1
|
Sahoo K, Sundararajan V. Methods in DNA methylation array dataset analysis: A review. Comput Struct Biotechnol J 2024; 23:2304-2325. [PMID: 38845821 PMCID: PMC11153885 DOI: 10.1016/j.csbj.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Understanding the intricate relationships between gene expression levels and epigenetic modifications in a genome is crucial to comprehending the pathogenic mechanisms of many diseases. With the advancement of DNA Methylome Profiling techniques, the emphasis on identifying Differentially Methylated Regions (DMRs/DMGs) has become crucial for biomarker discovery, offering new insights into the etiology of illnesses. This review surveys the current state of computational tools/algorithms for the analysis of microarray-based DNA methylation profiling datasets, focusing on key concepts underlying the diagnostic/prognostic CpG site extraction. It addresses methodological frameworks, algorithms, and pipelines employed by various authors, serving as a roadmap to address challenges and understand changing trends in the methodologies for analyzing array-based DNA methylation profiling datasets derived from diseased genomes. Additionally, it highlights the importance of integrating gene expression and methylation datasets for accurate biomarker identification, explores prognostic prediction models, and discusses molecular subtyping for disease classification. The review also emphasizes the contributions of machine learning, neural networks, and data mining to enhance diagnostic workflow development, thereby improving accuracy, precision, and robustness.
Collapse
Affiliation(s)
| | - Vino Sundararajan
- Correspondence to: Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
2
|
Fernando W, Cruickshank BM, Arun RP, MacLean MR, Cahill HF, Morales-Quintanilla F, Dean CA, Wasson MCD, Dahn ML, Coyle KM, Walker OL, Power Coombs MR, Marcato P. ALDH1A3 is the switch that determines the balance of ALDH + and CD24 -CD44 + cancer stem cells, EMT-MET, and glucose metabolism in breast cancer. Oncogene 2024; 43:3151-3169. [PMID: 39251846 PMCID: PMC11493680 DOI: 10.1038/s41388-024-03156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Plasticity is an inherent feature of cancer stem cells (CSCs) and regulates the balance of key processes required at different stages of breast cancer progression, including epithelial-to-mesenchymal transition (EMT) versus mesenchymal-to-epithelial transition (MET), and glycolysis versus oxidative phosphorylation. Understanding the key factors that regulate the switch between these processes could lead to novel therapeutic strategies that limit tumor progression. We found that aldehyde dehydrogenase 1A3 (ALDH1A3) regulates these cancer-promoting processes and the abundance of the two distinct breast CSC populations defined by high ALDH activity and CD24-CD44+ cell surface expression. While ALDH1A3 increases ALDH+ breast cancer cells, it inversely suppresses the CD24-CD44+ population by retinoic acid signaling-mediated gene expression changes. This switch in CSC populations induced by ALDH1A3 was paired with decreased migration but increased invasion and an intermediate EMT phenotype. We also demonstrate that ALDH1A3 increases oxidative phosphorylation and decreases glycolysis and reactive oxygen species (ROS). The effects of ALDH1A3 reduction were countered with the glycolysis inhibitor 2-deoxy-D-glucose (2DG). In cell culture and tumor xenograft models, 2DG suppresses the increase in the CD24-CD44+ population and ROS induced by ALDH1A3 knockdown. Combined inhibition of ALDH1A3 and glycolysis best reduces breast tumor growth and tumor-initiating cells, suggesting that the combination of targeting ALDH1A3 and glycolysis has therapeutic potential for limiting CSCs and tumor progression. Together, these findings identify ALDH1A3 as a key regulator of processes required for breast cancer progression and depletion of ALDH1A3 makes breast cancer cells more susceptible to glycolysis inhibition.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Brianne M Cruickshank
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Maya R MacLean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Hannah F Cahill
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Olivia L Walker
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Melanie R Power Coombs
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada.
- Nova Scotia Health Authority, Halifax, NS, Canada.
| |
Collapse
|
3
|
Takano N, Takamura M, Mizuno Y, Mizuno Y, Tamaru S, Nakamura K, Soma H, Kajihara T. Genetic and histological analysis intraplacental choriocarcinoma: a case report. Med Mol Morphol 2024; 57:147-154. [PMID: 38421457 PMCID: PMC11128402 DOI: 10.1007/s00795-024-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
We report on single case of intraplacental choriocarcinoma (IC) coexisting with feto-maternal hemorrhage from our hospital, a rare malignant tumor that occurs in the chorionic villous trophoblast. To investigate genetic and epigenetic changes to the carcinogenesis of IC, we employed cancer gene panel analysis and whole methylation analysis from a recent case of IC. By Short Tandem Repeats analysis, we confirmed that the tumor of present IC was derived from concurrent normal chorionic villous trophoblast cells. No mutation was found in 145 cancer-related genes. Meanwhile, amplification in MDM2 gene was observed. Furthermore, we observed deferentially methylated CpG sites between tumor and surrounding normal placenta in present IC case. These observations suggest that IC might be arisen as a result of aberrations of methylation rather than of DNA mutations. Further studies are needed to clarify association between aberrant methylation and choriocarcinogenesis.
