1
|
Shaji UP, Tuti N, Alim SK, Mohan M, Das S, Meur G, Swamy MJ, Anindya R. Inhibition of human DNA alkylation damage repair enzyme ALKBH2 by HIV protease inhibitor ritonavir. DNA Repair (Amst) 2024; 141:103732. [PMID: 39094381 DOI: 10.1016/j.dnarep.2024.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA and is overexpressed in several cancers. However, there are no known inhibitors available for this crucial DNA repair enzyme. The aim of this study was to examine whether the first-generation HIV protease inhibitors having strong anti-cancer activity can be repurposed as inhibitors of ALKBH2. We selected four such inhibitors and performed in vitro binding analysis against ALKBH2 based on alterations of its intrinsic tryptophan fluorescence and differential scanning fluorimetry. The effect of these HIV protease inhibitors on the DNA repair activity of ALKBH2 was also evaluated. Interestingly, we observed that one of the inhibitors, ritonavir, could inhibit ALKBH2-mediated DNA repair significantly via competitive inhibition and sensitized cancer cells to alkylating agent methylmethane sulfonate (MMS). This work may provide new insights into the possibilities of utilizing HIV protease inhibitor ritonavir as a DNA repair antagonist.
Collapse
Affiliation(s)
- Unnikrishnan P Shaji
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sanga Reddy, Telangana 502284, India
| | - Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sanga Reddy, Telangana 502284, India
| | - S K Alim
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Monisha Mohan
- Department of Science and Humanities, Indian Institute of Information Technology Design and Manufacturing (IIIT-DM) Kancheepuram, Chennai, Tamil Nadu 600127, India
| | - Susmita Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sanga Reddy, Telangana 502284, India
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana 500007, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sanga Reddy, Telangana 502284, India.
| |
Collapse
|
2
|
Duenas-Gonzalez A, Gonzalez-Fierro A, Bornstein-Quevedo L, Gutierrez-Delgado F, Kast RE, Chavez-Blanco A, Dominguez-Gomez G, Candelaria M, Romo-Pérez A, Correa-Basurto J, Lizano M, Perez-de la Cruz V, Robles-Bañuelos B, Nuñez-Corona D, Martinez-Perez E, Verastegui E. Multitargeted polypharmacotherapy for cancer treatment. theoretical concepts and proposals. Expert Rev Anticancer Ther 2024; 24:665-677. [PMID: 38913911 DOI: 10.1080/14737140.2024.2372336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION The pharmacological treatment of cancer has evolved from cytotoxic to molecular targeted therapy. The median survival gains of 124 drugs approved by the FDA from 2003 to 2021 is 2.8 months. Targeted therapy is based on the somatic mutation theory, which has some paradoxes and limitations. While efforts of targeted therapy must continue, we must study newer approaches that could advance therapy and affordability for patients. AREAS COVERED This work briefly overviews how cancer therapy has evolved from cytotoxic chemotherapy to current molecular-targeted therapy. The limitations of the one-target, one-drug approach considering cancer as a robust system and the basis for multitargeting approach with polypharmacotherapy using repurposing drugs. EXPERT OPINION Multitargeted polypharmacotherapy for cancer with repurposed drugs should be systematically investigated in preclinical and clinical studies. Remarkably, most of these proposed drugs already have a long history in the clinical setting, and their safety is known. In principle, the risk of their simultaneous administration should not be greater than that of a first-in-human phase I study as long as the protocol is developed with strict vigilance to detect early possible side effects from their potential interactions. Research on cancer therapy should go beyond the prevailing paradigm targeted therapy.
Collapse
Affiliation(s)
- Alfonso Duenas-Gonzalez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas UNAM, Mexico City, Mexico
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Aurora Gonzalez-Fierro
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Francisco Gutierrez-Delgado
- Centro de Estudios y Prevención del Cancer Tuxtla Gutiérrez, Chiapas, México; Latin American School of Oncology (ELO), México City, Mexico
| | - Richard E Kast
- Head of Faculty, Brain Study, IIAIG Study Center, Burlington, VT, USA
| | - Alma Chavez-Blanco
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Myrna Candelaria
- Departamento de Hematología, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Adriana Romo-Pérez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| | - Marcela Lizano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas UNAM, Mexico City, Mexico
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Veronica Perez-de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | | | - David Nuñez-Corona
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Erandi Martinez-Perez
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Emma Verastegui
- Departamento de Cuidados Paliativos, Division de Cirugia, Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
3
|
Chantzi E, Hammerling U, Gustafsson MG. Exhaustive in vitro evaluation of the 9-drug cocktail CUSP9 for treatment of glioblastoma. Comput Biol Med 2024; 178:108748. [PMID: 38925084 DOI: 10.1016/j.compbiomed.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The CUSP9 protocol is a polypharmaceutical strategy aiming at addressing the complexity of glioblastoma by targeting multiple pathways. Although the rationale for this 9-drug cocktail is well-supported by theoretical and in vitro data, its effectiveness compared to its 511 possible subsets has not been comprehensively evaluated. Such an analysis could reveal if fewer drugs could achieve similar or better outcomes. We conducted an exhaustive in vitro evaluation of the CUSP9 protocol using COMBImageDL, our specialized framework for testing higher-order drug combinations. This study assessed all 511 subsets of the CUSP9v3 protocol, in combination with temozolomide, on two clonal cultures of glioma-initiating cells derived from patient samples. The drugs were used at fixed, clinically relevant concentrations, and the experiment was performed in quadruplicate with endpoint cell viability and live-cell imaging readouts. Our results showed that several lower-order drug combinations produced effects equivalent to the full CUSP9 cocktail, indicating potential for simplified regimens in personalized therapy. Further validation through in vivo and precision medicine testing is required. Notably, a subset of four drugs (auranofin, disulfiram, itraconazole, sertraline) was particularly effective, reducing cell growth, altering cell morphology, increasing apoptotic-like cells within 4-28 h, and significantly decreasing cell viability after 68 h compared to untreated cells. This study underscores the importance and feasibility of comprehensive in vitro evaluations of complex drug combinations on patient-derived tumor cells, serving as a critical step toward (pre-)clinical development.
Collapse
Affiliation(s)
- Efthymia Chantzi
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Sweden.
| | - Ulf Hammerling
- Department of Civil & Industrial Engineering, Industrial Analytics, Uppsala University, Sweden
| | - Mats G Gustafsson
- Department of Civil & Industrial Engineering, Industrial Analytics, Uppsala University, Sweden.
| |
Collapse
|
4
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
6
|
Cao Q, Hajosch A, Kast RE, Loehmann C, Hlavac M, Fischer-Posovszky P, Strobel H, Westhoff MA, Siegelin MD, Wirtz CR, Halatsch ME, Karpel-Massler G. Tumor Treating Fields (TTFields) combined with the drug repurposing approach CUSP9v3 induce metabolic reprogramming and synergistic anti-glioblastoma activity in vitro. Br J Cancer 2024; 130:1365-1376. [PMID: 38396172 PMCID: PMC11015043 DOI: 10.1038/s41416-024-02608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Glioblastoma represents a brain tumor with a notoriously poor prognosis. First-line therapy may include adjunctive Tumor Treating Fields (TTFields) which are electric fields that are continuously delivered to the brain through non-invasive arrays. On a different note, CUSP9v3 represents a drug repurposing strategy that includes 9 repurposed drugs plus metronomic temozolomide. Here, we examined whether TTFields enhance the antineoplastic activity of CUSP9v3 against this disease. METHODS We performed preclinical testing of a multimodal approach of TTFields and CUSP9v3 in different glioblastoma models. RESULTS TTFields had predominantly synergistic inhibitory effects on the cell viability of glioblastoma cells and non-directed movement was significantly impaired when combined with CUSP9v3. TTFields plus CUSP9v3 significantly enhanced apoptosis, which was associated with a decreased mitochondrial outer membrane potential (MOMP), enhanced cleavage of effector caspase 3 and reduced expression of Bcl-2 and Mcl-1. Moreover, oxidative phosphorylation and expression of respiratory chain complexes I, III and IV was markedly reduced. CONCLUSION TTFields strongly enhance the CUSP9v3-mediated anti-glioblastoma activity. TTFields are currently widely used for the treatment of glioblastoma patients and CUSP9v3 was shown to have a favorable safety profile in a phase Ib/IIa trial (NCT02770378) which facilitates transition of this multimodal approach to the clinical setting.
