1
|
Jang J, Cho EH, Cho Y, Ganzorig B, Kim KY, Kim MG, Kim C. Environment-Sensitive Ectodomain Shedding of Epithin/PRSS14 Increases Metastatic Potential of Breast Cancer Cells by Producing CCL2. Mol Cells 2022; 45:564-574. [PMID: 35950457 PMCID: PMC9385564 DOI: 10.14348/molcells.2022.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Epithin/PRSS14 is a membrane serine protease that plays a key role in tumor progression. The protease exists on the cell surface until its ectodomain shedding, which releases most of the extracellular domain. Previously, we showed that the remaining portion on the membrane undergoes intramembrane proteolysis, which results in the liberation of the intracellular domain and the intracellular domainmediated gene expression. In this study, we investigated how the intramembrane proteolysis for the nuclear function is initiated. We observed that ectodomain shedding of epithin/PRSS14 in mouse breast cancer 4T1 cells increased depending on environmental conditions and was positively correlated with invasiveness of the cells and their proinvasive cytokine production. We identified selenite as an environmental factor that can induce ectodomain shedding of the protease and increase C-C motif chemokine ligand 2 (CCL2) secretion in an epithin/PRSS14-dependent manner. Additionally, by demonstrating that the expression of the intracellular domain of epithin/PRSS14 is sufficient to induce CCL2 secretion, we established that epithin/PRSS14- dependent shedding and its subsequent intramembrane proteolysis are responsible for the metastatic conversion of 4T1 cells under these conditions. Consequently, we propose that epithin/PRSS14 can act as an environment-sensing receptor that promotes cancer metastasis by liberating the intracellular domain bearing transcriptional activity under conditions promoting ectodomain shedding.
Collapse
Affiliation(s)
- Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Youngkyung Cho
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Binderya Ganzorig
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Dioguardi M, Spirito F, Sovereto D, La Femina L, Campobasso A, Cazzolla AP, Di Cosola M, Zhurakivska K, Cantore S, Ballini A, Lo Muzio L, Troiano G. Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. BIOLOGY 2022; 11:biology11050651. [PMID: 35625379 PMCID: PMC9138061 DOI: 10.3390/biology11050651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide; in fact, it is among the top six neoplasms, with an incidence of about 370,000 new cases per year. The 5-year survival rate, despite chemotherapy, radiotherapy, and surgery for stages 3 and 4 of the disease, is low. MicroRNAs (miRNAs) are a large group of small single-stranded non-coding endogenous RNAs, approximately 18-25 nucleotides in length, that play a significant role in the post-transcriptional regulation of genes. Recent studies investigated the tissue expression of miR-155 as a prognostic biomarker of survival in HNSCC. The purpose of this systematic review is, therefore, to investigate and summarize the current findings in the literature concerning the potential prognostic expression of tissue miR-155 in patients with HNSCC. The revision was performed according to PRISMA indications: three databases (PubMed, Scopus, and the Cochrane Register) were consulted through the use of keywords relevant to the revision topic. Totally, eight studies were included and meta-analyzed. The main results report for the aggregate HR values of 1.40 for OS, 1.36 for DFS, and 1.09 for DPS. Finally, a trial sequencing analysis was also conducted to test the robustness of the proposed meta-analysis.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
- Correspondence:
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lucia La Femina
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Alessandra Campobasso
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Stefania Cantore
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.C.); (A.B.)
