1
|
Zaninelli S, Panna S, Tettamanti S, Melita G, Doni A, D’Autilia F, Valgardsdottir R, Gotti E, Rambaldi A, Golay J, Introna M. Functional Activity of Cytokine-Induced Killer Cells Enhanced by CAR-CD19 Modification or by Soluble Bispecific Antibody Blinatumomab. Antibodies (Basel) 2024; 13:71. [PMID: 39311376 PMCID: PMC11417890 DOI: 10.3390/antib13030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ and CAR-BG2) or combined with soluble CD3xCD19 BsAb blinatumomab (CIK + Blina). CAR-MNZ bearing the CD28-OX40-CD3ζ signaling modules, and CAR-BG2, designed on the Tisagenlecleucel CAR sequence (Kymriah®), carrying the 4-1BB and CD3ζ signaling elements, were employed. After transfection and CIK expansion, cells expressed CAR-CD19 to a similar extent (35.9% CAR-MNZ and 17.7% CAR-BG2). In vitro evaluations demonstrated robust proliferation and cytotoxicity (~50% cytotoxicity) of CARCIK-MNZ, CARCIK-BG2, and CIK + Blina against CD19+ target cells, suggesting similar efficacy. All effectors formed an increased number of synapses, activated NFAT and NFkB, and secreted IL-2 and IFN-ɣ upon encountering targets. CIK + Blina displayed strongest NFAT and IFN-ɣ induction, whereas CARCIK-BG2 demonstrated superior synapse formation. All the effectors have shown therapeutic activity in vivo against the CD19+ Daudi tumor model, with CARCIK cells showing a more durable response compared to CIK + Blina, likely due to the short half-life of Blina in this model.
Collapse
Affiliation(s)
- Silvia Zaninelli
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Silvia Panna
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Sarah Tettamanti
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giusi Melita
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, 20089 Milano, Italy
| | - Francesca D’Autilia
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, 20089 Milano, Italy
| | - Rut Valgardsdottir
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Elisa Gotti
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| |
Collapse
|
2
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
3
|
Meenakshi Sundaram DN, Bahadur K C R, Fu W, Uludağ H. An optimized polymeric delivery system for piggyBac transposition. Biotechnol Bioeng 2024; 121:1503-1517. [PMID: 38372658 DOI: 10.1002/bit.28665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
The piggyBac transposon/transposase system has been explored for long-term, stable gene expression to execute genomic integration of therapeutic genes, thus emerging as a strong alternative to viral transduction. Most studies with piggyBac transposition have employed physical methods for successful delivery of the necessary components of the piggyBac system into the cells. Very few studies have explored polymeric gene delivery systems. In this short communication, we report an effective delivery system based on low molecular polyethylenimine polymer with lipid substitution (PEI-L) capable of delivering three components, (i) a piggyBac transposon plasmid DNA carrying a gene encoding green fluorescence protein (PB-GFP), (ii) a piggyBac transposase plasmid DNA or mRNA, and (iii) a 2 kDa polyacrylic acid as additive for transfection enhancement, all in a single complex. We demonstrate an optimized formulation for stable GFP expression in two model cell lines, MDA-MB-231 and SUM149 recorded till day 108 (3.5 months) and day 43 (1.4 months), respectively, following a single treatment with very low cell number as starting material. Moreover, the stability of the transgene (GFP) expression mediated by piggyBac/PEI-L transposition was retained following three consecutive cryopreservation cycles. The success of this study highlights the feasibility and potential of employing a polymeric delivery system to obtain piggyBac-based stable expression of therapeutic genes.
Collapse
Affiliation(s)
| | - Remant Bahadur K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Zaninelli S, Meli C, Borleri G, Quaroni M, Pavoni C, Gaipa G, Biondi A, Introna M, Golay J, Rambaldi A, Rambaldi B. Optimization and validation of in vivo flow cytometry chimeric antigen receptor T cell detection method using CD19his indirect staining. Cytometry A 2024; 105:112-123. [PMID: 37707318 DOI: 10.1002/cyto.a.24796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy has shown unprecedented results in patients with B cell relapsed/refractory acute lymphoblastic leukemia (R/R-ALL) and B cell non-Hodgkin lymphomas where no other curative options are available. In vivo monitoring of CAR-T cell kinetics is fundamental to understand the correlation between CAR-T cells expansion and persistence with treatment response and toxicity development. The aim of this study was to define a robust, sensitive, and universal method for CAR-T cell detection using flow cytometry. We set up and compared with each other three assays for CD19 CAR-T cell detection, all based on commercially available reagents. All methods used a recombinant human CD19 protein fragment recognized by the single-chain variable fragment of the CAR construct. The two indirect staining assays (CD19his + APC-conjugated antihistidine antibody and CD19bio + APC-conjugated antibiotin antibody) showed better sensitivity and specificity compared with the direct staining with CD19-FITC, and CD19his had a better cost-effective profile. We validated CAR detection with CD19his with parallel quantitative real-time polymerase chain reaction data and we could demonstrate a strong positive correlation. We also showed that CD19his staining can be easily included in a multicolor flow cytometry panel to achieve additional information about the cell phenotype of CAR-T cell positive subpopulations. Finally, this method can be used for different anti-CD19 CAR-T cell products and for different sample sources. These data demonstrate that detection of CAR-T cells by CD19his flow cytometry staining is a reliable, robust, and broadly applicable tool for in vivo monitoring of CAR-T cells.