Collapse
Affiliation(s)
- Qiyu Cao
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | - Annika Hajosch
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | | | | | - Michal Hlavac
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | | | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Markus D Siegelin
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | | |
Collapse
|
7
|
Karsa M, Xiao L, Ronca E, Bongers A, Spurling D, Karsa A, Cantilena S, Mariana A, Failes TW, Arndt GM, Cheung LC, Kotecha RS, Sutton R, Lock RB, Williams O, de Boer J, Haber M, Norris MD, Henderson MJ, Somers K. FDA-approved disulfiram as a novel treatment for aggressive leukemia. J Mol Med (Berl) 2024; 102:507-519. [PMID: 38349407 PMCID: PMC10963497 DOI: 10.1007/s00109-023-02414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 03/26/2024]
Abstract
Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.
Collapse
Affiliation(s)
- Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra Cantilena
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
| | - Anna Mariana
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tim W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Laurence C Cheung
- Leukemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Rishi S Kotecha
- Leukemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, Australia
| | - Owen Williams
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
| | - Jasper de Boer
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, Australia
| | - Michelle J Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Chen DQ, Xie Y, Cao LQ, Fleishman JS, Chen Y, Wu T, Yang DH. The role of ABCC10/MRP7 in anti-cancer drug resistance and beyond. Drug Resist Updat 2024; 73:101062. [PMID: 38330827 DOI: 10.1016/j.drup.2024.101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Multidrug resistance protein 7 (MRP7), also known as ATP-binding cassette (ABC) transporter subfamily C10 (ABCC10), is an ABC transporter that was first identified in 2001. ABCC10/MRP7 is a 171 kDa protein located on the basolateral membrane of cells. ABCC10/MRP7 consists of three transmembrane domains and two nucleotide binding domains. It mediates multidrug resistance of tumor cells to a variety of anticancer drugs by increasing drug efflux and results in reducing intracellular drug accumulation. The transport substrates of ABCC10/MRP7 include antineoplastic drugs such as taxanes, vinca alkaloids, and epothilone B, as well as endobiotics such as leukotriene C4 (LTC4) and estradiol 17 β-D-glucuronide. A variety of ABCC10/MRP7 inhibitors, including cepharanthine, imatinib, erlotinib, tariquidar, and sildenafil, can reverse ABCC10/MRP7-mediated MDR. Additionally, the presence or absence of ABCC10/MRP7 is also closely related to renal tubular dysfunction, obesity, and other diseases. In this review, we discuss: 1) Structure and functions of ABCC10/MRP7; 2) Known substrates and inhibitors of ABCC10/MRP7 and their potential therapeutic applications in cancer; and 3) Role of ABCC10/MRP7 in non-cancerous diseases.
Collapse
Affiliation(s)
- Da-Qian Chen
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China
| | - Yuhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Lu-Qi Cao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Tiesong Wu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China.
| | - Dong-Hua Yang
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China; New York College of Traditional Chinese Medicine, Mineola, NY 11501, USA.
| |
Collapse
|
9
|
Ramos S, Vicente-Blázquez A, López-Rubio M, Gallego-Yerga L, Álvarez R, Peláez R. Frentizole, a Nontoxic Immunosuppressive Drug, and Its Analogs Display Antitumor Activity via Tubulin Inhibition. Int J Mol Sci 2023; 24:17474. [PMID: 38139302 PMCID: PMC10744269 DOI: 10.3390/ijms242417474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Antimitotic agents are one of the more successful types of anticancer drugs, but they suffer from toxicity and resistance. The application of approved drugs to new indications (i.e., drug repurposing) is a promising strategy for the development of new drugs. It relies on finding pattern similarities: drug effects to other drugs or conditions, similar toxicities, or structural similarity. Here, we recursively searched a database of approved drugs for structural similarity to several antimitotic agents binding to a specific site of tubulin, with the expectation of finding structures that could fit in it. These searches repeatedly retrieved frentizole, an approved nontoxic anti-inflammatory drug, thus indicating that it might behave as an antimitotic drug devoid of the undesired toxic effects. We also show that the usual repurposing approach to searching for targets of frentizole failed in most cases to find such a relationship. We synthesized frentizole and a series of analogs to assay them as antimitotic agents and found antiproliferative activity against HeLa tumor cells, inhibition of microtubule formation within cells, and arrest at the G2/M phases of the cell cycle, phenotypes that agree with binding to tubulin as the mechanism of action. The docking studies suggest binding at the colchicine site in different modes. These results support the repurposing of frentizole for cancer treatment, especially for glioblastoma.