- Faculty of Dentistry (Fakulteti i Mjekësisë Dentare-FMD), University of Medicine, 1001 Tirana, Albania
| | - Andrea Ballini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.C.); (A.B.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| |
Collapse
|
3
|
Dai YH, Wang YF, Shen PC, Lo CH, Yang JF, Lin CS, Chao HL, Huang WY. Gene-associated methylation status of ST14 as a predictor of survival and hormone receptor positivity in breast Cancer. BMC Cancer 2021; 21:945. [PMID: 34418985 PMCID: PMC8380334 DOI: 10.1186/s12885-021-08645-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background Genomic profiles of specific gene sets have been established to guide personalized treatment and prognosis for patients with breast cancer (BC). However, epigenomic information has not yet been applied in a clinical setting. ST14 encodes matriptase, a proteinase that is widely expressed in BC with reported prognostic value. Methods In this present study, we evaluated the effect of ST14 DNA methylation (DNAm) on overall survival (OS) of patients with BC as a representative example to promote the use of the epigenome in clinical decisions. We analyzed publicly available genomic and epigenomic data from 1361 BC patients. Methylation was characterized by the β-value from CpG probes based on sequencing with the Illumina Human 450 K platform. Results A high mean DNAm (β > 0.6779) across 34 CpG probes for ST14, as the gene-associated methylation (GAM) pattern, was associated with a longer OS after adjusting age, stage, histology and molecular features in Cox model (p value < 0.001). A high GAM status was also associated with a higher XBP1 expression level and higher proportion of hormone-positive BC (p value < 0.001). Pathway analysis revealed that altered GAM was related to matrisome-associated pathway. Conclusions Here we show the potential role of ST14 DNAm in BC prognosis and warrant further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08645-3.
Collapse
Affiliation(s)
- Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Ying-Fu Wang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Cheng-Hsiang Lo
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Jen-Fu Yang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Hsing-Lung Chao
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Kim KY, Cho EH, Yoon M, Kim MG. Critical Adjuvant Influences on Preventive Anti-Metastasis Vaccine Using a Structural Epitope Derived from Membrane Type Protease PRSS14. Immune Netw 2020; 20:e33. [PMID: 32895620 PMCID: PMC7458796 DOI: 10.4110/in.2020.20.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023] Open
Abstract
We tested how adjuvants effect in a cancer vaccine model using an epitope derived from an autoactivation loop of membrane-type protease serine protease 14 (PRSS14; loop metavaccine) in mouse mammary tumor virus (MMTV)-polyoma middle tumor-antigen (PyMT) system and in 2 other orthotopic mouse systems. Earlier, we reported that loop metavaccine effectively prevented progression and metastasis regardless of adjuvant types and TH types of hosts in tail-vein injection systems. However, the loop metavaccine with Freund's complete adjuvant (CFA) reduced cancer progression and metastasis while that with alum, to our surprise, were adversely affected in 3 tumor bearing mouse models. The amounts of loop peptide specific antibodies inversely correlated with tumor burden and metastasis, meanwhile both TH1 and TH2 isotypes were present regardless of host type and adjuvant. Tumor infiltrating myeloid cells such as eosinophil, monocyte, and neutrophil were asymmetrically distributed among 2 adjuvant groups with loop metavaccine. Systemic expression profiling using the lymph nodes of the differentially immunized MMTV-PyMT mouse revealed that adjuvant types, as well as loop metavaccine can change the immune signatures. Specifically, loop metavaccine itself induces TH2 and TH17 responses but reduces TH1 and Treg responses regardless of adjuvant type, whereas CFA but not alum increased follicular TH response. Among the myeloid signatures, eosinophil was most distinct between CFA and alum. Survival analysis of breast cancer patients showed that eosinophil chemokines can be useful prognostic factors in PRSS14 positive patients. Based on these observations, we concluded that multiple immune parameters are to be considered when applying a vaccine strategy to cancer patients.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| |
Collapse
|
5
|