Collapse
Affiliation(s)
- Natsuko Takano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Masashi Takamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Yosuke Mizuno
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | - Yumi Mizuno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
- Division of Experimental Animal, Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | - Shunsuke Tamaru
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Kumagaya General Hospital, Saitama, Japan
| | - Hiroaki Soma
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan.
| |
Collapse
|
4
|
Guo Y, Chai B, Zhang H, Chai X, Chen Y, Xu J, Qin L, Chai Y. RARRES1 inhibits hepatocellular carcinoma progression and increases its sensitivity to lenvatinib through interaction with SPINK2. Biol Direct 2024; 19:15. [PMID: 38388961 PMCID: PMC10885466 DOI: 10.1186/s13062-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Lenvatinib is an oral small molecule inhibitor approved for treating patients with unresectable hepatocellular carcinoma (HCC) worldwide. Increasing cell sensitivity to lenvatinib would be an effective method of improving therapeutic efficacy. METHODS High throughput methods was used to scan the differentially expressed genes (DEGs) related to lenvatinib sensitivity in HCC cells. Gain- and loss-function experiments were used to explore the functions of these DEGs in HCC and lenvatinib sensitivity. CO-IP assay and rescue experiments were utilized to investigate the mechanism. RESULTS We identified that RAR responder protein 1 (RARRES1), a podocyte-specific growth arrest gene, was among significantly upregulated DEGs in HCC cells following lenvatinib treatment. Functional analysis showed that ectopic RARRES1 expression decreased HCC progression in vitro and in vivo, as well as improving tumor sensitivity to lenvatinib, while RARRES1 silencing increased HCC cell proliferation and migration. Mechanistically, co-immunoprecipitation assays demonstrated that RARRES1 interacted with serine protease inhibitor Kazal-type 2 (SPINK2) in HCC cells. Further, SPINK2 overexpression suppressed HCC cell proliferation and migration, as well as increasing sensitivity to lenvatinib whereas SPINK2 knockdown promoted cell progression and decreased lenvatinib sensitivity. The mRNA and protein levels of RARRES1 and SPINK2 were low in HCC tissue samples, relative to those in normal liver tissue. CONCLUSIONS Our findings highlighted that RARRES1 can inhibit HCC progression and regulate HCC sensitivity to lenvatinib by interacting SPINK2, representing a new tumor suppressor RARRES1/SPINK2 axis in HCC that modulates sensitivity to lenvatinib.
Collapse
Affiliation(s)
- Yarong Guo
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, Shanxi, China
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Bao Chai
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, Shanxi, China
| | - Hezhao Zhang
- Department of Surgery, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Xinhao Chai
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yan Chen
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Jun Xu
- Department of Surgery, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China.
| | - Liwei Qin
- Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yuting Chai
- Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Bharadwaj AG, McLean ME, Dahn ML, Cahill HF, Wasson MD, Arun RP, Walker OL, Cruickshank BM, Fernando W, Venkatesh J, Barnes PJ, Bethune G, Knapp G, Helyer LK, Giacomantonio CA, Waisman DM, Marcato P. ALDH1A3 promotes invasion and metastasis in triple-negative breast cancer by regulating the plasminogen activation pathway. Mol Oncol 2024; 18:91-112. [PMID: 37753740 PMCID: PMC10766202 DOI: 10.1002/1878-0261.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is a cancer stem cell marker that promotes metastasis. Triple-negative breast cancer (TNBC) progression has been linked to ALDH1A3-induced gene expression changes. To investigate the mechanism of ALDH1A3-mediated breast cancer metastasis, we assessed the effect of ALDH1A3 on the expression of proteases and the regulators of proteases that degrade the extracellular matrix, a process that is essential for invasion and metastasis. This revealed that ALDH1A3 regulates the plasminogen activation pathway; it increased the levels and activity of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). This resulted in a corresponding increase in the activity of serine protease plasmin, the enzymatic product of tPA and uPA. The ALDH1A3 product all-trans-retinoic acid similarly increased tPA and plasmin activity. The increased invasion of TNBC cells by ALDH1A3 was plasminogen-dependent. In patient tumours, ALDH1A3 and tPA are co-expressed and their combined expression correlated with the TNBC subtype, high tumour grade and recurrent metastatic disease. Knockdown of tPA in TNBC cells inhibited plasmin generation and lymph node metastasis. These results identify the ALDH1A3-tPA-plasmin axis as a key contributor to breast cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gregory Knapp
- Department of SurgeryDalhousie UniversityHalifaxCanada
| | | | - Carman A. Giacomantonio
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of SurgeryDalhousie UniversityHalifaxCanada
| | - David M. Waisman
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| | - Paola Marcato
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada
- Nova Scotia Health AuthorityHalifaxCanada
| |
Collapse
|
6
|