Collapse
Affiliation(s)
- Sergio Ramos
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Marta López-Rubio
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain; (S.R.); (M.L.-R.); (L.G.-Y.); (R.Á.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
10
|
Bin Kanner Y, Teng QX, Ganoth A, Peer D, Wang JQ, Chen ZS, Tsfadia Y. Cytotoxicity and reversal effect of sertraline, fluoxetine, and citalopram on MRP1- and MRP7-mediated MDR. Front Pharmacol 2023; 14:1290255. [PMID: 38026953 PMCID: PMC10651738 DOI: 10.3389/fphar.2023.1290255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Yuval Bin Kanner
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Assaf Ganoth
- Department of Physical Therapy, Sackler Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv, Israel
- Reichman University, Herzliya, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, George S. Wise Faculty of Life Sciences, Shmunis School for Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yossi Tsfadia
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
12
|
Ebrahimi S, Mirzavi F, Hashemy SI, Khaleghi Ghadiri M, Stummer W, Gorji A. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma. Biofactors 2023; 49:900-911. [PMID: 37092793 DOI: 10.1002/biof.1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant type of cerebral neoplasm in adults with a poor prognosis. Currently, combination therapy with different anti-cancer agents is at the forefront of GBM research. Hence, this study aims to evaluate the potential anti-cancer synergy of a clinically approved neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid (5-ALA), a prodrug that elicits fluorescent porphyrins in gliomas on U-87 human GBM cells. We found that aprepitant and 5-ALA effectively inhibited GBM cell viability. The combinatorial treatment of these drugs exerted potent synergistic growth inhibitory effects on GBM cells. Moreover, aprepitant and 5-ALA induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax and P53 along with downregulation of Bcl-2). Furthermore, aprepitant and 5-ALA increased the accumulation of protoporphyrin IX, a highly pro-apoptotic and fluorescent photosensitizer. Aprepitant and 5-ALA significantly inhibited GBM cell migration and reduced matrix metalloproteinases (MMP-2 and MMP-9) activities. Importantly, all these effects were more prominent following aprepitant-5-ALA combination treatment than either drug alone. Collectively, the combination of aprepitant and 5-ALA leads to considerable synergistic anti-proliferative, pro-apoptotic, and anti-migratory effects on GBM cells and provides a firm basis for further evaluation of this combination as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Werlenius K, Kinhult S, Solheim TS, Magelssen H, Löfgren D, Mudaisi M, Hylin S, Bartek J, Strandéus M, Lindskog M, Rashid HB, Carstam L, Gulati S, Solheim O, Bartek J, Salvesen Ø, Jakola AS. Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent Glioblastoma: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e234149. [PMID: 37000452 PMCID: PMC10066460 DOI: 10.1001/jamanetworkopen.2023.4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 04/01/2023] Open
Abstract
Importance Disulfiram has demonstrated broad antitumoral effect in several preclinical studies. One of the proposed indications is for the treatment of glioblastoma. Objective To evaluate the efficacy and safety of disulfiram and copper as add-on to alkylating chemotherapy in patients with recurrent glioblastoma. Design, Setting, and Participants This was a multicenter, open-label, randomized phase II/III clinical trial with parallel group design. Patients were recruited at 7 study sites in Sweden and 2 sites in Norway between January 2017 and November 2020. Eligible patients were 18 years or older, had a first recurrence of glioblastoma, and indication for treatment with alkylating chemotherapy. Patients were followed up until death or a maximum of 24 months. The date of final follow-up was January 15, 2021. Data analysis was performed from February to September 2022. Interventions Patients were randomized 1:1 to receive either standard-of-care (SOC) alkylating chemotherapy alone, or SOC with the addition of disulfiram (400 mg daily) and copper (2.5 mg daily). Main Outcomes and Measures The primary end point was survival at 6 months. Secondary end points included overall survival, progression-free survival, adverse events, and patient-reported quality of life. Results Among the 88 patients randomized to either SOC (n = 45) or SOC plus disulfiram and copper (n = 43), 63 (72%) were male; the mean (SD) age was 55.4 (11.5) years. There was no significant difference between the study groups (SOC vs SOC plus disulfiram and copper) in 6 months survival (62% [26 of 42] vs 44% [19 of 43]; P = .10). Median overall survival was 8.2 months (95% CI, 5.4-10.2 months) with SOC and 5.5 months (95% CI, 3.9-9.3 months) with SOC plus disulfiram and copper, and median progression-free survival was 2.6 months (95% CI, 2.4-4.6 months) vs 2.3 months (95% CI, 1.7-2.6 months), respectively. More patients in the SOC plus disulfiram and copper group had adverse events grade 3 or higher (34% [14 of 41] vs 11% [5 of 44]; P = .02) and serious adverse events (41% [17 of 41] vs 16% [7 of 44]; P = .02), and 10 patients (24%) discontinued disulfiram treatment because of adverse effects. Conclusions and Relevance This randomized clinical trial found that among patients with recurrent glioblastoma, the addition of disulfiram and copper to chemotherapy, compared with chemotherapy alone, resulted in significantly increased toxic effects, but no significant difference in survival. These findings suggest that disulfiram and copper is without benefit in patients with recurrent glioblastoma. Trial Registration ClinicalTrials.gov Identifier: NCT02678975; EUDRACT Identifier: 2016-000167-16.
Collapse
Affiliation(s)
- Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Tora Skeidsvoll Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St Olavs Hospital, Trondheim, Norway
| | | | - David Löfgren
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Munila Mudaisi
- Department of Oncology, Linköping University Hospital, Linköping, Sweden
- The Finnmark Hospital, Hammerfest, Norway
| | - Sofia Hylin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Pelvic Cancer, Section of Genitourinary Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sasha Gulati
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Øyvind Salvesen
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
| |
Collapse
|
14
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
16
|
High Neutrophil-to-Lymphocyte Ratio Facilitates Cancer Growth-Currently Marketed Drugs Tadalafil, Isotretinoin, Colchicine, and Omega-3 to Reduce It: The TICO Regimen. Cancers (Basel) 2022; 14:cancers14194965. [PMID: 36230888 PMCID: PMC9564173 DOI: 10.3390/cancers14194965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Several elements that are composed of, or related to, neutrophils, have been shown to inhibit strong immune responses to cancer and promote cancers’ growth. This paper presents the collected data showing these elements and how their coordinated actions as an ensemble facilitate growth in the common cancers. The paper goes on to present a drug regimen, TICO, designed to reduce the cancer growth enhancing effects of the neutrophil related elements. TICO uses four already marketed, readily available generic drugs, repurposed to inhibit neutrophil centered growth facilitation of cancer. Abstract This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.
Collapse
|
17
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
18
|
Nageeb AM, Mohamed MM, Ezz El Arab LR, Khalifa MK, Swellam M. Next generation sequencing of BRCA genes in glioblastoma multiform Egyptian patients: a pilot study. Arch Physiol Biochem 2022; 128:809-817. [PMID: 32100578 DOI: 10.1080/13813455.2020.1729814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Germ line mutations of BRCA1 and BRCA2 were correlated with a variety of cancer Authors aimed to use next-generation sequencing (NGS) to detect BRCA1 and BRCA2 germ line mutations in glioblastoma multiform (GBM) Egyptian patients. MATERIALS AND METHODS Genomic DNA was extracted from six GBM cases, amplified using Ion AmpliSeq BRCA1 and BRCA2 panel. DNA libraries were pooled, barcoded and finally sequenced using Ion Torrent Personal Genome Machine sequencer. RESULTS BRCA1 the previously reported rs1799966, rs1799950, rs16941 were found in five cases and they are in a linkage disequilibrium forming two distinct haplotypes, which might support their role in cancer predisposition. Out of the 18 reported variants in BRCA2, three denovo mutations were detected which leads to frame shift. CONCLUSION Further studies on large number of GBM patients and control cases to determine BRCA1 and BRCA2 germline mutations and haplotypes; diagnostic and prognostic role are encouraged.
Collapse
Affiliation(s)
- Amira M Nageeb
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Magdy M Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Lobna R Ezz El Arab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
19
|
Lastakchi S, Olaloko MK, McConville C. A Potential New Treatment for High-Grade Glioma: A Study Assessing Repurposed Drug Combinations against Patient-Derived High-Grade Glioma Cells. Cancers (Basel) 2022; 14:2602. [PMID: 35681582 PMCID: PMC9179370 DOI: 10.3390/cancers14112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposed drugs have demonstrated in vitro success against high-grade gliomas; however, their clinical success has been limited due to the in vitro model not truly representing the clinical scenario. In this study, we used two distinct patient-derived tumour fragments (tumour core (TC) and tumour margin (TM)) to generate a heterogeneous, clinically relevant in vitro model to assess if a combination of repurposed drugs (irinotecan, pitavastatin, disulfiram, copper gluconate, captopril, celecoxib, itraconazole and ticlopidine), each targeting a different growth promoting pathway, could successfully treat high-grade gliomas. To ensure the clinical relevance of our data, TC and TM samples from 11 different patients were utilized. Our data demonstrate that, at a concentration of 100µm or lower, all drug combinations achieved lower LogIC50 values than temozolomide, with one of the combinations almost eradicating the cancer by achieving cell viabilities below 4% in five of the TM samples 6 days after treatment. Temozolomide was unable to stop tumour growth over the 14-day assay, while combination 1 stopped tumour growth, with combinations 2, 3 and 4 slowing down tumour growth at higher doses. To validate the cytotoxicity data, we used two distinct assays, end point MTT and real-time IncuCyte life analysis, to evaluate the cytotoxicity of the combinations on the TC fragment from patient 3, with the cell viabilities comparable across both assays. The local administration of combinations of repurposed drugs that target different growth promoting pathways of high-grade gliomas have the potential to be translated into the clinic as a novel treatment strategy for high-grade gliomas.