Yao J, Xue X, Qu D, Westphalen CB, Ge Y, Zhang L, Li M, Gao T, Chandrakesan P, Vega KJ, Peng J, An G, Weygant N. Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochim Biophys Sin (Shanghai) 2020; 52:638-653. [PMID: 32395755 DOI: 10.1093/abbs/gmaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Identifying early-stage cancer patients at risk for progression is a major goal of biomarker research. This report describes a novel 19-gene signature (19-GCS) that predicts stage I lung adenocarcinoma (LAC) recurrence and response to therapy and performs comparably in pancreatic adenocarcinoma (PAC), which shares LAC molecular traits. Kaplan-Meier, Cox regression, and cross-validation analyses were used to build the signature from training, test, and validation sets comprising 831 stage I LAC transcriptomes from multiple independent data sets. A statistical analysis was performed using the R language. Pathway and gene set enrichment were used to identify underlying mechanisms. 19-GCS strongly predicts overall survival and recurrence-free survival in stage I LAC (P=0.002 and P<0.001, respectively) and in stage I-II PAC (P<0.0001 and P<0.0005, respectively). A multivariate cox regression analysis demonstrated the independence of 19-GCS from significant clinical factors. Pathway analyses revealed that 19-GCS high-risk LAC and PAC tumors are characterized by increased proliferation, enhanced stemness, DNA repair deficiency, and compromised MHC class I and II antigen presentation along with decreased immune infiltration. Importantly, high-risk LAC patients do not appear to benefit from adjuvant cisplatin while PAC patients derive additional benefit from FOLFIRINOX compared with gemcitabine-based regimens. When validated prospectively, this proof-of-concept biomarker may contribute to tailoring treatment, recurrence reduction, and survival improvements in early-stage lung and pancreatic cancers.
Collapse
Affiliation(s)
- Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinying Xue
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Dongfeng Qu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, 73103, OK, USA
- Stephenson Cancer Center, Oklahoma City, 73104, OK, USA
| | - C Benedikt Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, Ludwig Maximilian University of Munich, 81377, Munich, Germany
| | - Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Liyang Zhang
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manyu Li
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Parthasarathy Chandrakesan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, 73103, OK, USA
- Stephenson Cancer Center, Oklahoma City, 73104, OK, USA
| | - Kenneth J Vega
- Division of Gastroenterology and Hepatology, Augusta University, Augusta, 30912, GA, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou 350122, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou 350122, China
| |
Collapse
|
6
|
Intramembrane proteolysis of an extracellular serine protease, epithin/PRSS14, enables its intracellular nuclear function. BMC Biol 2020; 18:60. [PMID: 32493324 PMCID: PMC7271384 DOI: 10.1186/s12915-020-00787-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Epithin/PRSS14, a type II transmembrane serine protease, is an emerging target of cancer therapy because of its critical roles in tumor progression and metastasis. In many circumstances, the protease, through its ectodomain shedding, exists as a soluble form and performs its proteolytic functions in extracellular environments increasing cellular invasiveness. The seemingly functional integrity of the soluble form raises the question of why the protease is initially made as a membrane-associated protein. RESULTS In this report, we show that the epithin/PRSS14 intracellular domain (EICD) can be released from the membrane by the action of signal peptide peptidase-like 2b (SPPL2b) after ectodomain shedding. The EICD preferentially localizes in the nucleus and can enhance migration, invasion, and metastasis of epithelial cancer when heterologously expressed. Unbiased RNA-seq analysis and subsequent antibody arrays showed that EICD could control the gene expression of chemokines involved in cell motility, by increasing their promoter activities. Finally, bioinformatics analysis provided evidence for the clinical significance of the intramembrane proteolysis of epithin/PRSS14 by revealing that the poor survival of estrogen receptor (ER)-negative breast cancer patients with high epithin/PRSS14 expression is further worsened by high levels of SPPL2b. CONCLUSIONS These results show that ectodomain shedding of epithin/PRSS14 can initiate a unique and synchronized bidirectional signal for cancer metastasis: extracellularly broadening proteolytic modification of the surrounding environment and intracellularly reprogramming the transcriptome for metastatic conversion. Clinically, this study also suggests that the intracellular function of epithin/PRSS14 should be considered for targeting this protease for anti-cancer treatment.