Shi Y, Chen S, Xing H, Jiang G, Wu N, Liu Q, Sakamoto N, Kuno T, Sugiura R, Xiao Q, Jin F, Fang Y, Yao F. Comprehensive Analysis of Prognostic Microenvironment-Related Genes in Invasive Breast Cancer. Front Oncol 2022; 11:576911. [PMID: 35047378 PMCID: PMC8761742 DOI: 10.3389/fonc.2021.576911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies reveal that tumor microenvironment contributes to breast cancer (BRCA) development, progression, and therapeutic response. However, the contribution of the tumor microenvironment-related genes in routine diagnostic testing or therapeutic decision making for BRCA remains elusive. Immune/stromal/ESTIMATE scores calculated by the ESTIMATE algorithm quantify immune and stromal components in a tumor, and thus can reflect tumor microenvironment. To investigate the association of the tumor microenvironment-related genes with invasive BRCA prognosis, here we analyzed the immune/stromal/ESTIMATE scores in combination with The Cancer Genome Atlas (TCGA) database in invasive BRCA. We found that immune/stromal/ESTIMATE scores were significantly correlated with the invasive BRCA clinicopathological factors. Based on the immune/stromal/ESTIMATE scores, we extracted a series of differential expression genes (DEGs) related to the tumor microenvironment. Survival analysis was further performed to identify a list of high-frequency DEGs (HF-DEGs), which exhibited prognostic value in invasive BRCA. Importantly, consistent with the results of bioinformatics analysis, immunohistochemistry results showed that high SASH3 expression was associated with a good prognosis in invasive BRCA patients. Our findings suggest that the tumor microenvironment-related HF-DEGs identified in this study have prognostic values and may serve as potential biomarkers and therapeutic targets for invasive BRCA.
Collapse
Affiliation(s)
- Yingrong Shi
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Huijuan Xing
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Nan Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China.,Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Mohan A, Raj R R, Mohan G, K P P, Thomas Maliekal T. Reporters of Cancer Stem Cells as a Tool for Drug Discovery. Front Oncol 2021; 11:669250. [PMID: 33968778 PMCID: PMC8100607 DOI: 10.3389/fonc.2021.669250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
In view of the importance of cancer stem cells (CSCs) in chemoresistance, metastasis and recurrence, the biology of CSCs were explored in detail. Based on that, several modalities were proposed to target them. In spite of the several clinical trials, a successful CSC-targeting drug is yet to be identified. The number of molecules screened and entered for clinical trial for CSC-targeting is comparatively low, compared to other drugs. The bottle neck is the lack of a high-throughput adaptable screening strategy for CSCs. This review is aimed to identify suitable reporters for CSCs that can be used to identify the heterogeneous CSC populations, including quiescent CSCs, proliferative CSCs, drug resistant CSCs and metastatic CSCs. Analysis of the tumor microenvironment regulating CSCs revealed that the factors in CSC-niche activates effector molecules that function as CSC markers, including pluripotency markers, CD133, ABCG2 and ALDH1A1. Among these factors OCT4, SOX2, NANOG, ABCG2 and ALDH1A1 are ideal for making reporters for CSCs. The pluripotency molecules, like OCT4, SOX2 and NANOG, regulate self-renewal, chemoresistance and metastasis. ABCG2 is a known regulator of drug resistance while ALDH1A1 modulates self-renewal, chemoresistance and metastasis. Considering the heterogeneity of CSCs, including a quiescent population and a proliferative population with metastatic ability, we propose the use of a combination of reporters. A dual reporter consisting of a pluripotency marker and a marker like ALDH1A1 will be useful in screening drugs that target CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj R
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Padmaja K P
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | |
Collapse
|
8
|
Vermani L, Kumar R, Senthil Kumar N. GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors. Cureus 2020; 12:e12020. [PMID: 33457124 PMCID: PMC7797410 DOI: 10.7759/cureus.12020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The overwhelming majority of published articles have taken colon and rectal cancer as a single group, i.e., colorectal cancer, when normalizing gene expression data with housekeeping genes (HKG) in quantitative polymerase chain reaction (qPCR) experiments though there are published reports that suggest the differential expression pattern of genes between the colon and rectal cancer groups and hence the current experiment was attempted to find out the optimal set of housekeeping genes from the list of common HKG for rectal tumor gene expression analysis. Methods The expression of five potential housekeeping genes GAPDH, RPNI, PUM1, B2M, and PMM1 was analyzed through qPCR and Bestkeeper software (http://www.wzw.tum.de/gene-quantification/bestkeeper.html) in 20 stage II-IV rectal cancer samples to check for uniformity in their expression pattern. Cancer stem cell (CSC) marker ALDH1 and epithelial-mesenchymal transition marker (EMT) markers E cadherin, vimentin, Twist, and SNAI2 expression were evaluated in conjunction with the two optimal reference genes in 10 rectal cancers as part of validation. Results The standard deviation of the cycle threshold value of GAPDH was found the lowest at 0.65 followed by RPN1 at 0.88, PUM1 at 0.94, PMM1 at 0.94, and B2M at 1.21 when analyzed with BestKeeper software. Using GAPDH and PUM1 as the reference gene for the validation phase, rectal cancer patients with stage III/IV showed a 4.79-fold change (P=0.006) in ALDH1 expression, and an 11.76-fold change in Twist expression (P=0.003) with respect to stage II rectal tumor when normalized with GAPDH and PUM1. Conclusion GAPDH and PUM1 can be used as an optimal set of housekeeping genes for gene expression-related experiments in rectal tumors. ALDH1 and Twist were found significantly overexpressed in stage III/IV rectal tumors in comparison to stage II rectal cancer. Genes associated with cancer stem cells and EMT markers could be optimally analyzed by normalizing them with GAPDH and PUM1 as housekeeping genes.