Collapse
Affiliation(s)
| | | | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.); (M.K.O.)
| |
Collapse
|
20
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
21
|
The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1458143. [PMID: 35028002 PMCID: PMC8752222 DOI: 10.1155/2022/1458143] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
Artemisinin (ART) is a bioactive molecule derived from the Chinese medicinal plant Artemisia annua (Asteraceae). ART and artemisinin derivatives (ARTs) have been effectively used for antimalaria treatment. The structure of ART is composed of a sesquiterpene lactone, including a peroxide internal bridge that is essential for its activity. In addition to their well-known antimalarial effects, ARTs have been shown recently to resist a wide range of tumors. The antineoplastic mechanisms of ART mainly include cell cycle inhibition, inhibition of tumor angiogenesis, DNA damage, and ferroptosis. In particular, ferroptosis is a novel nonapoptotic type of programmed cell death. However, the antitumor mechanisms of ARTs by regulating ferroptosis remain unclear. Through this review, we focus on the potential antitumor function of ARTs by acting on ferroptosis, including the regulation of iron metabolism, generation of reactive oxygen species (ROS), and activation of endoplasmic reticulum stress (ERS). This article systematically reviews the recent progress in ferroptosis research and provides a basis for ARTs as an anticancer drug in clinical practice.
Collapse
|
22
|
Aquib M, Zhang H, Raza F, Banerjee P, Bavi R, Kesse S, Boakye-Yiadom KO, Filli MS, Farooq MA, Wang B. Delivery of repurposed disulfiram by aminated mesoporous silica nanoparticles for anticancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. J Clin Neurosci 2021; 95:48-54. [PMID: 34929651 DOI: 10.1016/j.jocn.2021.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most common and most aggressive primary brain cancer in adults. Standard treatment of glioblastoma consisting of maximal safe resection, adjuvant radiotherapy and chemotherapy with temozolomide, results in an overall median survival of 14.6 months. The aggressive nature of glioblastoma has been attributed to the presence of glioblastoma stem cells which express components of the renin-angiotensin system (RAS). This phase I clinical trial investigated the tolerability and efficacy of a treatment targeting the RAS and its converging pathways in patients with glioblastoma. Patients who had relapsed following standard treatment of glioblastoma who met the trial criteria were commenced on dose-escalated oral RAS modulators (propranolol, aliskiren, cilazapril, celecoxib, curcumin with piperine, aspirin, and metformin). Of the 17 patients who were enrolled, ten completed full dose-escalation of the treatment. The overall median survival was 19.9 (95% CI:14.1-25.7) months. Serial FET-PET/CTs showed a reduction in both tumor volume and uptake in one patient, an increase in tumor uptake in nine patients with decreased (n = 1), unchanged (n = 1) and increased (n = 7) tumor volume, in the ten patients who had completed full dose-escalation of the treatment. Two patients experienced mild side effects and all patients had preservation of quality of life and performance status during the treatment. There is a trend towards increased survival by 5.3 months although it was not statistically significant. These encouraging results warrant further clinical trials on this potential novel, well-tolerated and cost-effective therapeutic option for patients with glioblastoma.
Collapse
|
24
|
You F, Zhang C, Liu X, Ji D, Zhang T, Yu R, Gao S. Drug repositioning: Using psychotropic drugs for the treatment of glioma. Cancer Lett 2021; 527:140-149. [PMID: 34923043 DOI: 10.1016/j.canlet.2021.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Psychotropic drugs can penetrate the blood-brain barrier and regulate the levels of neurotransmitters and neuromodulators such as γ-aminobutyric acid, glutamate, serotonin, dopamine, and norepinephrine in the brain, and thus influence neuronal activity. Neuronal activity in the tumor microenvironment can promote the growth and expansion of glioma. There is increasing evidence that in addition to their use in the treatment of mental disorders, antipsychotic, antidepressant, and mood-stabilizing drugs have clinical potential for cancer therapy. These drugs have been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. In this review, we summarize findings from preclinical and clinical studies investigating the use of antipsychotics, antidepressants, and mood stabilizers in the treatment of various types of cancer, with a focus on glioma; and discuss their presumed antitumor mechanisms. The existing evidence indicates that psychotropic drugs with established pharmacologic and safety profiles can be repurposed as anticancer agents, thus providing new options for the treatment of glioma.
Collapse
Affiliation(s)
- Fangting You
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 379 Tong-Shan Road, Xuzhou, 221004, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Mei-Jian Road, Xuzhou, 221006, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| |
Collapse
|
25
|
Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021; 11:biom11121870. [PMID: 34944514 PMCID: PMC8699739 DOI: 10.3390/biom11121870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with an extremely poor prognosis. There is a dire need to develop effective therapeutics to overcome the intrinsic and acquired resistance of GBM to current therapies. The process of developing novel anti-neoplastic drugs from bench to bedside can incur significant time and cost implications. Drug repurposing may help overcome that obstacle. A wide range of drugs that are already approved for clinical use for the treatment of other diseases have been found to target GBM-associated signaling pathways and are being repurposed for the treatment of GBM. While many of these drugs are undergoing pre-clinical testing, others are in the clinical trial phase. Since GBM stem cells (GSCs) have been found to be a main source of tumor recurrence after surgery, recent studies have also investigated whether repurposed drugs that target these pathways can be used to counteract tumor recurrence. While several repurposed drugs have shown significant efficacy against GBM cell lines, the blood–brain barrier (BBB) can limit the ability of many of these drugs to reach intratumoral therapeutic concentrations. Localized intracranial delivery may help to achieve therapeutic drug concentration at the site of tumor resection while simultaneously minimizing toxicity and side effects. These strategies can be considered while repurposing drugs for GBM.
Collapse
|
26
|
Nykamp MJ, Zorumski CF, Reiersen AM, Nicol GE, Cirrito J, Lenze EJ. Opportunities for Drug Repurposing of Serotonin Reuptake Inhibitors: Potential Uses in Inflammation, Infection, Cancer, Neuroprotection, and Alzheimer's Disease Prevention. PHARMACOPSYCHIATRY 2021; 55:24-29. [PMID: 34875696 DOI: 10.1055/a-1686-9620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Serotonin reuptake inhibitors (SRIs) are safe and widely used for a variety of indications including depressive disorders, anxiety, and chronic pain. Besides inhibiting the serotonin transporter, these medications have broad-spectrum properties in many systems. Their roles have been studied in cancer, Alzheimer's disease, and infectious processes. The COVID-19 pandemic highlighted the importance of drug repurposing of medications already in use. We conducted a narrative review of current evidence and ongoing research on drug repurposing of SRIs, with a focus on immunomodulatory, antiproliferative, and neuroprotective activity. SRIs may have clinical use as repurposed agents for a wide variety of conditions including but not limited to COVID-19, Alzheimer's disease, and neoplastic processes. Further research, particularly randomized controlled trials, will be necessary to confirm the utility of SRIs for new indications.