Collapse
|
7
|
Yoon J, Cho Y, Kim KY, Yoon MJ, Lee HS, Jeon SD, Cho Y, Kim C, Kim MG. A JUN N-terminal kinase inhibitor induces ectodomain shedding of the cancer-associated membrane protease Prss14/epithin via protein kinase CβII. J Biol Chem 2020; 295:7168-7177. [PMID: 32241917 PMCID: PMC7242708 DOI: 10.1074/jbc.ra119.011206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Serine protease 14 (Prss14)/epithin is a transmembrane serine protease that plays essential roles in tumor progression and metastasis and therefore is a promising target for managing cancer. Prss14/epithin shedding may underlie its activity in cancer and worsen outcomes; accordingly, a detailed understanding of the molecular mechanisms in Prss14/epithin shedding may inform the design of future cancer therapies. On the basis of our previous observation that an activator of PKC, phorbol 12-myristate 13-acetate (PMA), induces Prss14/epithin shedding, here we further investigated the intracellular signaling pathway involved in this process. While using mitogen-activated protein kinase inhibitors to investigate possible effectors of downstream PKC signaling, we unexpectedly found that an inhibitor of c-Jun N-terminal kinase (JNK), SP600125, induces Prss14/epithin shedding even in the absence of PMA. SP600125-induced shedding, like that stimulated by PMA, was mediated by tumor necrosis factor-α–converting enzyme. In contrast, a JNK activator, anisomycin, partially abolished the effects of SP600125 on Prss14/epithin shedding. Moreover, the results from loss-of-function experiments with specific inhibitors, short hairpin RNA–mediated knockdown, and overexpression of dominant-negative PKCβII variants indicated that PKCβII is a major player in JNK inhibition– and PMA-mediated Prss14/epithin shedding. SP600125 increased phosphorylation of PKCβII and tumor necrosis factor-α–converting enzyme and induced their translocation into the plasma membrane. Finally, in vitro cell invasion experiments and bioinformatics analysis of data in The Cancer Genome Atlas breast cancer database revealed that JNK and PKCβII are important for Prss14/epithin-mediated cancer progression. These results provide important information regarding strategies against tumor metastasis.
Collapse
Affiliation(s)
- Joobyoung Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Youngkyung Cho
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea.,Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Min Ji Yoon
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hyo Seon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangjun Davie Jeon
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Yongcheol Cho
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| |
Collapse
|
8
|
Kim KY, Yoon M, Cho Y, Lee KH, Park S, Lee SR, Choi SY, Lee D, Yang C, Cho EH, Jeon SD, Kim SH, Kim C, Kim MG. Targeting metastatic breast cancer with peptide epitopes derived from autocatalytic loop of Prss14/ST14 membrane serine protease and with monoclonal antibodies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:363. [PMID: 31426843 PMCID: PMC6701106 DOI: 10.1186/s13046-019-1373-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022]
Abstract
Background In order to develop a new immunotherapeutic agent targeting metastatic breast cancers, we chose to utilize autocatalytic feature of the membrane serine protease Prss14/ST14, a specific prognosis marker for ER negative breast cancer as a target molecule. Methods The study was conducted using three mouse breast cancer models, 4 T1 and E0771 mouse breast cancer cells into their syngeneic hosts, and an MMTV-PyMT transgenic mouse strain was used. Prss14/ST14 knockdown cells were used to test function in tumor growth and metastasis, peptides derived from the autocatalytic loop for activation were tested as preventive metastasis vaccine, and monoclonal and humanized antibodies to the same epitope were tested as new therapeutic candidates. ELISA, immunoprecipitation, Immunofluorescent staining, and flow cytometry were used to examine antigen binding. The functions of antibodies were tested in vitro for cell migration and in vivo for tumor growth and metastasis. Results Prss14/ST14 is critically involved in the metastasis of breast cancer and poor survival rather than primary tumor growth in two mouse models. The epitopes derived from the specific autocatalytic loop region of Prss14/ST14, based on structural modeling acted as efficient preventive metastasis vaccines in mice. A new specific monoclonal antibody mAb3F3 generated against the engineered loop structure could reduce cell migration, eliminate metastasis in PyMT mice, and can detect the Prss14/ST14 protein expressed in various human cancer cells. Humanized antibody huAb3F3 maintained the specificity and reduced the migration of human breast cancer cells in vitro. Conclusion Our study demonstrates that Prss14/ST14 is an important target for modulating metastasis. Our newly developed hybridoma mAbs and humanized antibody can be further developed as new promising candidates for the use in diagnosis and in immunotherapy of human metastatic breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1373-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Youngkyung Cho
- Division of Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang-Hoon Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Sora Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Se-Ra Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Deokjae Lee
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea.,MedyTox, 114, Central town-ro, Yeongtong-gu, Suwon, South Korea
| | - Chansik Yang
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea.,Division of Life Sciences, Seoul National University, Seoul, South Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Sangjun Davie Jeon
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, College of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea. .,Convergent Research Institute for Metabolism and Immunoregulation, Inha University, Incheon, South Korea.
