1
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Indurkar A, Choudhary R, Rubenis K, Nimbalkar M, Sarakovskis A, Boccaccini AR, Locs J. Amorphous Calcium Phosphate and Amorphous Calcium Phosphate Carboxylate: Synthesis and Characterization. ACS OMEGA 2023; 8:26782-26792. [PMID: 37546623 PMCID: PMC10399191 DOI: 10.1021/acsomega.3c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Amorphous calcium phosphate (ACP) is the first solid phase precipitated from a supersaturated calcium phosphate solution. Naturally, ACP is formed during the initial stages of biomineralization and stabilized by an organic compound. Carboxylic groups containing organic compounds are known to regulate the nucleation and crystallization of hydroxyapatite. Therefore, from a biomimetic point of view, the synthesis of carboxylate ions containing ACP (ACPC) is valuable. Usually, ACP is synthesized with fewer steps than ACPC. The precipitation reaction of ACP is rapid and influenced by pH, temperature, precursor concentration, stirring conditions, and reaction time. Due to phosphates triprotic nature, controlling pH in a multistep approach becomes tedious. Here, we developed a new ACP and ACPC synthesis approach and thoroughly characterized the obtained materials. Results from vibration spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), true density, specific surface area, and ion release studies have shown a difference in the physiochemical properties of the ACP and ACPC. Additionally, the effect of a carboxylic ion type on the physiochemical properties of ACPC was characterized. All of the ACPs and ACPCs were synthesized in sterile conditions, and in vitro analysis was performed using MC-3T3E1 cells, revealing the cytocompatibility of the synthesized ACPs and ACPCs, of which the ACPC synthesized with citrate showed the highest cell viability.
Collapse
Affiliation(s)
- Abhishek Indurkar
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| | - Rajan Choudhary
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| | - Kristaps Rubenis
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| | | | - Anatolijs Sarakovskis
- Institute
of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91085 Erlangen, Germany
| | - Janis Locs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| |
Collapse
|
3
|
Indurkar A, Choudhary R, Rubenis K, Locs J. Role of carboxylic organic molecules in interfibrillar collagen mineralization. Front Bioeng Biotechnol 2023; 11:1150037. [PMID: 37091348 PMCID: PMC10113455 DOI: 10.3389/fbioe.2023.1150037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Bone is a composite material made up of inorganic and organic counterparts. Most of the inorganic counterpart accounts for calcium phosphate (CaP) whereas the major organic part is composed of collagen. The interfibrillar mineralization of collagen is an important step in the biomineralization of bone and tooth. Studies have shown that synthetic CaP undergoes auto-transformation to apatite nanocrystals before entering the gap zone of collagen. Also, the synthetic amorphous calcium phosphate/collagen combination alone is not capable of initiating apatite nucleation rapidly. Therefore, it was understood that there is the presence of a nucleation catalyst obstructing the auto-transformation of CaP before entering the collagen gap zone and initiating rapid nucleation after entering the collagen gap zone. Therefore, studies were focused on finding the nucleation catalyst responsible for the regulation of interfibrillar collagen mineralization. Organic macromolecules and low-molecular-weight carboxylic compounds are predominantly present in the bone and tooth. These organic compounds can interact with both apatite and collagen. Adsorption of the organic compounds on the apatite nanocrystal governs the nucleation, crystal growth, lattice orientation, particle size, and distribution. Additionally, they prevent the auto-transformation of CaP into apatite before entering the interfibrillar compartment of the collagen fibril. Therefore, many carboxylic organic compounds have been utilized in developing CaP. In this review, we have covered different carboxylate organic compounds governing collagen interfibrillar mineralization.