Collapse
Affiliation(s)
- Silvia Zaninelli
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Cristian Meli
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
- Master of Science Programme in Biology Applied to Research in Biomedicine, Facoltà di Scienze e Tecnologie, Università degli Studi di Milano, Milan, Italy
| | - Gianmaria Borleri
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Pavoni
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Laboratory of Cell and Gene Therapy Stefano Verri, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Monza, Italy
| | - Martino Introna
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Josée Golay
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
5
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
6
|
Magnani CF, Myburgh R, Brunn S, Chambovey M, Ponzo M, Volta L, Manfredi F, Pellegrino C, Pascolo S, Miskey C, Ivics Z, Shizuru JA, Neri D, Manz MG. Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells. Mol Ther Oncolytics 2023; 30:56-71. [PMID: 37583386 PMCID: PMC10424000 DOI: 10.1016/j.omto.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Chiara F. Magnani
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Silvan Brunn
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Morgane Chambovey
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Marianna Ponzo
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy
| | - Laura Volta
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Francesco Manfredi
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Judith A. Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 ETH Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Aparicio C, Acebal C, González-Vallinas M. Current approaches to develop "off-the-shelf" chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review. Exp Hematol Oncol 2023; 12:73. [PMID: 37605218 PMCID: PMC10440917 DOI: 10.1186/s40164-023-00435-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is one of the most promising advances in cancer treatment. It is based on genetically modified T cells to express a CAR, which enables the recognition of the specific tumour antigen of interest. To date, CAR-T cell therapies approved for commercialisation are designed to treat haematological malignancies, showing impressive clinical efficacy in patients with relapsed or refractory advanced-stage tumours. However, since they all use the patient´s own T cells as starting material (i.e. autologous use), they have important limitations, including manufacturing delays, high production costs, difficulties in standardising the preparation process, and production failures due to patient T cell dysfunction. Therefore, many efforts are currently being devoted to contribute to the development of safe and effective therapies for allogeneic use, which should be designed to overcome the most important risks they entail: immune rejection and graft-versus-host disease (GvHD). This systematic review brings together the wide range of different approaches that have been studied to achieve the production of allogeneic CAR-T cell therapies and discuss the advantages and disadvantages of every strategy. The methods were classified in two major categories: those involving extra genetic modifications, in addition to CAR integration, and those relying on the selection of alternative cell sources/subpopulations for allogeneic CAR-T cell production (i.e. γδ T cells, induced pluripotent stem cells (iPSCs), umbilical cord blood T cells, memory T cells subpopulations, virus-specific T cells and cytokine-induced killer cells). We have observed that, although genetic modification of T cells is the most widely used approach, new approaches combining both methods have emerged. However, more preclinical and clinical research is needed to determine the most appropriate strategy to bring this promising antitumour therapy to the clinical setting.
Collapse
Affiliation(s)
- Cristina Aparicio
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Universidad de Valladolid (UVa)-CSIC, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Carlos Acebal
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Universidad de Valladolid (UVa)-CSIC, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Margarita González-Vallinas
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Universidad de Valladolid (UVa)-CSIC, Valladolid, Spain.
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
8
|
Christodoulou I, Solomou EE. A Panorama of Immune Fighters Armored with CARs in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15113054. [PMID: 37297016 DOI: 10.3390/cancers15113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease. Intensive chemotherapy is the mainstay of treatment but results in debilitating toxicities. Moreover, many treated patients will eventually require hematopoietic stem cell transplantation (HSCT) for disease control, which is the only potentially curative but challenging option. Ultimately, a subset of patients will relapse or have refractory disease, posing a huge challenge to further therapeutic decisions. Targeted immunotherapies hold promise for relapsed/refractory (r/r) malignancies by directing the immune system against cancer. Chimeric antigen receptors (CARs) are important components of targeted immunotherapy. Indeed, CAR-T cells have achieved unprecedented success against r/r CD19+ malignancies. However, CAR-T cells have only achieved modest outcomes in clinical studies on r/r AML. Natural killer (NK) cells have innate anti-AML functionality and can be engineered with CARs to improve their antitumor response. CAR-NKs are associated with lower toxicities than CAR-T cells; however, their clinical efficacy against AML has not been extensively investigated. In this review, we cite the results from clinical studies of CAR-T cells in AML and describe their limitations and safety concerns. Moreover, we depict the clinical and preclinical landscape of CAR used in alternative immune cell platforms with a specific focus on CAR-NKs, providing insight into the future optimization of AML.
Collapse
Affiliation(s)
- Ilias Christodoulou
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
9
|
Biondi M, Tettamanti S, Galimberti S, Cerina B, Tomasoni C, Piazza R, Donsante S, Bido S, Perriello VM, Broccoli V, Doni A, Dazzi F, Mantovani A, Dotti G, Biondi A, Pievani A, Serafini M. Selective homing of CAR-CIK cells to the bone marrow niche enhances control of the acute myeloid leukemia burden. Blood 2023; 141:2587-2598. [PMID: 36787509 PMCID: PMC10646802 DOI: 10.1182/blood.2022018330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy derived from neoplastic myeloid progenitor cells characterized by abnormal clonal proliferation and differentiation. Although novel therapeutic strategies have recently been introduced, the prognosis of AML is still unsatisfactory. So far, the efficacy of chimeric antigen receptor (CAR)-T-cell therapy in AML has been hampered by several factors, including the poor accumulation of the blood-injected cells in the leukemia bone marrow (BM) niche in which chemotherapy-resistant leukemic stem cells reside. Thus, we hypothesized that overexpression of CXCR4, whose ligand CXCL12 is highly expressed by BM stromal cells within this niche, could improve T-cell homing to the BM and consequently enhance their intimate contact with BM-resident AML cells, facilitating disease eradication. Specifically, we engineered conventional CD33.CAR-cytokine-induced killer cells (CIKs) with the wild-type (wt) CXCR4 and the variant CXCR4R334X, responsible for leukocyte sequestration in the BM of patients with warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. Overexpression of both CXCR4wt and CXCR4mut in CD33.CAR-CIKs resulted in significant improvement of chemotaxis toward recombinant CXCL12 or BM stromal cell-conditioned medium, with no observed impairment of cytotoxic potential in vitro. Moreover, CXCR4-overexpressing CD33.CAR-CIKs showed enhanced in vivo BM homing, associated with a prolonged retention for the CXCR4R334X variant. However, only CD33.CAR-CIKs coexpressing CXCR4wt but not CXCR4mut exerted a more sustained in vivo antileukemic activity and extended animal survival, suggesting a noncanonical role for CXCR4 in modulating CAR-CIK functions independent of BM homing. Taken together, these data suggest that arming CAR-CIKs with CXCR4 may represent a promising strategy for increasing their therapeutic potential for AML.