Collapse
Affiliation(s)
- Madeline J Nykamp
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela M Reiersen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - John Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Halatsch ME, Dwucet A, Schmidt CJ, Mühlnickel J, Heiland T, Zeiler K, Siegelin MD, Kast RE, Karpel-Massler G. In Vitro and Clinical Compassionate Use Experiences with the Drug-Repurposing Approach CUSP9v3 in Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14121241. [PMID: 34959641 PMCID: PMC8708851 DOI: 10.3390/ph14121241] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Glioblastoma represents the most common primary brain tumor in adults. Despite technological advances, patients with this disease typically die within 1–2 years after diagnosis. In the search for novel therapeutics, drug repurposing has emerged as an alternative to traditional drug development pipelines, potentially facilitating and expediting the transition from drug discovery to clinical application. In a drug repurposing effort, the original CUSP9 and its derivatives CUSP9* and CUSP9v3 were developed as combinations of nine non-oncological drugs combined with metronomic low-dose temozolomide. Methods: In this work, we performed pre-clinical testing of CUSP9v3 in different established, primary cultured and stem-like glioblastoma models. In addition, eight patients with heavily pre-treated recurrent glioblastoma received the CUSP9v3 regime on a compassionate use basis in a last-ditch effort. Results: CUSP9v3 had profound antiproliferative and pro-apoptotic effects across all tested glioblastoma models. Moreover, the cells’ migratory capacity and ability to form tumor spheres was drastically reduced. In vitro, additional treatment with temozolomide did not significantly enhance the antineoplastic activity of CUSP9v3. CUSP9v3 was well-tolerated with the most frequent grade 3 or 4 adverse events being increased hepatic enzyme levels. Conclusions: CUSP9v3 displays a strong anti-proliferative and anti-migratory activity in vitro and seems to be safe to apply to patients. These data have prompted further investigation of CUSP9v3 in a phase Ib/IIa clinical trial (NCT02770378).
Collapse
Affiliation(s)
- Marc-Eric Halatsch
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
- Department of Neurological Surgery, Cantonal Hospital of Winterthur, 8401 Winterthur, Switzerland
- Correspondence: (M.-E.H.); (G.K.-M.)
| | - Annika Dwucet
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Carl Julius Schmidt
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Julius Mühlnickel
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Tim Heiland
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Katharina Zeiler
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | | | - Georg Karpel-Massler
- Department of Neurological Surgery, Ulm University Medical Center, 89081 Ulm, Germany; (A.D.); (C.J.S.); (J.M.); (T.H.); (K.Z.)
- Correspondence: (M.-E.H.); (G.K.-M.)
| |
Collapse
|
28
|
Van Loenhout J, Freire Boullosa L, Quatannens D, De Waele J, Merlin C, Lambrechts H, Lau HW, Hermans C, Lin A, Lardon F, Peeters M, Bogaerts A, Smits E, Deben C. Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells 2021; 10:2936. [PMID: 34831159 PMCID: PMC8616410 DOI: 10.3390/cells10112936] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.
Collapse
Affiliation(s)
- Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Laurie Freire Boullosa
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Abraham Lin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| |
Collapse
|
29
|
Tetraethylthiuram disulphide alleviates pulmonary fibrosis through modulating transforming growth factor-β signalling. Pharmacol Res 2021; 174:105923. [PMID: 34607006 DOI: 10.1016/j.phrs.2021.105923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) induces significant morbidity and mortality, for which there are limited therapeutic options available. Here, we found that tetraethylthiuram disulphide (disulfiram, DSF), a derivative of thiuram, used in the treatment of alcohol abuse, has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis via the attenuation of the fibroblast-to-myofibroblast transition, migration, and proliferation of fibroblasts. Furthermore, DSF inhibited the activation of primary pulmonary fibroblasts and fibroblast cell line under transforming growth factor-β 1 (TGF-β1) challenge. Mechanistically, the anti-fibrotic effect of DSF on fibroblasts depends on the inhibition of TGF-β signalling. We further determined that DSF interrupts the interaction between SMAD3 and TGF-β receptor Ι (TBR Ι), and identified that DSF directly binds with SMAD3, in which Trp326, Thr330, and Cys332 of SMAD3 are critical binding sites for DSF. Collectively, our results reveal a powerful anti-fibrotic function of DSF in pulmonary fibrosis through the inhibition of TGF-β/SMAD signalling in pulmonary fibroblasts, indicating that DSF is a promising therapeutic candidate for IPF.
Collapse
|
30
|
Harland A, Liu X, Ghirardello M, Galan MC, Perks CM, Kurian KM. Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies. Front Oncol 2021; 11:743814. [PMID: 34532295 PMCID: PMC8438230 DOI: 10.3389/fonc.2021.743814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance.
Collapse
Affiliation(s)
- Abigail Harland
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattia Ghirardello
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - M Carmen Galan
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
Morgen M, Fabrowski P, Amtmann E, Gunkel N, Miller AK. Inclusion Complexes of Gold(I)-Dithiocarbamates with β-Cyclodextrin: A Journey from Drug Repurposing towards Drug Discovery. Chemistry 2021; 27:12156-12165. [PMID: 34114261 PMCID: PMC8456977 DOI: 10.1002/chem.202101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/11/2022]
Abstract
The gold(I)-dithiocarbamate (dtc) complex [Au(N,N-diethyl)dtc]2 was identified as the active cytotoxic agent in the combination treatment of sodium aurothiomalate and disulfiram on a panel of cancer cell lines. In addition to demonstrating pronounced differential cytotoxicity to these cell lines, the gold complex showed no cross-resistance in therapy-surviving cancer cells. In the course of a medicinal chemistry campaign on this class of poorly soluble gold(I)-dtc complexes, >35 derivatives were synthesized and X-ray crystallography was used to examine structural aspects of the dtc moiety. A group of hydroxy-substituted complexes has an improved solubility profile, and it was found that these complexes form 2 : 1 host-guest inclusion complexes with β-cyclodextrin (CD), exhibiting a rarely observed "tail-to-tail" arrangement of the CD cones. Formulation of a hydroxy-substituted gold(I)-dtc complex with excess sulfobutylether-β-CD prevents the induction of mitochondrial reactive oxygen species, which is a major burden in the development of metallodrugs.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Piotr Fabrowski
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Eberhard Amtmann
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Nikolas Gunkel
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
32
|
Transcriptomics-Based Phenotypic Screening Supports Drug Discovery in Human Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13153780. [PMID: 34359681 PMCID: PMC8345128 DOI: 10.3390/cancers13153780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) remains a particularly challenging cancer, with an aggressive phenotype and few promising treatment options. Future therapy will rely heavily on diagnosing and targeting aggressive GBM cellular phenotypes, both before and after drug treatment, as part of personalized therapy programs. Here, we use a genome-wide drug-induced gene expression (DIGEX) approach to define the cellular drug response phenotypes associated with two clinical drug candidates, the phosphodiesterase 10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib. We identify genes encoding specific drug targets, some of which we validate as effective antiproliferative agents and combination therapies in human GBM cell models, including HMGCoA reductase (HMGCR), salt-inducible kinase 1 (SIK1), bradykinin receptor subtype B2 (BDKRB2), and Janus kinase isoform 2 (JAK2). Individual, personalized treatments will be essential if we are to address and overcome the pharmacological plasticity that GBM exhibits, and DIGEX will play a central role in validating future drugs, diagnostics, and possibly vaccine candidates for this challenging cancer. Abstract We have used three established human glioblastoma (GBM) cell lines—U87MG, A172, and T98G—as cellular systems to examine the plasticity of the drug-induced GBM cell phenotype, focusing on two clinical drugs, the phosphodiesterase PDE10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib, using genome-wide drug-induced gene expression (DIGEX) to examine the drug response. Both drugs upregulate genes encoding specific growth factors, transcription factors, cellular signaling molecules, and cell surface proteins, while downregulating a broad range of targetable cell cycle and apoptosis-associated genes. A few upregulated genes encode therapeutic targets already addressed by FDA approved drugs, but the majority encode targets for which there are no approved drugs. Amongst the latter, we identify many novel druggable targets that could qualify for chemistry-led drug discovery campaigns. We also observe several highly upregulated transmembrane proteins suitable for combined drug, immunotherapy, and RNA vaccine approaches. DIGEX is a powerful way of visualizing the complex drug response networks emerging during GBM drug treatment, defining a phenotypic landscape which offers many new diagnostic and therapeutic opportunities. Nevertheless, the extreme heterogeneity we observe within drug-treated cells using this technique suggests that effective pan-GBM drug treatment will remain a significant challenge for many years to come.