Collapse
Affiliation(s)
| | - Rajeev Kumar
- Research, Cachar Cancer Hospital and Research Centre, Silchar, IND
| | | |
Collapse
|
9
|
De Palma FDE, Del Monaco V, Pol JG, Kremer M, D’Argenio V, Stoll G, Montanaro D, Uszczyńska-Ratajczak B, Klein CC, Vlasova A, Botti G, D’Aiuto M, Baldi A, Guigó R, Kroemer G, Maiuri MC, Salvatore F. The abundance of the long intergenic non-coding RNA 01087 differentiates between luminal and triple-negative breast cancers and predicts patient outcome. Pharmacol Res 2020; 161:105249. [DOI: 10.1016/j.phrs.2020.105249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
|
10
|
Sun H, Cui Y, Wang H, Liu H, Wang T. Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data. BMC Bioinformatics 2020; 21:357. [PMID: 32795265 PMCID: PMC7646480 DOI: 10.1186/s12859-020-03653-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background Previous studies have reported that labeling errors are not uncommon in omics data. Potential outliers may severely undermine the correct classification of patients and the identification of reliable biomarkers for a particular disease. Three methods have been proposed to address the problem: sparse label-noise-robust logistic regression (Rlogreg), robust elastic net based on the least trimmed square (enetLTS), and Ensemble. Ensemble is an ensembled classification based on distinct feature selection and modeling strategies. The accuracy of biomarker selection and outlier detection of these methods needs to be evaluated and compared so that the appropriate method can be chosen. Results The accuracy of variable selection, outlier identification, and prediction of three methods (Ensemble, enetLTS, Rlogreg) were compared for simulated and an RNA-seq dataset. On simulated datasets, Ensemble had the highest variable selection accuracy, as measured by a comprehensive index, and lowest false discovery rate among the three methods. When the sample size was large and the proportion of outliers was ≤5%, the positive selection rate of Ensemble was similar to that of enetLTS. However, when the proportion of outliers was 10% or 15%, Ensemble missed some variables that affected the response variables. Overall, enetLTS had the best outlier detection accuracy with false positive rates < 0.05 and high sensitivity, and enetLTS still performed well when the proportion of outliers was relatively large. With 1% or 2% outliers, Ensemble showed high outlier detection accuracy, but with higher proportions of outliers Ensemble missed many mislabeled samples. Rlogreg and Ensemble were less accurate in identifying outliers than enetLTS. The prediction accuracy of enetLTS was better than that of Rlogreg. Running Ensemble on a subset of data after removing the outliers identified by enetLTS improved the variable selection accuracy of Ensemble. Conclusions When the proportion of outliers is ≤5%, Ensemble can be used for variable selection. When the proportion of outliers is > 5%, Ensemble can be used for variable selection on a subset after removing outliers identified by enetLTS. For outlier identification, enetLTS is the recommended method. In practice, the proportion of outliers can be estimated according to the inaccuracy of the diagnostic methods used.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, 030001, Shanxi, China.,Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, City, Yantai, 264003, Shandong, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA
| | - Hui Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, 030001, Shanxi, China
| | - Haixia Liu
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, City, Yantai, 264003, Shandong, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, 030001, Shanxi, China.
| |
Collapse
|
11
|
Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. Br J Cancer 2020; 122:1818-1824. [PMID: 32307444 PMCID: PMC7283229 DOI: 10.1038/s41416-020-0798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 15% of clinically localised conventional renal cell carcinoma (RCC) will develop metastasis within 5 years of follow-up. The aim of this study was to identify biomarkers predicting the postoperative tumour relapse. METHODS Tissue microarrays of conventional RCC from a cohort of 691 patients without metastasis at the time of operation were analysed by immunohistochemistry for the expression of carboxypeptase inhibitor RARRES1 and its substrate carboxypeptidase AGBL2. Univariate and multivariate Cox regression models were addressed to postoperative tumour relapse and the metastasis-free survival time was estimated by Kaplan-Meier analysis. RESULTS In multivariate analysis, the lack of staining or cytoplasmic staining of RARRES1 was a significant risk factor indicating five times higher risk of cancer relapse. Combining its co-expression with AGBL2, we found that RARRES1 cytoplasmic/negative and AGBL2-positive/negative staining is a significant risk factor for tumour progression indicating 11-15 times higher risk of cancer relapse, whereas the membranous RARRES1 expression, especially its co-expression with AGBL2, associated with excellent disease outcome. CONCLUSIONS RARRES1 and AGBL2 expression defines groups of patients at low and high risk of tumour progression and may direct an active surveillance to detect metastasis as early as possible and to apply adjuvant therapy.