Collapse
Affiliation(s)
- Marta Biondi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sarah Tettamanti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Cerina
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Tomasoni
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Simone Bido
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Andrea Doni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Dazzi
- School of Cardiovascular Sciences, King's College London, London, United Kingdom
| | - Alberto Mantovani
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
10
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Wu X, Schmidt-Wolf IGH. An Alternative Source for Allogeneic CAR T Cells With a High Safety Profile. Front Immunol 2022; 13:913123. [PMID: 35677035 PMCID: PMC9170073 DOI: 10.3389/fimmu.2022.913123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Xiaolong Wu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
- *Correspondence: Ingo G. H. Schmidt-Wolf,
| |
Collapse
|
12
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
13
|
Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Hum Gene Ther 2021; 32:1044-1058. [PMID: 34662233 PMCID: PMC8697565 DOI: 10.1089/hum.2021.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
T cell modification with genes that encode chimeric antigen receptors (CAR-T cells) has shown tremendous promise for the treatment of B cell malignancies. The successful translation of CAR-T cell therapy to other tumor types, including solid tumors, is the next big challenge. As the field advances from second- to next-generation CAR-T cells comprising multiple genetic modifications, more sophisticated methods and tools to engineer T cells are being developed. Viral vectors, especially γ-retroviruses and lentiviruses, are traditionally used for CAR-T cell engineering due to their high transduction efficiency. However, limited genetic cargo, high costs of production under good manufacturing practice (GMP) conditions, and the high regulatory demands are obstacles for widespread clinical translation. To overcome these limitations, different nonviral approaches are being explored at a preclinical or clinical level, including transposon/transposase systems and mRNA electroporation and nonintegrating DNA nanovectors. Genome editing tools that allow efficient knockout of particular genes and/or site-directed integration of the CAR and/or other transgenes into the genome are also being evaluated for CAR-T cell engineering. In this review, we discuss the development of viral and nonviral vectors used to generate CAR-T cells, focusing on their advantages and limitations. We also discuss the lessons learned from clinical trials using the different genetic engineering tools, with special focus on safety and efficacy.
Collapse
Affiliation(s)
- Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Evripidis Lanitis
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
14
|
Leivas A, Valeri A, Córdoba L, García-Ortiz A, Ortiz A, Sánchez-Vega L, Graña-Castro O, Fernández L, Carreño-Tarragona G, Pérez M, Megías D, Paciello ML, Sánchez-Pina J, Pérez-Martínez A, Lee DA, Powell DJ, Río P, Martínez-López J. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J 2021; 11:146. [PMID: 34392311 PMCID: PMC8364555 DOI: 10.1038/s41408-021-00537-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
CAR-T-cell therapy against MM currently shows promising results, but usually with serious toxicities. CAR-NK cells may exert less toxicity when redirected against resistant myeloma cells. CARs can be designed through the use of receptors, such as NKG2D, which recognizes a wide range of ligands to provide broad target specificity. Here, we test this approach by analyzing the antitumor activity of activated and expanded NK cells (NKAE) and CD45RA- T cells from MM patients that were engineered to express an NKG2D-based CAR. NKAE cells were cultured with irradiated Clone9.mbIL21 cells. Then, cells were transduced with an NKG2D-4-1BB-CD3z-CAR. CAR-NKAE cells exhibited no evidence of genetic abnormalities. Although memory T cells were more stably transduced, CAR-NKAE cells exhibited greater in vitro cytotoxicity against MM cells, while showing minimal activity against healthy cells. In vivo, CAR-NKAE cells mediated highly efficient abrogation of MM growth, and 25% of the treated mice remained disease free. Overall, these results demonstrate that it is feasible to modify autologous NKAE cells from MM patients to safely express a NKG2D-CAR. Additionally, autologous CAR-NKAE cells display enhanced antimyeloma activity demonstrating that they could be an effective strategy against MM supporting the development of NKG2D-CAR-NK-cell therapy for MM.
Collapse
Affiliation(s)
- Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Ortiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Sánchez-Vega
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Lucía Fernández
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Pérez
- Confocal Microscopy Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - María Liz Paciello
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jose Sánchez-Pina
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Dean A Lee
- Cellular Therapy and Cancer Immunology Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, 28040, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, 28040, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain.
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
15
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
16
|
Atsavapranee ES, Billingsley MM, Mitchell MJ. Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine 2021; 67:103354. [PMID: 33910123 PMCID: PMC8099660 DOI: 10.1016/j.ebiom.2021.103354] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
While initial approaches to adoptive T cell therapy relied on the identification and expansion of rare tumour-reactive T cells, genetic engineering has transformed cancer immunotherapy by enabling the modification of primary T cells to increase their therapeutic potential. Specifically, gene editing technologies have been utilized to create T cell populations with improved responses to antigens, lower rates of exhaustion, and potential for use in allogeneic applications. In this review, we provide an overview of T cell therapy gene editing strategies and the delivery technologies utilized to genetically engineer T cells. We also discuss recent investigations and clinical trials that have utilized gene editing to enhance the efficacy of T cells and broaden the application of cancer immunotherapies.