| |
Collapse
|
9
|
Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer 2018; 25:489-496. [PMID: 29396764 DOI: 10.1007/s12282-018-0842-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elf5 is a transcription factor previously shown to be involved in regulating cell differentiation in both normal and pathological breast tissues. Pertinently, Elf5 was reported to interact with the FOXA1 transcription factor, a pivotal regulatory factor in a subset of AR overexpressing triple negative cancer (TNBC) cases. METHODS We examined the correlation among AR, FOXA1, and Elf5 expression in a series of TNBC cases. The cases were retrieved from surgical pathological files of Tohoku University Hospital Japan and consisted of 60 cases operated between the year 1999 and 2007. An additional cohort cases of 51 TNBC ductal carcinoma in situ was used to compare invasive and non-invasive TNBC. RESULTS In our cohort, 47% of all carcinomas were positive for Elf5, with a significantly higher proportion of Elf5 positive cases occurring in the younger age groups (p = 0.0061). Elf5 immunoreactivity was not associated with any other clinicopathological factors examined in this study. However, Elf5 expression was associated with decreased overall and disease-free survival of the patients (Peto-Peto modification of Gehan-Wilcoxon test, OS p = 0.132, DFS p = 0.1 (LI cutoff 10%); OS p = 0.038, DFS p = 0.021 (LI cutoff 50%)). Of particular interest, its effects on survival were more pronounced in the EGFR-/CK5/6- (non-basal surrogate) than the EGFR+ and/or CK5/6+ (basal-surrogate) subtype of TNBC. CONCLUSIONS Elf5 is present in TNBC and its status was significantly correlated with overall survival of the patients. Further studies examining possible interactions between Elf5 and other factors in TNBC could contribute to disentangling TNBC biology.
Collapse
|
10
|
Cho Y, Park D, Kim C. Disruption of TACE-filamin interaction can inhibit TACE-mediated ectodomain shedding. Biochem Biophys Res Commun 2017; 490:997-1003. [PMID: 28666872 DOI: 10.1016/j.bbrc.2017.06.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
Abstract
Ectodomain shedding regulates functions of many membrane proteins through the cleavage of their juxtamembrane region mainly by a disintegrin and metalloproteinase family proteinases. Tumor necrosis factor-alpha converting enzyme (TACE) is known to be responsible for phorbol myristate acetate (PMA)-induced shedding of various membrane proteins. How PMA regulates TACE-dependent shedding and how TACE exhibits substrate specificity without proteolysis of other membrane proteins are questionable. Here, we show that TACE can interact with an actin-binding protein, filamin, through 20th filamin repeat. We found that the interaction between TACE and filamin was increased by PMA treatment. In addition, loss of filamin or specific disruption of TACE-filamin interaction inhibited ectodomain shedding of representative TACE substrates, CD44 and amyloid protein precursor. From these data, we suggest that filamin may work as a scaffold that can recruit TACE and its substrates in a PMA-dependent manner to achieve substrate specificity for TACE.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|