Collapse
|
12
|
Dahn ML, Cruickshank BM, Jackson AJ, Dean C, Holloway RW, Hall SR, Coyle KM, Maillet H, Waisman DM, Goralski KB, Giacomantonio CA, Weaver ICG, Marcato P. Decitabine Response in Breast Cancer Requires Efficient Drug Processing and Is Not Limited by Multidrug Resistance. Mol Cancer Ther 2020; 19:1110-1122. [PMID: 32156786 DOI: 10.1158/1535-7163.mct-19-0745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022]
Abstract
Dysregulation of DNA methylation is an established feature of breast cancers. DNA demethylating therapies like decitabine are proposed for the treatment of triple-negative breast cancers (TNBC) and indicators of response need to be identified. For this purpose, we characterized the effects of decitabine in a panel of 10 breast cancer cell lines and observed a range of sensitivity to decitabine that was not subtype specific. Knockdown of potential key effectors demonstrated the requirement of deoxycytidine kinase (DCK) for decitabine response in breast cancer cells. In treatment-naïve breast tumors, DCK was higher in TNBCs, and DCK levels were sustained or increased post chemotherapy treatment. This suggests that limited DCK levels will not be a barrier to response in patients with TNBC treated with decitabine as a second-line treatment or in a clinical trial. Methylome analysis revealed that genome-wide, region-specific, tumor suppressor gene-specific methylation, and decitabine-induced demethylation did not predict response to decitabine. Gene set enrichment analysis of transcriptome data demonstrated that decitabine induced genes within apoptosis, cell cycle, stress, and immune pathways. Induced genes included those characterized by the viral mimicry response; however, knockdown of key effectors of the pathway did not affect decitabine sensitivity suggesting that breast cancer growth suppression by decitabine is independent of viral mimicry. Finally, taxol-resistant breast cancer cells expressing high levels of multidrug resistance transporter ABCB1 remained sensitive to decitabine, suggesting that the drug could be used as second-line treatment for chemoresistant patients.
Collapse
Affiliation(s)
- Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Ainsleigh J Jackson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cheryl Dean
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan W Holloway
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven R Hall
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hillary Maillet
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Halifax, Nova Scotia, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Bacolod MD, Huang J, Giardina SF, Feinberg PB, Mirza AH, Swistel A, Soper SA, Barany F. Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer 2020; 20:85. [PMID: 32005108 PMCID: PMC6995062 DOI: 10.1186/s12885-020-6574-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. Methods In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. Results Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). Conclusion This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Swistel
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66047, USA
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Fertan E, Rodrigues GJ, Wheeler RV, Goguen D, Wong AA, James H, Stadnyk A, Brown RE, Weaver IC. Cognitive Decline, Cerebral-Spleen Tryptophan Metabolism, Oxidative Stress, Cytokine Production, and Regulation of the Txnip Gene in a Triple Transgenic Mouse Model of Alzheimer Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1435-1450. [DOI: 10.1016/j.ajpath.2019.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
|
15
|
Vidovic D, Huynh TT, Konda P, Dean C, Cruickshank BM, Sultan M, Coyle KM, Gujar S, Marcato P. ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells. Cell Death Differ 2019; 27:363-378. [PMID: 31197235 PMCID: PMC7206030 DOI: 10.1038/s41418-019-0362-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
To discover novel therapeutic targets for triple-negative breast cancer (TNBC) and cancer stem cells (CSCs), we screened long non-coding RNAs (lncRNAs) most enriched in TNBCs for high expression in CSCs defined by high Aldefluor activity and associated with worse patient outcomes. This led to the identification of non-coding RNA in the aldehyde dehydrogenase 1 A pathway (NRAD1), also known as LINC00284. Targeting NRAD1 in TNBC tumors using antisense oligonucleotides reduced cell survival, tumor growth, and the number of cells with CSC characteristics. Expression of NRAD1 is regulated by an enzyme that causes Aldefluor activity in CSCs, aldehyde dehydrogenase 1A3 (ALDH1A3) and its product retinoic acid. Cellular fractionation revealed that NRAD1 is primarily nuclear localized, which suggested a potential function in gene regulation. This was confirmed by transcriptome profiling and chromatin isolation by RNA purification, followed by sequencing (ChIRP-seq), which demonstrated that NRAD1 has enriched chromatin interactions among the genes it regulates. Gene Ontology enrichment analysis revealed that NRAD1 regulates expression of genes involved in differentiation and catabolic processes. NRAD1 also contributes to gene expression changes induced by ALDH1A3; thereby, the induction of NRAD1 is a novel mechanism through which ALDH1A3 regulates gene expression. Together, these data identify lncRNA NRAD1 as a downstream effector of ALDH1A3, and a target for TNBCs and CSCs, with functions in cell survival and regulation of gene expression.