Collapse
Affiliation(s)
- Ella S Atsavapranee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Chimeric Antigen Receptor Design and Efficacy in Ovarian Cancer Treatment. Int J Mol Sci 2021; 22:ijms22073495. [PMID: 33800608 PMCID: PMC8037934 DOI: 10.3390/ijms22073495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Our increased understanding of tumour biology gained over the last few years has led to the development of targeted molecular therapies, e.g., vascular endothelial growth factor A (VEGF-A) antagonists, poly[ADP-ribose] polymerase 1 (PARP1) inhibitors in hereditary breast and ovarian cancer syndrome (BRCA1 and BRCA2 mutants), increasing survival and improving the quality of life. However, the majority of ovarian cancer (OC) patients still do not have access to targeted molecular therapies that would be capable of controlling their disease, especially resistant or relapsed. Chimeric antigen receptors (CARs) are recombinant receptor constructs located on T lymphocytes or other immune cells that change its specificity and functions. Therefore, in a search for a successful solid tumour therapy using CARs the specific cell surface antigens identification is crucial. Numerous in vitro and in vivo studies, as well as studies on humans, prove that targeting overexpressed molecules, such as mucin 16 (MUC16), annexin 2 (ANXA2), receptor tyrosine-protein kinase erbB-2 (HER2/neu) causes high tumour cells toxicity and decreased tumour burden. CARs are well tolerated, side effects are minimal and they inhibit disease progression. However, as OC is heterogenic in its nature with high mutation diversity and overexpression of different receptors, there is a need to consider an individual approach to treat this type of cancer. In this publication, we would like to present the history and status of therapies involving the CAR T cells in treatment of OC tumours, suggest potential T cell-intrinsic determinants of response and resistance as well as present extrinsic factors impacting the success of this approach.
Collapse
|
18
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, Matera G, Cabiati B, Buracchi C, Borleri G, Fazio G, Zaninelli S, Tettamanti S, Cesana S, Colombo V, Quaroni M, Cazzaniga G, Rovelli A, Biagi E, Galimberti S, Calabria A, Benedicenti F, Montini E, Ferrari S, Introna M, Balduzzi A, Valsecchi MG, Dastoli G, Rambaldi A, Biondi A. Sleeping Beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest 2020; 130:6021-6033. [PMID: 32780725 PMCID: PMC7598053 DOI: 10.1172/jci138473] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDChimeric antigen receptor (CAR) T cell immunotherapy has resulted in complete remission (CR) and durable response in highly refractory patients. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability.METHODSWe report the early results of a phase I/II trial in B cell acute lymphoblastic leukemia (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT) using donor-derived CD19 CAR T cells generated with the Sleeping Beauty (SB) transposon and differentiated into cytokine-induced killer (CIK) cells.RESULTSThe cellular product was produced successfully for all patients from the donor peripheral blood (PB) and consisted mostly of CD3+ lymphocytes with 43% CAR expression. Four pediatric and 9 adult patients were infused with a single dose of CAR T cells. Toxicities reported were 2 grade I and 1 grade II cytokine-release syndrome (CRS) cases at the highest dose in the absence of graft-versus-host disease (GVHD), neurotoxicity, or dose-limiting toxicities. Six out of 7 patients receiving the highest doses achieved CR and CR with incomplete blood count recovery (CRi) at day 28. Five out of 6 patients in CR were also minimal residual disease negative (MRD-). Robust expansion was achieved in the majority of the patients. CAR T cells were measurable by transgene copy PCR up to 10 months. Integration site analysis showed a positive safety profile and highly polyclonal repertoire in vitro and at early time points after infusion.CONCLUSIONSB-engineered CAR T cells expand and persist in pediatric and adult B-ALL patients relapsed after HSCT. Antileukemic activity was achieved without severe toxicities.TRIAL REGISTRATIONClinicalTrials.gov NCT03389035.FUNDINGThis study was supported by grants from the Fondazione AIRC per la Ricerca sul Cancro (AIRC); Cancer Research UK (CRUK); the Fundación Científica de la Asociación Española Contra el Cáncer (FC AECC); Ministero Della Salute; Fondazione Regionale per la Ricerca Biomedica (FRRB).
Collapse
Affiliation(s)
- Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Giuseppe Gaipa
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Federico Lussana
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Belotti
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
- Department of Pediatrics, University of Milano–Bicocca, Milan, Italy
| | - Giuseppe Gritti
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Sara Napolitano
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Giada Matera
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Benedetta Cabiati
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Chiara Buracchi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Gianmaria Borleri
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Grazia Fazio
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | | | - Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Stefania Cesana
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Michele Quaroni
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Attilio Rovelli
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Ettore Biagi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano–Bicocca, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)/IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)/IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)/IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ferrari
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Martino Introna
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
- USS Centro di Terapia Cellulare “G. Lanzani,” Bergamo, Italy
| | - Adriana Balduzzi
- Department of Pediatrics, University of Milano–Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano–Bicocca, Milan, Italy
| | - Giuseppe Dastoli
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| |
Collapse
|
20
|
Tanaka J. Recent advances in chimeric antigen receptor natural killer cell therapy for overcoming intractable hematological malignancies. Hematol Oncol 2020; 39:11-19. [PMID: 32905618 DOI: 10.1002/hon.2802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells have a potent cytotoxic activity against leukemia and lymphoma without recognition of human leukocyte antigen (HLA) molecules. Chimeric antigen receptor-engineered NK cells (CAR-NK cells) can be produced from the NK92 cell line, peripheral blood, cord blood, and induced pluripotent stem cells for immunotherapy of malignant tumor cells. Recently, the safety and efficacy of HLA-mismatched allogeneic cord blood-derived CD19 CAR-NK cell therapy for CD19-positive hematological malignancies have been reported. However, the durability of clinical effects has not been clarified. The characteristics of CAR-NK cells with a strong antileukemia/lymphoma effect and better proliferative capacity without severe adverse effects may be promising for overcoming intractable hematological malignancies as an off-the-shelf allogeneic cellular therapy.