Collapse
|
33
|
Abadi B, Shahsavani Y, Faramarzpour M, Rezaei N, Rahimi HR. Antidepressants with anti-tumor potential in treating glioblastoma: A narrative review. Fundam Clin Pharmacol 2021; 36:35-48. [PMID: 34212424 DOI: 10.1111/fcp.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) is known as the deadliest form of brain tumor. In addition, its high treatment resistance, heterogeneity, and invasiveness make it one of the most challenging tumors. Depression is a common psychological disorder among patients with cancer, especially GBM. Due to the high occurrence rates of depression in GBM patients and the overlap of molecular and cellular mechanisms involved in the pathogenesis of these diseases, finding antidepressants with antitumor effects could be considered as an affordable strategy for the treatment of GBM. Antidepressants exert their antitumor properties through different mechanisms. According to available evidence in this regard, some of them can eliminate the adverse effects resulting from chemo-radiotherapy in several cancers along with their synergistic effects caused by chemotherapy. Therefore, providing comprehensive insight into this issue would guide scientists and physicians in developing further preclinical studies and clinical trials, in order to evaluate antidepressants' antitumor potential. Considering that no narrative review has been recently published on this issue, specifically on these classes of drugs, we present this article with the purpose of describing the antitumor cellular mechanisms of three classes of antidepressants as follows: tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and monoamine oxidase inhibitors (MAOIs) in GBM.
Collapse
Affiliation(s)
- Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasamin Shahsavani
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Faramarzpour
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Halatsch ME, Kast RE, Karpel-Massler G, Mayer B, Zolk O, Schmitz B, Scheuerle A, Maier L, Bullinger L, Mayer-Steinacker R, Schmidt C, Zeiler K, Elshaer Z, Panther P, Schmelzle B, Hallmen A, Dwucet A, Siegelin MD, Westhoff MA, Beckers K, Bouche G, Heiland T. A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neurooncol Adv 2021; 3:vdab075. [PMID: 34377985 PMCID: PMC8349180 DOI: 10.1093/noajnl/vdab075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The dismal prognosis of glioblastoma (GBM) may be related to the ability of GBM cells to develop mechanisms of treatment resistance. We designed a protocol called Coordinated Undermining of Survival Paths combining 9 repurposed non-oncological drugs with metronomic temozolomide—version 3—(CUSP9v3) to address this issue. The aim of this phase Ib/IIa trial was to assess the safety of CUSP9v3. Methods Ten adults with histologically confirmed GBM and recurrent or progressive disease were included. Treatment consisted of aprepitant, auranofin, celecoxib, captopril, disulfiram, itraconazole, minocycline, ritonavir, and sertraline added to metronomic low-dose temozolomide. Treatment was continued until toxicity or progression. Primary endpoint was dose-limiting toxicity defined as either any unmanageable grade 3–4 toxicity or inability to receive at least 7 of the 10 drugs at ≥ 50% of the per-protocol doses at the end of the second treatment cycle. Results One patient was not evaluable for the primary endpoint (safety). All 9 evaluable patients met the primary endpoint. Ritonavir, temozolomide, captopril, and itraconazole were the drugs most frequently requiring dose modification or pausing. The most common adverse events were nausea, headache, fatigue, diarrhea, and ataxia. Progression-free survival at 12 months was 50%. Conclusions CUSP9v3 can be safely administered in patients with recurrent GBM under careful monitoring. A randomized phase II trial is in preparation to assess the efficacy of the CUSP9v3 regimen in GBM.
Collapse
Affiliation(s)
| | | | | | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Oliver Zolk
- Department of Clinical Pharmacology, Ulm University Hospital, Ulm, Germany
| | - Bernd Schmitz
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Angelika Scheuerle
- Division of Neuropathology, Department of Pathology, Ulm University Hospital, Ulm, Germany
| | - Ludwig Maier
- Central Pharmacy, Ulm University Hospital, Ulm, Germany
| | - Lars Bullinger
- Division of Hematology and Oncology, Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Regine Mayer-Steinacker
- Division of Hematology and Oncology, Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Carl Schmidt
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Katharina Zeiler
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Ziad Elshaer
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Patricia Panther
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Birgit Schmelzle
- Institute of Experimental Cancer Research, Ulm University Hospital, Ulm, Germany
| | - Anke Hallmen
- Division of Hematology and Oncology, Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | - Annika Dwucet
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Mike-Andrew Westhoff
- Department of Pediatric and Adolescent Medicine, Basic Research Division, Ulm University Hospital, Ulm, Germany
| | | | | | - Tim Heiland
- Department of Neurosurgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
35
|
OPALS: A New Osimertinib Adjunctive Treatment of Lung Adenocarcinoma or Glioblastoma Using Five Repurposed Drugs. Cells 2021; 10:cells10051148. [PMID: 34068720 PMCID: PMC8151869 DOI: 10.3390/cells10051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.
Collapse
|
36
|
An Alternative Pipeline for Glioblastoma Therapeutics: A Systematic Review of Drug Repurposing in Glioblastoma. Cancers (Basel) 2021; 13:cancers13081953. [PMID: 33919596 PMCID: PMC8073966 DOI: 10.3390/cancers13081953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma is a devastating malignancy that has continued to prove resistant to a variety of therapeutics. No new systemic therapy has been approved for use against glioblastoma in almost two decades. This observation is particularly disturbing given the amount of money invested in identifying novel therapies for this disease. A relatively rapid and economical pipeline for identification of novel agents is drug repurposing. Here, a comprehensive review detailing the state of drug repurposing in glioblastoma is provided. We reveal details on studies that have examined agents in vitro, in animal models and in patients. While most agents have not progressed beyond the initial stages, several drugs, from a variety of classes, have demonstrated promising results in early phase clinical trials. Abstract The treatment of glioblastoma (GBM) remains a significant challenge, with outcome for most pa-tients remaining poor. Although novel therapies have been developed, several obstacles restrict the incentive of drug developers to continue these efforts including the exorbitant cost, high failure rate and relatively small patient population. Repositioning drugs that have well-characterized mechanistic and safety profiles is an attractive alternative for drug development in GBM. In ad-dition, the relative ease with which repurposed agents can be transitioned to the clinic further supports their potential for examination in patients. Here, a systematic analysis of the literature and clinical trials provides a comprehensive review of primary articles and unpublished trials that use repurposed drugs for the treatment of GBM. The findings demonstrate that numerous drug classes that have a range of initial indications have efficacy against preclinical GBM models and that certain agents have shown significant potential for clinical benefit. With examination in randomized, placebo-controlled trials and the targeting of particular GBM subgroups, it is pos-sible that repurposing can be a cost-effective approach to identify agents for use in multimodal anti-GBM strategies.
Collapse
|
37
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
39
|
Genomic Space of MGMT in Human Glioma Revisited: Novel Motifs, Regulatory RNAs, NRF1, 2, and CTCF Involvement in Gene Expression. Int J Mol Sci 2021; 22:ijms22052492. [PMID: 33801310 PMCID: PMC7958331 DOI: 10.3390/ijms22052492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. Results: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT’s exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3′ UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. Conclusions: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.