Collapse
Affiliation(s)
- Dejan Vidovic
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Thomas T Huynh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cheryl Dean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Mohammad Sultan
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
16
|
Maimouni S, Issa N, Cheng S, Ouaari C, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells. PLoS One 2018; 13:e0208756. [PMID: 30557378 PMCID: PMC6296515 DOI: 10.1371/journal.pone.0208756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is differentially expressed in metabolism associated diseases, such as hepatic steatosis, hyperinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic reprogramming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1 depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75, reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted normal breast and prostate epithelial cells proved advantageous to the cells during starvation, as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-regulated transcription factors. Pathway enrichment analysis led us to determine that RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling. These findings open up a new avenue for metabolic reprogramming and identify RARRES1 as a potential target for cancers and other diseases with impaired fatty acid metabolism.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
| | - Naiem Issa
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Selina Cheng
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Chokri Ouaari
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
- University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Amrita Cheema
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, United States of America
| | - Stephen Byers
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
17
|
DNA Methylation Predicts the Response of Triple-Negative Breast Cancers to All-Trans Retinoic Acid. Cancers (Basel) 2018; 10:cancers10110397. [PMID: 30352973 PMCID: PMC6266978 DOI: 10.3390/cancers10110397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
All-trans retinoic acid (atRA) regulates gene expression and is used to treat acute promyelocytic leukemia. Attempts to use atRA in breast cancer without a stratification strategy have resulted in limited overall effectiveness. To identify biomarkers for the treatment of triple-negative breast cancer (TNBC) with atRA, we characterized the effects of atRA on the tumor growth of 13 TNBC cell lines. This resulted in a range of effects that was not predictable based on previously hypothesized predictors of response, such as the levels of atRA nuclear shuttling proteins fatty acid binding protein 5 (FABP5) and cellular retinoic acid binding protein 2 (CRABP2). Transcriptional profiling revealed that atRA induced distinct gene expression changes in the sensitive versus resistant cell lines that were mostly independent of the presence of retinoic acid response elements (RAREs) or peroxisome proliferator response elements (PPREs). Given the importance of DNA methylation in regulating gene expression, we hypothesized that differential DNA methylation could predict the response of TNBCs to atRA. We identified over 1400 sites that were differentially methylated between atRA resistant and sensitive cell lines. These CpG sites predicted the response of four TNBC patient-derived xenografts to atRA, and we utilized these xenografts to refine the profile and identified that as many as 17% of TNBC patients could benefit from atRA treatment. These data illustrate that differential methylation of specific CpGs may be useful biomarkers for predicting the response of patient tumors to atRA treatment.
Collapse
|
18
|
Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, Wachter DL, Beckmann Md MW, Fahlbusch FB, Ruebner M. Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta. Reprod Sci 2017; 25:1357-1370. [PMID: 29246089 DOI: 10.1177/1933719117746761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling through its receptors (RARA, RARB, RARG, and the retinoic X receptor RXRA) is essential for healthy placental and fetal development. An important group of genes regulated by RA are the RA receptor responders (RARRES1, 2, and 3). We set out to analyze their expression and regulation in healthy and pathologically altered placentas of preeclampsia (PE) and intrauterine growth restriction (IUGR) as well as in trophoblast cell lines. METHODS We performed immunohistochemical staining on placental sections and analyzed gene expression by real-time polymerase chain reaction. Additionally, we performed cell culture experiments and stimulated Swan71 and Jeg-3 cells with different RA derivates and 2'-deoxy-5-azacytidine (AZA) to induce DNA demethylation. RESULTS RARRES1, 2, and 3 and RARA, RARB, RARG, and RXRA are expressed in the extravillous part of the placenta. RARRES1, RARA, RARG, and RXRA were additionally detected in villous cytotrophoblasts. RARRES gene expression was induced via activation of RARA, RARB, and RARG in trophoblast cells. RARRES1 was overexpressed in villous trophoblasts and the syncytiotrophoblast from PE placentas, but not in IUGR without PE. Promoter methylation was detectable for RARRES1 and RARB based on their sensitivity toward AZA treatment of trophoblast cell lines. DISCUSSION RARRES1, 2 and 3 are expressed in the functional compartments of the human placenta and can be regulated by RA. We hypothesize that the epigenetic suppression of trophoblast RARRES1 and RARB expression and the upregulation of RARRES1 in PE trophoblast cells suggest an involvement of environmental factors (eg, maternal vitamin A intake) in the pathogenesis of this pregnancy complication.