Collapse
Affiliation(s)
- Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
22
|
Rotiroti MC, Buracchi C, Arcangeli S, Galimberti S, Valsecchi MG, Perriello VM, Rasko T, Alberti G, Magnani CF, Cappuzzello C, Lundberg F, Pande A, Dastoli G, Introna M, Serafini M, Biagi E, Izsvák Z, Biondi A, Tettamanti S. Targeting CD33 in Chemoresistant AML Patient-Derived Xenografts by CAR-CIK Cells Modified with an Improved SB Transposon System. Mol Ther 2020; 28:1974-1986. [PMID: 32526203 DOI: 10.1016/j.ymthe.2020.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
The successful implementation of chimeric antigen receptor (CAR)-T cell therapy in the clinical context of B cell malignancies has paved the way for further development in the more critical setting of acute myeloid leukemia (AML). Among the potentially targetable AML antigens, CD33 is insofar one of the main validated molecules. Here, we describe the feasibility of engineering cytokine-induced killer (CIK) cells with a CD33.CAR by using the latest optimized version of the non-viral Sleeping Beauty (SB) transposon system "SB100X-pT4." This offers the advantage of improving CAR expression on CIK cells, while reducing the amount of DNA transposase as compared to the previously employed "SB11-pT" version. SB-modified CD33.CAR-CIK cells exhibited significant antileukemic activity in vitro and in vivo in patient-derived AML xenograft models, reducing AML development when administered as an "early treatment" and delaying AML progression in mice with established disease. Notably, by exploiting an already optimized xenograft chemotherapy model that mimics human induction therapy in mice, we demonstrated for the first time that CD33.CAR-CIK cells are also effective toward chemotherapy resistant/residual AML cells, further supporting its future clinical development and implementation within the current standard regimens.
Collapse
Affiliation(s)
- Maria Caterina Rotiroti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Chiara Buracchi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Silvia Arcangeli
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano - Bicocca, 20900 Monza, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano - Bicocca, 20900 Monza, Italy
| | - Vincenzo Maria Perriello
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy; Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Tamas Rasko
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Gaia Alberti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Chiara Francesca Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Claudia Cappuzzello
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Felix Lundberg
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany; The Milner Centre for Evolution, University of Bath, BA2 7AY Bath, UK
| | - Amit Pande
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Giuseppe Dastoli
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy "G. Lanzani," USC Ematologia ASST Papa Giovanni XXIII, 24124 Bergamo, Italy
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Ettore Biagi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| | - Zsuzsanna Izsvák
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy.
| | - Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, 20900 Monza, Italy
| |
Collapse
|
23
|
Magnani CF, Tettamanti S, Alberti G, Pisani I, Biondi A, Serafini M, Gaipa G. Transposon-Based CAR T Cells in Acute Leukemias: Where are We Going? Cells 2020; 9:cells9061337. [PMID: 32471151 PMCID: PMC7349235 DOI: 10.3390/cells9061337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy has become a new therapeutic reality for refractory and relapsed leukemia patients and is also emerging as a potential therapeutic option in solid tumors. Viral vector-based CAR T-cells initially drove these successful efforts; however, high costs and cumbersome manufacturing processes have limited the widespread clinical implementation of CAR T-cell therapy. Here we will discuss the state of the art of the transposon-based gene transfer and its application in CAR T immunotherapy, specifically focusing on the Sleeping Beauty (SB) transposon system, as a valid cost-effective and safe option as compared to the viral vector-based systems. A general overview of SB transposon system applications will be provided, with an update of major developments, current clinical trials achievements and future perspectives exploiting SB for CAR T-cell engineering. After the first clinical successes achieved in the context of B-cell neoplasms, we are now facing a new era and it is paramount to advance gene transfer technology to fully exploit the potential of CAR T-cells towards next-generation immunotherapy.
Collapse
|
24
|
Gorabi AM, Hajighasemi S, Sathyapalan T, Sahebkar A. Cell transfer-based immunotherapies in cancer: A review. IUBMB Life 2019; 72:790-800. [PMID: 31633881 DOI: 10.1002/iub.2180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
In cell transfer therapy (CTT), immune cells such as innate immune-derived natural killer cells and dendritic cells as well as acquired immune-related T lymphocytes such as tumor-infiltrating lymphocytes and cytokine-activated or genetically modified peripheral blood T cells are used in the management of cancer. These therapies are increasingly becoming the most used treatment modality in cancer after tumor resection, chemotherapy, and radiotherapy. In adoptive cell transfer, the lymphocytes isolated from either a donor or the patient are modified ex vivo and reinfused to target malignant cells. Transferring in vitro-manipulated immune cells produces a continuous antitumor immune response. In this review, we evaluate the recent advances in CTT for the management of various malignancies.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Faculty of Paramedicine, Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Chicaybam L, Abdo L, Carneiro M, Peixoto B, Viegas M, de Sousa P, Fornazin MC, Spago MC, Albertoni Laranjeira AB, de Campos-Lima PO, Nowill A, Barros LRC, Bonamino MH. CAR T Cells Generated UsingSleeping BeautyTransposon Vectors and Expanded with an EBV-Transformed Lymphoblastoid Cell Line Display Antitumor ActivityIn VitroandIn Vivo. Hum Gene Ther 2019; 30:511-522. [DOI: 10.1089/hum.2018.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonardo Chicaybam
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiza Abdo
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mayra Carneiro
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Bárbara Peixoto
- Cell Biology Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana Viegas
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Priscila de Sousa
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Márcia C. Fornazin
- Integrated Center for Oncohematology Research in Infancy, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Maria C. Spago
- Integrated Center for Oncohematology Research in Infancy, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Pedro O. de Campos-Lima
- Institute of Molecular and Cellular Engineering, Boldrini Children's Center, Campinas, Sao Paulo, Brazil
- Functional and Molecular Biology Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Alexandre Nowill
- Integrated Center for Oncohematology Research in Infancy, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Martín H. Bonamino
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Minagawa K, Al-Obaidi M, Di Stasi A. Generation of Suicide Gene-Modified Chimeric Antigen Receptor-Redirected T-Cells for Cancer Immunotherapy. Methods Mol Biol 2019; 1895:57-73. [PMID: 30539529 DOI: 10.1007/978-1-4939-8922-5_5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chimeric antigen receptor (CAR)-redirected T-cells are a powerful tool for the treatment of several type of cancers; however, they can cause several adverse effects including cytokine release syndrome, off-target effects resulting in potentially fatal organ damage or even death. Particularly, for CAR T-cells redirected toward acute myeloid leukemia (AML) antigens myelosuppression can be a challenge. The previously validated inducible Caspase9 (iC9) suicide gene system is one of the approaches to control the infused cells in vivo through its activation with a nontherapeutic chemical inducer of dimerizer (CID). We performed a preclinical validation using a model of CD33+ AML, and generated iC9 CAR T-cells co-expressing a CAR targeting the AML-associated antigen CD33 and a selectable marker (ΔCD19). ΔCD19 selected (sel.) iC9-CAR.CD33 T-cells were effective in controlling leukemia growth in vitro, and could be partially eliminated (76%) using a chemical inducer of dimerization that activates iC9. Moreover, to completely eliminate residual cells, a second targeted agent was added. Future plans with these methods are to investigate the utility of iC9-CAR.CD33 T-cells as part of the conditioning therapy for an allogeneic hematopoietic stem cell transplant. Additional strategies that we are currently validating include (1) the modulation of the suicide gene activation, using different concentrations of the inducing agent(s), to be able to eliminate CAR T-cells modified by a regulatable gene, ideally aiming at preserving a proportion of the infused cells (and their antitumor activity) for mild to moderate toxicities, or (2) the co-expression of an inhibitory CAR aiming at sparing normal cells co-expressing an antigen not shared with the tumor.
