK and suppressed PBK/TOPK activity. Ex vivo results showed Gossypetin inhibited solar UV-induced phosphorylation of PBK/TOPK, p38 MAPK, ERK1/2 and H2AX by suppressing PBK/TOPK activity. In vivo test results indicated that Gossypetin suppressed solar UV-induced increase of PBK/TOPK, phosphor-p38 MAPK, phosphor-ERK1/2 and phosphor- H2AX in SKH-1 hairless mice. CONCLUSION Our data demonstrated that Gossypetin can alleviate solar-UV-induced cutaneous BCC by blocking PBK/TOPK, and Gossypetin could be a remarkable agent for treating solar-UV induced cutaneous basal cell carcinoma.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenli Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shemin Lv
- Department of Biochemistry and Molecular Biology, Basic Medical Science of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
7
|
Zhao R, Huang H, Choi BY, Liu X, Zhang M, Zhou S, Song M, Yin F, Chen H, Shim JH, Bode AM, Dong Z, Lee MH. Cell growth inhibition by 3-deoxysappanchalcone is mediated by directly targeting the TOPK signaling pathway in colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152813. [PMID: 31035049 DOI: 10.1016/j.phymed.2018.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most common causes of cancer death worldwide. Unfortunately, chemotherapies are limited due to many complications and development of resistance and recurrence. The T-lymphokine-activated killer cell-originated protein kinase (TOPK) is highly expressed and activated in colon cancer, and plays an important role in inflammation, proliferation, and survival of cancer cells. Therefore, suppressing TOPK activity and its downstream signaling cascades is considered to be a rational therapeutic/preventive strategy against colon cancers. PURPOSE 3-Deoxysappanchalcone (3-DSC), a component of Caesalpinia sappan L., is a natural oriental medicine. In this study, we investigated the effects of 3-DSC on colon cancer cell growth and elucidated its underlying molecular mechanism of targeting TOPK. STUDY DESIGN AND METHODS To evaluate the effects of 3-DSC against colon cancer, we performed cell proliferation assays, propidium iodide- and annexin V-staining analyses and Western blotting. Targeting TOPK by 3-DSC was identified by a kinase-binding assay and computational docking models. RESULTS 3-DSC inhibited the kinase activity of TOPK, but not mitogen-activated protein kinase (MEK). The direct binding of 3-DSC with TOPK was explored using a computational docking model and binding assay in vitro and ex vivo. 3-DSC inhibited colon cancer cell proliferation and anchorage-independent cell growth, and induced G2/M cell cycle arrest and apoptosis. Treatment of colon cancer cells with 3-DSC induced expression of protein that are involved in cell cycle (cyclin B1) and apoptosis (cleaved-PARP, cleaved-caspase-3, and cleaved-caspase-7), and suppressed protein expressions of extracellular signal-regulated kinase (ERK)-1/2, ribosomal S6 kinase (RSK), and c-Jun, which are regulated by the upstream kinase, TOPK. CONCLUSION 3-DSC suppresses colon cancer cell growth by directly targeting the TOPK- mediated signaling pathway.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Hai Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, South Korea
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Man Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Silei Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 58554, South Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China; The Hormel Institute, University of Minnesota, Austin MN55912, USA; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.
| |
Collapse
|
8
|
Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase. Biosci Rep 2019; 39:BSR20181692. [PMID: 30898980 PMCID: PMC6454021 DOI: 10.1042/bsr20181692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 01/17/2023] Open
Abstract
Baicalin is the main bioactive component extracted from the traditional Chinese medicine Baical Skullcap Root, and its anti-tumor activity has been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in many cancer cells and stimulates the tumorigenic properties, and so, it is a pivotal target for agent to cure cancers. We reported for the first time that baicalin suppressed PBK/TOPK activities by directly binding with PBK/TOPK in vitro and in vivo. Ex vivo studies showed that baicalin suppressed PBK/TOPK activity in JB6 Cl41 cells and H441 lung cancer cells. Moreover, knockdown of PBK/TOPK in H441 cells decreased their sensitivity to baicalin. In vivo study indicated that injection of baicalin in H441 tumor-bearing mice effectively suppressed cancer growth. The PBK/TOPK downstream signaling molecules Histone H3 and ERK2 in tumor tissues were also decreased after baicalin treatment. Taken together, baicalin can inhibit proliferation of lung cancer cells as a PBK/TOPK inhibitor both in vitro and in vivo.