Collapse
|
40
|
Ghiaseddin A, Hoang Minh LB, Janiszewska M, Shin D, Wick W, Mitchell DA, Wen PY, Grossman SA. Adult precision medicine: learning from the past to enhance the future. Neurooncol Adv 2021; 3:vdaa145. [PMID: 33543142 PMCID: PMC7846182 DOI: 10.1093/noajnl/vdaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite therapeutic advances for other malignancies, gliomas remain challenging solid tumors to treat. Complete surgical resection is nearly impossible due to gliomas’ diffuse infiltrative nature, and treatment is hampered by restricted access to the tumors due to limited transport across the blood–brain barrier. Recent advances in genomic studies and next-generation sequencing techniques have led to a better understanding of gliomas and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in the management of gliomas, with encouraging results in preclinical studies and early clinical trials. However, molecular characterization of gliomas revealed significant heterogeneity, which poses a challenge for targeted therapeutic approaches. In this context, leading neuro-oncology researchers and clinicians, industry innovators, and patient advocates convened at the inaugural annual Remission Summit held in Orlando, FL in February 2019 to discuss the latest advances in immunotherapy and precision medicine approaches for the treatment of adult and pediatric brain tumors and outline the unanswered questions, challenges, and opportunities that lay ahead for advancing the duration and quality of life for patients with brain tumors. Here, we provide historical context for precision medicine in other cancers, present emerging approaches for gliomas, discuss their limitations, and outline the steps necessary for future success. We focus on the advances in small molecule targeted therapy, as the use of immunotherapy as an emerging precision medicine modality for glioma treatment has recently been reviewed by our colleagues.
Collapse
Affiliation(s)
- Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Lan B Hoang Minh
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - David Shin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center, Heidelberg, Germany
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Patrick Y Wen
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Torralba M, Farra R, Maddaloni M, Grassi M, Dapas B, Grassi G. Drugs Repurposing in High-Grade Serous Ovarian Cancer. Curr Med Chem 2021; 27:7222-7233. [PMID: 32660396 DOI: 10.2174/0929867327666200713190520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ovary Carcinoma (OC) is the most lethal gynecological neoplasm due to the late diagnoses and to the common development of resistance to platinum-based chemotherapy. Thus, novel therapeutic approaches are urgently required. In this regard, the strategy of drug repurposing is becoming attractive. By this approach, the effectiveness of a drug originally developed for another indication is tested in a different pathology. The advantage is that data about pharmacokinetic properties and toxicity are already available. Thus, in principle, it is possible to reduce research costs and to speed up drug usage/marketing. RESULTS Here, some noticeable examples of repurposed drugs for OC, such as amiodarone, ruxolitinib, statins, disulfiram, ormeloxifenem, and Quinacrine, are reported. Amiodarone, an antiarrhythmic agent, has shown promising anti-OC activity, although the systemic toxicity should not be neglected. The JAK inhibitor, Ruxolitinib, may be employed particularly in coadministration with standard OC therapy as it synergistically interacts with platinum-based drugs. Particularly interesting is the use of statin which represent one of the most commonly administered drugs in aged population to treat hypercholesterolemia. Disulfiram, employed in the treatment of chronic alcoholism, has shown anti-OC properties. Ormeloxifene, commonly used for contraception, seems to be promising, especially due to the negligible side effects. Finally, Quinacrine used as an antimicrobial and anti-inflammatory drug, is able to downregulate OC cell growth and promote cell death. CONCLUSION Whereas further testing in patients are necessary to better clarify the therapeutic potential of repurposed drugs for OC, it is believed that their use, better if combined with OC targeted delivery systems, can significantly contribute to the development of novel and effective anti-OC treatments.
Collapse
Affiliation(s)
- Manuel Torralba
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| | - Marianna Maddaloni
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio
6/A, I-34127 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy,Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| |
Collapse
|
42
|
Lu C, Li X, Ren Y, Zhang X. Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol 2021; 87:159-172. [PMID: 33426580 DOI: 10.1007/s00280-020-04216-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer is a major health issue worldwide and the global burden of cancer is expected to reduce the costs of treatment as well as prolong the survival time. One of the promising approaches is drug repurposing, because it reduces costs and shortens the production cycle of research and development. Disulfiram (DSF), which was originally approved as an anti-alcoholism drug, has been proven safe and shows the potential to target tumours. Its anti-tumour effect has been reported in many preclinical studies and recently on seven types of cancer in humans: non-small cell lung cancer (NSCLC), liver cancer, breast cancer, prostate cancer, pancreatic cancer, glioblastoma (GBM) and melanoma and has a successful breakthrough in the treatment of NSCLC and GBM. The mechanisms, particularly the intracellular signalling pathways, still remain to be completely elucidated. As shown in our previous study, DSF inhibits NF-kB signalling, proteasome activity, and aldehyde dehydrogenase (ALDH) activity. It induces endoplasmic reticulum (ER) stress and autophagy and has been used as an adjuvant therapy with irradiation or chemotherapy drugs. On the other hand, DSF not only kills the normal cancer cells but also has the ability to target cancer stem cells, which provides a new approach to prevent tumour recurrence and metastasis. Furthermore, other researchers have reported the ability of DSF to bind to nuclear protein localization protein 4 (NPL4), induce its immobilization and dysfunction, ultimately leading to cell death. Here, we provide an overview of DSF repurposing as a treatment in preclinical studies and clinical trials, and review studies describing the mechanisms underlying its anti-neoplastic effects.
Collapse
Affiliation(s)
- Chen Lu
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China
| | - Xinyan Li
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China
| | - Yongya Ren
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China
| | - Xiao Zhang
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
KAVAKCIOĞLU YARDIMCI B. Imidazole Antifungals: A Review of Their Action Mechanisms on Cancerous Cells. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.714310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
44
|
Herbener VJ, Burster T, Goreth A, Pruss M, von Bandemer H, Baisch T, Fitzel R, Siegelin MD, Karpel-Massler G, Debatin KM, Westhoff MA, Strobel H. Considering the Experimental use of Temozolomide in Glioblastoma Research. Biomedicines 2020; 8:E151. [PMID: 32512726 PMCID: PMC7344626 DOI: 10.3390/biomedicines8060151] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Temozolomide (TMZ) currently remains the only chemotherapeutic component in the approved treatment scheme for Glioblastoma (GB), the most common primary brain tumour with a dismal patient's survival prognosis of only ~15 months. While frequently described as an alkylating agent that causes DNA damage and thus-ultimately-cell death, a recent debate has been initiated to re-evaluate the therapeutic role of TMZ in GB. Here, we discuss the experimental use of TMZ and highlight how it differs from its clinical role. Four areas could be identified in which the experimental data is particularly limited in its translational potential: 1. transferring clinical dosing and scheduling to an experimental system and vice versa; 2. the different use of (non-inert) solvent in clinic and laboratory; 3. the limitations of established GB cell lines which only poorly mimic GB tumours; and 4. the limitations of animal models lacking an immune response. Discussing these limitations in a broader biomedical context, we offer suggestions as to how to improve transferability of data. Finally, we highlight an underexplored function of TMZ in modulating the immune system, as an example of where the aforementioned limitations impede the progression of our knowledge.