Collapse
Affiliation(s)
- Kentaro Minagawa
- Department of Hematology/Oncology, Bone Marrow Transplantation and Cell Therapy Unit, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mustafa Al-Obaidi
- Department of Hematology/Oncology, Bone Marrow Transplantation and Cell Therapy Unit, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Antonio Di Stasi
- Department of Hematology/Oncology, Bone Marrow Transplantation and Cell Therapy Unit, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Ghorashian S, Amrolia P, Veys P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Exp Hematol 2018; 66:5-16. [DOI: 10.1016/j.exphem.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022]
|
28
|
Hodge R, Narayanavari SA, Izsvák Z, Ivics Z. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Hum Gene Ther 2018; 28:842-855. [PMID: 28870121 DOI: 10.1089/hum.2017.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Russ Hodge
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Suneel A Narayanavari
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zoltán Ivics
- 2 Division of Medical Biotechnology, Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
29
|
Magnani CF, Mezzanotte C, Cappuzzello C, Bardini M, Tettamanti S, Fazio G, Cooper LJN, Dastoli G, Cazzaniga G, Biondi A, Biagi E. Preclinical Efficacy and Safety of CD19CAR Cytokine-Induced Killer Cells Transfected with Sleeping Beauty Transposon for the Treatment of Acute Lymphoblastic Leukemia. Hum Gene Ther 2018; 29:602-613. [PMID: 29641322 DOI: 10.1089/hum.2017.207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infusion of patient-derived CD19-specific chimeric antigen receptor (CAR) T cells engineered by viral vectors achieved complete remission and durable response in relapsed and refractory (r/r) B-lineage neoplasms. Here, we expand on those findings by providing a preclinical evaluation of allogeneic non-viral cytokine-induced killer (CIK) cells transfected with the Sleeping Beauty (SB) transposon CD19CAR (CARCIK-CD19). Specifically, thanks to a large-scale 18-day manufacturing process, it was possible to achieve stable CD19CAR expression (62.425 ± 6.399%) and efficient T-cell expansion (23.36 ± 3.00-fold). Frozen/thawed CARCIK-CD19 remained fully functional both in vitro and in an established patient-derived xenograft (PDX) of MLL-ENL rearranged acute lymphoblastic leukemia (ALL). CARCIK-CD19 showed a dose-dependent antitumor response and prolonged persistence in a PDX, bearing the feature of a Philadelphia-like ALL with PAX5/AUTS2 translocation, and in a survival model of lymphoma, achieving complete eradication of disseminated tumors. Finally, the infusion of CARCIK-CD19 proved to be safe and well tolerated in a biodistribution and toxicity model. The infused cells persisted in the hematopoietic and post-injection perfused organs until the end of the study and consisted of CD8+, CD56+, and CAR+ T cells. Overall, these findings provide important implications for non-viral technology and the proof-of-concept that donor-derived CARCIK-CD19 are indeed effective against relapsed ALL, a possibility that will be tested in Phase I/II clinical trials after allogeneic hematopoietic stem-cell transplantation.
Collapse
Affiliation(s)
- Chiara F Magnani
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Claudia Mezzanotte
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Claudia Cappuzzello
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Michela Bardini
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Sarah Tettamanti
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Grazia Fazio
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | | | - Giuseppe Dastoli
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Andrea Biondi
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Ettore Biagi
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| |
Collapse
|
30
|
Generation of V α13/β21+T cell specific target CML cells by TCR gene transfer. Oncotarget 2018; 7:84246-84257. [PMID: 27713165 PMCID: PMC5356659 DOI: 10.18632/oncotarget.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023] Open
Abstract
Adoptive immunotherapy with antigen-specific T cells can be effective for treating melanoma and chronic myeloid leukemia (CML). However, to obtain sufficient antigen-specific T cells for treatment, the T cells have to be cultured for several weeks in vitro, but in vitro T cell expansion is difficult to control. Alternatively, the transfer of T cell receptors (TCRs) with defined antigen specificity into recipient T cells may be a simple solution for generating antigen-specific T cells. The objective of this study was to identify CML-associated, antigen-specific TCR genes and generate CML-associated, antigen-specific T cells with T cell receptor (TCR) gene transfer. Our previous study has screened an oligoclonal Vβ21 with a different oligoclonal Vα partner in peripheral blood mononuclear cells (PBMCs) derived from patients with CML. In this study, oligoclonally expanded TCR α genes, which pair with TCR Vβ21, were cloned into the pIRES eukaryotic expression vector (TCR Vα-IRES-Vβ21). Next, two recombinant plasmids, TCR Vα13-IRES-Vβ21 and TCR Vα18-IRES-Vβ21, were successfully transferred into T cells, and the TCR gene-modified T cells acquired CML-specific cytotoxicity with the best cytotoxic effects for HLA-A11+ K562 cells observed for the TCR Vα13/Vβ21 gene redirected T cells. In summary, our data confirmed TCRVα13/Vβ21 as a CML-associated, antigen-specific TCR. This study provided new evidence that genetically engineered antigen-specific TCR may become a druggable approach for gene therapy of CML.