Collapse
Affiliation(s)
- Hanna Huebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Hartner
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rascher
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Reiner R Strick
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sven Kehl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Heindl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David L Wachter
- 3 Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany * The authors are contributed equally
| | - Matthias W Beckmann Md
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian B Fahlbusch
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
19
|
Profiling of the transcriptional response to all-trans retinoic acid in breast cancer cells reveals RARE-independent mechanisms of gene expression. Sci Rep 2017; 7:16684. [PMID: 29192143 PMCID: PMC5709375 DOI: 10.1038/s41598-017-16687-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Retinoids, derivatives of vitamin A, are key physiological molecules with regulatory effects on cell differentiation, proliferation and apoptosis. As a result, they are of interest for cancer therapy. Specifically, models of breast cancer have varied responses to manipulations of retinoid signaling. This study characterizes the transcriptional response of MDA-MB-231 and MDA-MB-468 breast cancer cells to retinaldehyde dehydrogenase 1A3 (ALDH1A3) and all-trans retinoic acid (atRA). We demonstrate limited overlap between ALDH1A3-induced gene expression and atRA-induced gene expression in both cell lines, suggesting that the function of ALDH1A3 in breast cancer progression extends beyond its role as a retinaldehyde dehydrogenase. Our data reveals divergent transcriptional responses to atRA, which are largely independent of genomic retinoic acid response elements (RAREs) and consistent with the opposing responses of MDA-MB-231 and MDA-MB-468 to in vivo atRA treatment. We identify transcription factors associated with each gene set. Manipulation of the IRF1 transcription factor demonstrates that it is the level of atRA-inducible and epigenetically regulated transcription factors that determine expression of target genes (e.g. CTSS, cathepsin S). This study provides a paradigm for complex responses of breast cancer models to atRA treatment, and illustrates the need to characterize RARE-independent responses to atRA in a variety of models.
Collapse
|
20
|
Huebner H, Strick R, Wachter DL, Kehl S, Strissel PL, Schneider-Stock R, Hartner A, Rascher W, Horn LC, Beckmann MW, Ruebner M, Fahlbusch FB. Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:165. [PMID: 29169400 PMCID: PMC5701501 DOI: 10.1186/s13046-017-0634-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023]
Abstract
Background Human placental development resembles tumorigenesis, due to the invasive and fusogenic potential of trophoblasts. However, these features are tightly controlled in trophoblasts. Disturbance of this spatial and temporal regulation is thought to contribute to the rare formation of choriocarcinomas. Promoter hypermethylation and loss of the tumor suppressor Retinoic acid receptor responder 1 (RARRES1) were shown to contribute to cancer progression. Our study investigated the epigenetic and transcriptional regulation of RARRES1 in healthy human placenta in comparison to choriocarcinoma cell lines and cases. Methods Three choriocarcinoma cell lines (Jeg-3, JAR and BeWo) were treated with three different retinoic acid derivates (Am580, Tazarotene and all-trans retinoic acid) and 5-aza-2′-deoxycytidine. We analyzed RARRES1 promoter methylation by pyrosequencing and performed realtime-PCR quantification to determine RARRES1 expression in placental tissue and trophoblastic cell lines. Additionally, RARRES1 was stained in healthy placentas and in biopsies of choriocarcinoma cases (n = 10) as well as the first trimester trophoblast cell line Swan71 by immunofluorescence and immunohistochemistry. Results In the choriocarcinoma cell lines, RARRES1 expression could not be induced by sole retinoic acid treatment. Stimulation with 5-aza-2′-deoxycytidine significantly induced RARRES1 expression, which then could be further increased with Am580, Tazarotene and all-trans retinoic acid. In comparison to healthy placenta, choriocarcinoma cell lines showed a hypermethylation of the RARRES1 promoter, which correlated with a reduced RARRES1 expression. In concordance, RARRES1 protein expression was lost in choriocarcinoma tissue. Additionally, in the trophoblastic cell line Swan71, we found a significant induction of RARRES1 expression with increased cell density, during mitosis and in syncytial knots. Conclusions Our findings showed that RARRES1 expression is absent in choriocarcinoma due to promoter methylation. Based on our analysis, we hypothesize that RARRES1 might exert tumor suppressive functions in multiple cellular processes (e.g. cell cycle regulation, adhesion, invasion and apoptosis). Electronic supplementary material The online version of this article (10.1186/s13046-017-0634-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Huebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Strick
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - D L Wachter
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - S Kehl
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - P L Strissel
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Schneider-Stock
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - A Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - W Rascher
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - L C Horn
- Division Molecular Pathology, Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - M W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - M Ruebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - F B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany.