Collapse
Affiliation(s)
- Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Alicia Goreth
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Maximilian Pruss
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, D-40225 Duesseldorf, Germany;
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Hélène von Bandemer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Tim Baisch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Rahel Fitzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| |
Collapse
|
45
|
Farooq MA, Xu L, Aquib M, Ahsan A, Baig MMFA, Wang B. Denatured food protein-coated nanosuspension: A promising approach for anticancer delivery of hydrophobic drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Alexandru O, Horescu C, Sevastre AS, Cioc CE, Baloi C, Oprita A, Dricu A. Receptor tyrosine kinase targeting in glioblastoma: performance, limitations and future approaches. Contemp Oncol (Pozn) 2020; 24:55-66. [PMID: 32514239 PMCID: PMC7265959 DOI: 10.5114/wo.2020.94726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
From all central nervous system tumors, gliomas are the most common. Nowadays, researchers are looking for more efficient treatments for these tumors, as well as ways for early diagnosis. Receptor tyrosine kinases (RTKs) are major targets for oncology and the development of small-molecule RTK inhibitors has been proven successful in cancer treatment. Mutations or aberrant activation of the RTKs and their intracellular signaling pathways are linked to several malignant diseases, including glioblastoma. The progress in the understanding of malignant glioma evolution has led to RTK targeted therapies with high capacity to improve the therapeutic response while reducing toxicity. In this review, we present the most important RTKs (i.e. EGFR, IGFR, PDGFR and VEGFR) currently used for developing cancer therapeutics together with the potential of RTK-related drugs in glioblastoma treatment. Also, we focus on some therapeutic agents that are currently at different stages of research or even in clinical phases and proved to be suitable as re-purposing candidates for glioblastoma treatment.
Collapse
Affiliation(s)
- Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova and Clinical Hospital of Neuropsychiatry Craiova, Craiova, Romania
| | - Cristina Horescu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ani-Simona Sevastre
- Unit of Pharmaceutical Technology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Catalina Elena Cioc
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Carina Baloi
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alexandru Oprita
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anica Dricu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
47
|
Ishii H, Yamasaki T, Yui J, Zhang Y, Hanyu M, Ogawa M, Nengaki N, Tsuji AB, Terashima Y, Matsushima K, Zhang MR. Radiosynthesis of [thiocarbonyl- 11C]disulfiram and its first PET study in mice. Bioorg Med Chem Lett 2020; 30:126998. [PMID: 32014383 DOI: 10.1016/j.bmcl.2020.126998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
[Thiocarbonyl-11C]disulfiram ([11C]DSF) was synthesized via iodine oxidation of [11C]diethylcarbamodithioic acid ([11C]DETC), which was prepared from [11C]carbon disulfide and diethylamine. The decay-corrected isolated radiochemical yield (RCY) of [11C]DSF was greatly affected by the addition of unlabeled carbon disulfide. In the presence of carbon disulfide, the RCY was increased up to 22% with low molar activity (Am, 0.27 GBq/μmol). On the other hand, [11C]DSF was obtained in 0.4% RCY with a high Am value (95 GBq/μmol) in the absence of carbon disulfide. The radiochemical purity of [11C]DSF was always >98%. The first PET study on [11C]DSF was performed in mice. A high uptake of radioactivity was observed in the liver, kidneys, and gallbladder. The uptake level and distribution pattern in mice were not significantly affected by the Am value of the [11C]DSF sample used. In vivo metabolite analysis showed the rapid decomposition of [11C]DSF in mouse plasma.
Collapse
Affiliation(s)
- Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science (RIBS), Tokyo University of Science, Chiba 278-0022, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science (RIBS), Tokyo University of Science, Chiba 278-0022, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
48
|
Garrett AM, Lastakchi S, McConville C. The Personalisation of Glioblastoma Treatment Using Whole Exome Sequencing: A Pilot Study. Genes (Basel) 2020; 11:genes11020173. [PMID: 32041307 PMCID: PMC7074406 DOI: 10.3390/genes11020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
The molecular heterogeneity of glioblastoma has been linked to differences in survival and treatment response, while the development of personalised treatments may be a novel way of combatting this disease. Here we show for the first time that low passage number cells derived from primary tumours are greater than an 86% match genetically to the tumour tissue. We used these cells to identify eight genes that could be used for the personalisation of glioblastoma treatment and discovered a number of personalised drug combinations that were significantly more effective at killing glioblastoma cells and reducing recurrence than the individual drugs as well as the control and non-personalised combinations. This pilot study demonstrates for the first time that whole exome sequencing has the potential be used to improve the treatment of glioblastoma patients by personalising treatment. This novel approach could potentially offer a new avenue for treatment for this terrible disease.
Collapse
|
49
|
Rezaei N, Neshasteh-Riz A, Mazaheri Z, Koosha F, Hoormand M. The Combination of Metformin and Disulfiram-Cu for Effective Radiosensitization on Glioblastoma Cells. CELL JOURNAL 2019; 22:263-272. [PMID: 31863651 PMCID: PMC6947006 DOI: 10.22074/cellj.2020.6798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Objective Glioblastoma (GBM) is one of the devastating types of primary brain tumors with a negligible response to
standard therapy. Repurposing drugs, such as disulfiram (DSF) and metformin (Met) have shown antitumor properties
in different cell lines, including GBM. In the present study, we focused on the combinatory effect of Met and DSF-Cu on
the induction of apoptosis in U87-MG cells exposed to 6-MV X-ray beams.
Materials and Methods In this experimental study, the MTT assay was performed to evaluate the cytotoxicity of
each drug, along with the combinatory use of both. After irradiation, the apoptotic cells were assessed using the flow
cytometry, western blot, and real-time polymerase chain reaction (RT-PCR) to analyze the expression of some cell
death markers such as BAX and BCL-2.
Results The synergistic application of both Met and DSF had cytotoxic impacts on the U87-MG cell line and made
them sensitized to irradiation. The combinatory usage of both drugs significantly decreased the cells growth, induced
apoptosis, and caused the upregulation of BAX, P53, CASPASE-3, and it also markedly downregulated the expression
of the anti-apoptotic protein BCL-2 at the gene and protein levels.
Conclusion It seems that the synergistic application of both Met and DSF with the support of irradiation can remarkably
restrict the growth of the U87-MG cell line. This may trigger apoptosis via the stimulation of the intrinsic pathway. The
combinatory use of Met and DSF in the presence of irradiation could be applied for patients afflicted with GBM.
Collapse
Affiliation(s)
- Narges Rezaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiation Sciences, School of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiation Sciences, School of Paramedicine, Iran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Fereshteh Koosha
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Hoormand
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Current state and future perspective of drug repurposing in malignant glioma. Semin Cancer Biol 2019; 68:92-104. [PMID: 31734137 DOI: 10.1016/j.semcancer.2019.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Malignant gliomas are still extremely difficult to treat because complete surgical resection is biologically not feasible due to the invasive nature of these diseases and the proximity of tumors to functionally sensitive areas. Moreover, adjuvant therapies are facing a strong therapeutic resistance since the central nervous system is a highly protected environment and the tumor cells display a vast intra-tumoral genetic and epigenetic variation. As a consequence, new therapeutics are urgently needed but the process of developing novel compounds that finally reach clinical application is highly time-consuming and expensive. Drug repurposing is an approach to facilitate and accelerate the discovery of new cancer treatments. In malignant glioma, like in other cancers, pre-existing physiological pathways that regulate cell growth, cell death or cell migration are dysregulated causing malignant transformation. A wide variety of drugs are clinically used to treat non-cancerous diseases interfering with these malignancy-associated pathways. Repurposed drugs have key advantages: They already have approval for clinical use by national regulatory authorities. Moreover, they are for the most part inexpensive and their side effect and safety profiles are well characterized. In this work, we provide an overview on current repurposing strategies for the treatment of malignant glioma.
Collapse
|