Collapse
|
31
|
Chapelin F, Gao S, Okada H, Weber TG, Messer K, Ahrens ET. Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Sci Rep 2017; 7:17748. [PMID: 29255242 PMCID: PMC5735180 DOI: 10.1038/s41598-017-17669-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Discovery of effective cell therapies against cancer can be accelerated by the adaptation of tools to rapidly quantitate cell biodistribution and survival after delivery. Here, we describe the use of nuclear magnetic resonance (NMR) ‘cytometry’ to quantify the biodistribution of immunotherapeutic T cells in intact tissue samples. In this study, chimeric antigen receptor (CAR) T cells expressing EGFRvIII targeting transgene were labeled with a perfluorocarbon (PFC) emulsion ex vivo and infused into immunocompromised mice bearing subcutaneous human U87 glioblastomas expressing EGFRvIII and luciferase. Intact organs were harvested at day 2, 7 and 14 for whole-sample fluorine-19 (19F) NMR to quantitatively measure the presence of PFC-labeled CAR T cells, followed by histological validation. NMR measurements showed greater CAR T cell homing and persistence in the tumors and spleen compared to untransduced T cells. Tumor growth was monitored with bioluminescence imaging, showing that CAR T cell treatment resulted in significant tumor regression compared to untransduced T cells. Overall, 19F NMR cytometry is a rapid and quantitative method to evaluate cell biodistribution, tumor homing, and fate in preclinical studies.
Collapse
Affiliation(s)
- Fanny Chapelin
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Shang Gao
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,Cancer Immunotherapy Program, University of California San Francisco, San Francisco, CA, USA
| | - Thomas G Weber
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Karen Messer
- Cancer Prevention and Control Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
32
|
Introna M. CIK as therapeutic agents against tumors. J Autoimmun 2017; 85:32-44. [DOI: 10.1016/j.jaut.2017.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
|
33
|
VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites. BMC Bioinformatics 2017; 18:520. [PMID: 29178837 PMCID: PMC5702242 DOI: 10.1186/s12859-017-1937-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Bioinformatics tools designed to identify lentiviral or retroviral vector insertion sites in the genome of host cells are used to address the safety and long-term efficacy of hematopoietic stem cell gene therapy applications and to study the clonal dynamics of hematopoietic reconstitution. The increasing number of gene therapy clinical trials combined with the increasing amount of Next Generation Sequencing data, aimed at identifying integration sites, require both highly accurate and efficient computational software able to correctly process “big data” in a reasonable computational time. Results Here we present VISPA2 (Vector Integration Site Parallel Analysis, version 2), the latest optimized computational pipeline for integration site identification and analysis with the following features: (1) the sequence analysis for the integration site processing is fully compliant with paired-end reads and includes a sequence quality filter before and after the alignment on the target genome; (2) an heuristic algorithm to reduce false positive integration sites at nucleotide level to reduce the impact of Polymerase Chain Reaction or trimming/alignment artifacts; (3) a classification and annotation module for integration sites; (4) a user friendly web interface as researcher front-end to perform integration site analyses without computational skills; (5) the time speedup of all steps through parallelization (Hadoop free). Conclusions We tested VISPA2 performances using simulated and real datasets of lentiviral vector integration sites, previously obtained from patients enrolled in a hematopoietic stem cell gene therapy clinical trial and compared the results with other preexisting tools for integration site analysis. On the computational side, VISPA2 showed a > 6-fold speedup and improved precision and recall metrics (1 and 0.97 respectively) compared to previously developed computational pipelines. These performances indicate that VISPA2 is a fast, reliable and user-friendly tool for integration site analysis, which allows gene therapy integration data to be handled in a cost and time effective fashion. Moreover, the web access of VISPA2 (http://openserver.itb.cnr.it/vispa/) ensures accessibility and ease of usage to researches of a complex analytical tool. We released the source code of VISPA2 in a public repository (https://bitbucket.org/andreacalabria/vispa2). Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1937-9) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
35
|
Biondi A, Magnani CF, Tettamanti S, Gaipa G, Biagi E. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. J Autoimmun 2017; 85:141-152. [PMID: 28843422 DOI: 10.1016/j.jaut.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.
Collapse
Affiliation(s)
- Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy.
| | - Chiara F Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Giuseppe Gaipa
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| |
Collapse
|
36
|
Turazzi N, Fazio G, Rossi V, Rolink A, Cazzaniga G, Biondi A, Magnani CF, Biagi E. Engineered T cells towards TNFRSF13C (BAFFR): a novel strategy to efficiently target B-cell acute lymphoblastic leukaemia. Br J Haematol 2017; 182:939-943. [DOI: 10.1111/bjh.14899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nice Turazzi
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| | - Valentina Rossi
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| | - Antonius Rolink
- Department of Biomedicine; University of Basel; Basel Switzerland
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| | - Chiara F. Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica; Università degli Studi di Milano-Bicocca; Osp. San Gerardo/Fondazione MBBM; Monza Italy
| |
Collapse
|
37
|
Generation and characterization of ErbB2-CAR-engineered cytokine-induced killer cells for the treatment of high-risk soft tissue sarcoma in children. Oncotarget 2017; 8:66137-66153. [PMID: 29029499 PMCID: PMC5630399 DOI: 10.18632/oncotarget.19821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2023] Open
Abstract
Pediatric patients with recurrent, refractory or advanced soft tissue sarcoma (STS) who are simultaneously showing signs of cumulative treatment toxicity are in need of novel therapies. In this preclinical analysis, we identified ErbB2 as a targetable antigen on STS cells and used cytokine-induced killer (CIK) cells transduced with the lentiviral 2nd-generation chimeric antigen receptor (CAR) vector pS-5.28.z-IEW to target ErbB2-positive tumors. Solely CIK cell subsets with the CD3+ T cell phenotype showed up to 85% cell surface expression of the respective CAR. A comparison of wildtype (WT), mock-vector and ErbB2-CAR-CIK cells showed, that engineered cells exhibited diminished in vitro expansion, retained WT CIK cell phenotype with higher percentages of differentiated effector memory/effector cells. Activating natural killer (NK) cell receptor NKG2D-restricted target cell recognition and killing of WT and ErbB2-CAR-CIK cells was maintained against ErbB2-negative tumors, while ErbB2-CAR-CIK cells demonstrated significantly increased cytotoxicity against ErbB2-positive targets, including primary tumors. ErbB2-CAR- but not WT CIK cells proliferated, infiltrated and efficiently lysed tumor cell monolayers as well as 3D tumor spheroids. Here, we demonstrate a potential cell therapeutic approach using ErbB2-CAR-CIK cells for the recognition and elimination of tumor cells expressing ErbB2, which we identified as a targetable antigen on high-risk STS cells.