Collapse
|
9
|
Zhang Y, Yang X, Wang R, Zhang X. Prognostic Value of PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) in Patients with Cancer. J Cancer 2019; 10:131-137. [PMID: 30662533 PMCID: PMC6329853 DOI: 10.7150/jca.28216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background: PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) plays a critical role in tumorigenesis and cancer progression. However, the prognostic roles in cancer patients are inconsistent or even controversial. Therefore, we performed a meta-analysis to investigate the prognostic value of PBK/TOPK in cancers. Methods: Literature search was performed using several online databases (PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar, National Knowledge Infrastructure and Wanfang) for eligible articles published up to May 1, 2018. The relationship between PBK/TOPK expression and prognosis in cancers was investigated by using pooled hazard ratios (HRs) with 95% confidence intervals (CIs) through STATA 12.0 software. Results: Totally 20 eligible studies were included in this meta-analysis. The pooled results showed that carriers with high protein expression of PBK/TOPK were significantly associated with poor OS (HR: 1.69, 95% CI: 1.33-2.04) in various cancers, and patients with increased PBK/TOPK protein expression were significantly correlated with inferior RFS (HR: 1.63, 95% CI: 1.02-2.24) and short DFS (HR: 1.69, 95% CI: 1.16-2.23). Conclusions: The findings suggest that PBK/TOPK protein expression might serve as a prognostic tumor marker in cancers.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Xianjin Yang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Rong Wang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Xu Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| |
Collapse
|
10
|
Targeting PRPK and TOPK for skin cancer prevention and therapy. Oncogene 2018; 37:5633-5647. [PMID: 29904102 PMCID: PMC6195829 DOI: 10.1038/s41388-018-0350-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 02/02/2023]
Abstract
Solar ultraviolet (sUV) irradiation is a major environmental carcinogen that can cause inflammation and skin cancer. The costs and morbidity associated with skin cancer are increasing, and therefore identifying molecules that can help prevent skin carcinogenesis is important. In this study, we identified the p53-related protein kinase (PRPK) as a novel oncogenic protein that is phosphorylated by the T-LAK cell-originated protein kinase (TOPK). Knockdown of TOPK inhibited PRPK phosphorylation and conferred resistance to solar-simulated light (SSL)-induced skin carcinogenesis in mouse models. In the clinic, acute SSL irradiation significantly increased epidermal thickness as well as total protein and phosphorylation levels of TOPK and PRPK in human skin tissues. We identified two PRPK inhibitors, FDA-approved rocuronium bromide (Zemuron®) or betamethasone 17-valerate (Betaderm®) that could attenuate TOPK-dependent PRPK signaling. Importantly, topical application of either rocuronium bromide or betamethasone decreased SSL-induced epidermal hyperplasia, neovascularization, and cutaneous squamous cell carcinoma (cSCC) development in SKH1 (Crl: SKH1-Hrhr) hairless mice by inhibiting PRPK activation, and also reduced expression of the proliferation and oncogenesis markers, COX-2, cyclin D1, and MMP-9. This study is the first to demonstrate that targeting PRPK could be useful against sUV-induced cSCC development.
Collapse
|
11
|
Han Z, Zhao H, Tao Z, Wang R, Fan Z, Luo Y, Luo Y, Ji X. TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia. Aging Dis 2018; 9:235-248. [PMID: 29896413 PMCID: PMC5963345 DOI: 10.14336/ad.2017.0328] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/28/2017] [Indexed: 11/11/2022] Open
Abstract
T-LAK-cell-originated protein kinase (TOPK) is a newly identified member of the mitogen-activated protein kinase family. Our previous study has showed that TOPK has neuroprotective effects against cerebral ischemia-reperfusion injury. Here, we investigated the involvement of TOPK in microglia/ macrophage M1/M2 polarization and the underlying epigenetic mechanism. The expression profiles, co-localization and in vivo interaction of TOPK, M1/M2 surface markers, and HDAC1/HDAC2 were detected after middle cerebral artery occlusion models (MCAO). We demonstrated that TOPK, the M2 surface markers CD206 and Arg1, p-HDAC1, and p-HDAC2 showed a similar pattern of in vivo expression over time after MCAO. TOPK co-localized with CD206, p-HDAC1, and p-HDAC2 positive cells, and was shown to bind to HDAC1 and HDAC2. In vitro study showed that TOPK overexpression in BV2 cells up-regulated CD206 and Arg1, and promoted the phosphorylation of HDAC1 and HDAC2. In addition, TOPK overexpression also prevented LPS plus IFN-γ-induced M1 transformation through reducing release of inflammatory factor of M1 phenotype TNF-α, IL-6 and IL-1β, and increasing TGF-β release and the mRNA levels of TGF-β and SOCS3, cytokine of M2 phenotype and its regulator. Moreover, the increased TNF-α induced by TOPK siRNA could be reversed by HDAC1/HDAC2 inhibitor, FK228. TOPK overexpression increased M2 marker expression in vivo concomitant with the amelioration of cerebral injury, neurological functions deficits, whereas TOPK silencing had the opposite effects, which were completely reversed by the FK228 and partially by the SAHA. These findings suggest that TOPK positively regulates microglia/macrophage M2 polarization by inhibiting HDAC1/HDAC2 activity, which may contribute to its neuroprotective effects against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ziping Han