| |
Collapse
|
21
|
Xu T, Zhang L, Xu H, Kang S, Xu Y, Luo X, Hua T, Tang G. Prediction of low-risk breast cancer using quantitative DCE-MRI and its pathological basis. Oncotarget 2017; 8:114360-114370. [PMID: 29371992 PMCID: PMC5768409 DOI: 10.18632/oncotarget.22267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aimed to evaluate the difference of mass in dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) characteristics between low-risk and non-low-risk breast cancers and to explore the possible pathological basis. Materials and Methods Approval from the institutional review board and informed consent were acquired for this study. The MR images of 104 patients with pathologically proven breast cancer (104 lesions) were prospectively analyzed. All of included patients were Chinese woman. The DCE-MRI morphologic findings, apparent diffusion coefficient (ADC) values, quantitative DCE-MRI parameters, and pathological biomarkers between the two subtypes of breast cancer were compared. The quantitative DCE-MRI parameters and ADC values were added to the morphologic features in multivariate models to evaluate diagnostic performance in predicting low-risk breast cancer. The values were further subjected to the receiver operating characteristic (ROC) curve analysis. Results Low-risk tumors showed significantly lower Ktrans and Kepvalues (t = 2.065, P = 0.043 and t = 3.548, P = 0.001, respectively) and higher ADC value (t = 4.713, P = 0.000) than non-low-risk breast cancers. Our results revealed no significant differences in clinic data and conventional imaging findings between the two breast cancer subtypes. Adding the quantitative DCE-MRI parameters and ADC values to conventional MRI improved the diagnostic performance of MRI: The area under the ROC improved from 0.63 to 0.91. Low-risk breast cancers showed significantly lower matrix metalloproteinase (MMP)-2 expression (P = 0.000), lower MMP-9 expression (P = 0.001), and lower microvessel density (MVD) values (P = 0.008) compared with non-low-risk breast cancers. Ktrans and Kep values were positively correlated with pathological biomarkers. The ADC value showed a significant inverse correlation with pathological biomarkers. Conclusions The prediction parameter using Ktrans, Kep, and ADC obtained on DCE-MRI and diffusion-weighted imaging could facilitate the identification of low-risk breast cancers. Decreased biological factors, including MVD, vascular endothelial growth factor, MMP-2, and MMP-9, may explain the possible pathological basis.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Zhang
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hong Xu
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Sifeng Kang
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yali Xu
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyu Luo
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ting Hua
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangyu Tang
- Department of Radiology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
22
|
Jitariu AA, Cîmpean AM, Ribatti D, Raica M. Triple negative breast cancer: the kiss of death. Oncotarget 2017; 8:46652-46662. [PMID: 28445140 PMCID: PMC5542300 DOI: 10.18632/oncotarget.16938] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022] Open
Abstract
One of the most controversial women malignancies, triple negative breast cancers (TNBCs) are critically overviewed here, being focused on data useful in clinical practice or to improve the therapy and patients survival. TNBCs "choose" young women and its "kiss" is, unfortunately deadly in most cases. Currently, few sparse data are available in literature concerning the origins of TNBC. Vasculogenic mimicry detected in TNBCs, seems to be determined by a population of CD133+ cells and may be stimulated by different pharmacological agents such sunitinib. Despite the fact that TNBCs do not usually metastasize through the lymphatic pathways, TNBCs may be characterized by lymphatic invasion and by an increased lymphatic microvascular density. If TNBCs treatment depends on the molecular profile of the tumor, the same statement may be postulated for TNBCs metastasis. Whether metastases have a similar phenotype as the primary tumor remains an enigma. Therefore, the question: 'Could TNBC be subject to a standardized, unanimously accepted therapeutic strategy or is it strictly subclass-dependent?' remains to be further investigated.
Collapse
Affiliation(s)
- Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Anca Maria Cîmpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute “ Giovanni Paolo II”, Bari, Italy
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
23
|
Wang Y, Hao DP, Li JJ, Wang L, Di LJ. Genome-wide methylome and chromatin interactome identify abnormal enhancer to be risk factor of breast cancer. Oncotarget 2017; 8:44705-44719. [PMID: 28621677 PMCID: PMC5546512 DOI: 10.18632/oncotarget.18348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Enhancer is critical cis regulatory elements in gene expression. To understand whether and how the aberrant enhancer activation may contribute to cancer risk, the differentially methylated enhancers (eDMRs) in normal and malignant breast tissues were identified and analyzed. By incorporating genome-wide chromatin interaction, integrated analysis of eDMRs and target gene expression identified 1,272 enhancer-promoter pairs. Surprisingly, two functionally distinct groups of genes were identified in these pairs, one showing better correlation to enhancer methylation (eRGs) and the other showing better correlation to promoter methylation (pRGs), and the former group is functionally enriched with cancer related genes. Moreover, enhancer methylation based clustering of breast cancer samples is capable of discriminating basal breast cancer from other subtypes. By correlating enhancer methylation status to patient survival, 345 enhancers show the impact on the disease outcome and the majority of their target genes are important regulators of cell survival pathways including known cancer related genes. Together, these results suggest reactivation of enhancers in cancer cells has the add-on effect and contributes to cancer risk in combination.
Collapse
Affiliation(s)
- Yuan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Da-Peng Hao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jing-Jing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Wang
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
24
|
Coyle KM, Boudreau JE, Marcato P. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9620870. [PMID: 28685150 PMCID: PMC5480027 DOI: 10.1155/2017/9620870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/06/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment is undergoing a significant revolution from "one-size-fits-all" cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes.
Collapse
Affiliation(s)
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
25
|
Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017; 11:41. [PMID: 28360846 PMCID: PMC5350110 DOI: 10.3389/fnbeh.2017.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral (e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation and the role of DNA repair machinery. From parental history (e.g., drugs, housing, illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota, antibodies and stimulation, the nature of nurture provides not only mechanistic insight into how experiences propagate from external to internal variables, but also identifies a composite therapeutic target, chromatin modeling, for gestational/prenatal stress, adolescent anxiety/depression and adult-onset neuropsychiatric disease.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Austin C Korgan
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Kristen Lee
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Ryan V Wheeler
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| |
Collapse
|