Collapse
|
38
|
Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. NATURE NANOTECHNOLOGY 2017; 12:813-820. [PMID: 28416815 PMCID: PMC5646367 DOI: 10.1038/nnano.2017.57] [Citation(s) in RCA: 479] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/09/2017] [Indexed: 05/18/2023]
Abstract
An emerging approach for treating cancer involves programming patient-derived T cells with genes encoding disease-specific chimeric antigen receptors (CARs), so that they can combat tumour cells once they are reinfused. Although trials of this therapy have produced impressive results, the in vitro methods they require to generate large numbers of tumour-specific T cells are too elaborate for widespread application to treat cancer patients. Here, we describe a method to quickly program circulating T cells with tumour-recognizing capabilities, thus avoiding these complications. Specifically, we demonstrate that DNA-carrying nanoparticles can efficiently introduce leukaemia-targeting CAR genes into T-cell nuclei, thereby bringing about long-term disease remission. These polymer nanoparticles are easy to manufacture in a stable form, which simplifies storage and reduces cost. Our technology may therefore provide a practical, broadly applicable treatment that can generate anti-tumour immunity 'on demand' for oncologists in a variety of settings.
Collapse
Affiliation(s)
- Tyrel T. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sirkka B. Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Howell F. Moffett
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Laura E. McKnight
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Weihang Ji
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Diana Reiman
- Technology Access Foundation (TAF) Academy, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emmy Bonagofski
- Technology Access Foundation (TAF) Academy, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Martin E. Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Smitha P. S. Pillai
- Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Matthias T. Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Technology Access Foundation (TAF) Academy, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98105, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
39
|
Kravets VG, Zhang Y, Sun H. Chimeric-Antigen-Receptor (CAR) T Cells and the Factors Influencing their Therapeutic Efficacy. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2017; 2:100-113. [PMID: 30443604 PMCID: PMC6233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunotherapeutic treatments for malignant cancers have revolutionized the medical and scientific fields. Lymphocytes engineered to display chimeric antigen receptor (CAR) molecules contribute to the exciting advancements that have stemmed from a greater understanding of cell structure and function, biological interactions, and the unique tumor microenvironment. CAR T cells circumvent the unique immune evasion capability of tumors by acting in a major histocompatibility complex (MHC) independent manner. Various factors contribute to the efficacy of CAR therapy, including CAR structure, gene transfer strategies, in vitro culture system, target selection, and preconditioning regimens. While recent clinical trials have shown promising success, cytotoxicity and other various challenges need to be addressed before CAR therapy can reach its full clinical potency. This review will discuss factors associated with CAR therapeutic success and the difficulties that continue to be a focus of research around the world.
Collapse
Affiliation(s)
- Victoria G Kravets
- The Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, 30332, USA,Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| | - Yi Zhang
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| | - Hongxing Sun
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Arcangeli S, Rotiroti MC, Bardelli M, Simonelli L, Magnani CF, Biondi A, Biagi E, Tettamanti S, Varani L. Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Mol Ther 2017; 25:1933-1945. [PMID: 28479045 DOI: 10.1016/j.ymthe.2017.04.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-redirected T lymphocytes are a promising immunotherapeutic approach and object of pre-clinical evaluation for the treatment of acute myeloid leukemia (AML). We developed a CAR against CD123, overexpressed on AML blasts and leukemic stem cells. However, potential recognition of low CD123-positive healthy tissues, through the on-target, off-tumor effect, limits safe clinical employment of CAR-redirected T cells. Therefore, we evaluated the effect of context-dependent variables capable of modulating CAR T cell functional profiles, such as CAR binding affinity, CAR expression, and target antigen density. Computational structural biology tools allowed for the design of rational mutations in the anti-CD123 CAR antigen binding domain that altered CAR expression and CAR binding affinity without affecting the overall CAR design. We defined both lytic and activation antigen thresholds, with early cytotoxic activity unaffected by either CAR expression or CAR affinity tuning but later effector functions impaired by low CAR expression. Moreover, the anti-CD123 CAR safety profile was confirmed by lowering CAR binding affinity, corroborating CD123 is a good therapeutic target antigen. Overall, full dissection of these variables offers suitable anti-CD123 CAR design optimization for the treatment of AML.
Collapse
MESH Headings
- Binding Sites
- Cytotoxicity, Immunologic
- Gene Expression
- Humans
- Immunomodulation
- Immunotherapy, Adoptive
- Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-3 Receptor alpha Subunit/chemistry
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Models, Molecular
- Molecular Conformation
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins
- Structure-Activity Relationship
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Silvia Arcangeli
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Maria Caterina Rotiroti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Marco Bardelli
- Istituto di Ricerca in Biomedicina, Università degli Studi della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Istituto di Ricerca in Biomedicina, Università degli Studi della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Chiara Francesca Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Luca Varani
- Istituto di Ricerca in Biomedicina, Università degli Studi della Svizzera Italiana, 6500 Bellinzona, Switzerland
| |
Collapse
|
41
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
42
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
43
|
Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Pract Res Clin Haematol 2016; 29:15-29. [DOI: 10.1016/j.beha.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
|