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhen Tao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Rongliang Wang
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhibin Fan
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yinghao Luo
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,3Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Xunming Ji
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Geriatric Medical Research Center, Beijing 100053, China
| |
Collapse
|
12
|
Xue P, Wang Y, Zeng F, Xiu R, Chen J, Guo J, Yuan P, Liu L, Xiao J, Lu H, Wu D, Pan H, Lu M, Zhu F, Shi F, Duan Q. Paeonol suppresses solar ultraviolet-induced skin inflammation by targeting T-LAK cell-originated protein kinase. Oncotarget 2018; 8:27093-27104. [PMID: 28404919 PMCID: PMC5432320 DOI: 10.18632/oncotarget.15636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Excessive exposure to solar UV (SUV) is related with numerous human skin disorders, such as skin inflammation, photoaging and carcinogenesis. T-LAK cell- originated protein kinase (TOPK), an upstream of p38 mitogen-activated protein kinase (p38) and c-Jun N-terminal kinases (JNKs), plays an important role in SUV -induced skin inflammation, and targeting TOPK has already been a strategy to prevent skin inflammation. In this study, we found that the expression of TOPK, phosphorylation of p38 or JNKs was increased in human solar dermatitis tissues. The level of phosphorylation of p38 or JNKs increased in a dose and time dependent manner in HaCat cells or JB6 Cl41 cells after SUV treatment. Paeonol is an active component isolated from traditional Chinese herbal medicines, and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2H-tetrazdium) assay showed that it has no toxicity to cells. Microscale thermophoresis (MST) assay showed that paeonol can bind TOPK ex vivo. In vitro kinase assay showed paeonol can inhibit TOPK activity. Ex vivo studies further showed paeonol suppressed SUV-induced phosphorylation level of p38, JNKs, MSK1 and histone H2AX by inhibiting TOPK activity in a time and dose dependent manner. Paeonol inhibited the secretion of IL-6 and TNF-α in HaCat and JB6 cells ex vivo. In vivo studies demonstrated that paeonol inhibited SUV-induced increase of TOPK, the phosphorylation of p38, JNKs and H2AX, and the secretion of IL-6 and TNF-α in Babl/c mouse. In summary, our data indicated a protective role of paeonol against SUV-induced inflammation by targeting TOPK, and paeonol could be a promising agent for the treatment of SUV-induced skin inflammation.
Collapse
Affiliation(s)
- Peipei Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanfan Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruijuan Xiu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingwen Chen
- Department of Dermatology of The General Hospital of Air Force, Beijing, 100142, PR China
| | - Jinguang Guo
- Department of Dermatology of The General Hospital of Air Force, Beijing, 100142, PR China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juanjuan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingmin Lu
- Department of Dermatology of The General Hospital of Air Force, Beijing, 100142, PR China
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Shi
- Department of Dermatology of The General Hospital of Air Force, Beijing, 100142, PR China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
13
|
Gao G, Zhang T, Wang Q, Reddy K, Chen H, Yao K, Wang K, Roh E, Zykova T, Ma W, Ryu J, Curiel-Lewandrowski C, Alberts D, Dickinson SE, Bode AM, Xing Y, Dong Z. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK. Mol Cancer Ther 2017; 16:1843-1854. [PMID: 28655782 DOI: 10.1158/1535-7163.mct-17-0212] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/12/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR.
Collapse
Affiliation(s)
- Ge Gao
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kanamata Reddy
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Tatyana Zykova
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - David Alberts
- The University of Arizona Cancer Center, Tucson, Arizona
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ying Xing
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China.
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China
| |
Collapse
|