Collapse
Affiliation(s)
- Abhishek Indurkar
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Rubenis
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
- *Correspondence: Janis Locs,
| |
Collapse
|
4
|
Free R, DeRocher K, Cooley V, Xu R, Stock SR, Joester D. Mesoscale structural gradients in human tooth enamel. Proc Natl Acad Sci U S A 2022; 119:e2211285119. [PMID: 36534796 PMCID: PMC9907129 DOI: 10.1073/pnas.2211285119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
The outstanding mechanical and chemical properties of dental enamel emerge from its complex hierarchical architecture. An accurate, detailed multiscale model of the structure and composition of enamel is important for understanding lesion formation in tooth decay (dental caries), enamel development (amelogenesis) and associated pathologies (e.g., amelogenesis imperfecta or molar hypomineralization), and minimally invasive dentistry. Although features at length scales smaller than 100 nm (individual crystallites) and greater than 50 µm (multiple rods) are well understood, competing field of view and sampling considerations have hindered exploration of mesoscale features, i.e., at the level of single enamel rods and the interrod enamel (1 to 10 µm). Here, we combine synchrotron X-ray diffraction at submicrometer resolution, analysis of crystallite orientation distribution, and unsupervised machine learning to show that crystallographic parameters differ between rod head and rod tail/interrod enamel. This variation strongly suggests that crystallites in different microarchitectural domains also differ in their composition. Thus, we use a dilute linear model to predict the concentrations of minority ions in hydroxylapatite (Mg2+ and CO32-/Na+) that plausibly explain the observed lattice parameter variations. While differences within samples are highly significant and of similar magnitude, absolute values and the sign of the effect for some crystallographic parameters show interindividual variation that warrants further investigation. By revealing additional complexity at the rod/interrod level of human enamel and leaving open the possibility of modulation across larger length scales, these results inform future investigations into mechanisms governing amelogenesis and introduce another feature to consider when modeling the mechanical and chemical performance of enamel.
Collapse
Affiliation(s)
- Robert Free
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - Karen DeRocher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - Victoria Cooley
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - Ruqing Xu
- Argonne National Lab, Advanced Photon Source, Lemont, IL60439
| | - Stuart R. Stock
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Northwestern University, Simpson Querrey Institute, Chicago, IL60611
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| |
Collapse
|
5
|
Dirckx N, Zhang Q, Chu EY, Tower RJ, Li Z, Guo S, Yuan S, Khare PA, Zhang C, Verardo A, Alejandro LO, Park A, Faugere MC, Helfand SL, Somerman MJ, Riddle RC, de Cabo R, Le A, Schmidt-Rohr K, Clemens TL. A specialized metabolic pathway partitions citrate in hydroxyapatite to impact mineralization of bones and teeth. Proc Natl Acad Sci U S A 2022; 119:e2212178119. [PMID: 36322718 PMCID: PMC9659386 DOI: 10.1073/pnas.2212178119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.
Collapse
Affiliation(s)
- Naomi Dirckx
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Emily Y. Chu
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, MD 21201
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Robert J. Tower
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
| | - Shichen Yuan
- Department of Chemistry, Brandeis University, Waltham, MA 02453
| | - Pratik A. Khare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Angela Verardo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lucy O. Alejandro
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Angelina Park
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, MD 21201
| | | | - Stephen L. Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906
| | - Martha J. Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Research and Development Service, The Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Anne Le
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | | | - Thomas L. Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Research and Development Service, The Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
6
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|
7
|
Nguyen Thanh T, Nguyen TTN, Le TB, Le DD, Nguyen VM, Le DK. Extragastrointestinal stromal tumor presenting as an exophytic prostatic mass. Radiol Case Rep 2020; 15:1142-1148. [PMID: 32514326 PMCID: PMC7267684 DOI: 10.1016/j.radcr.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022] Open
Abstract
Extragastrointestinal stromal tumors (EGISTs) are uncommon manifestation of gastrointestinal stromal tumors originating from cells outside the gastrointestinal tract. Documented sites of EGISTs include the omentum, mesentery, retroperitoneum, and prostate gland. Prostatic EGISTs are rare entities, which have been sporadically observed, yet all of them were found to be confined within enlarged prostates. We herein report a rare case of EGIST in a 66-year-old man, presenting as a large exophytic prostatic mass.
Collapse
Affiliation(s)
- Thao Nguyen Thanh
- Department of Radiology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen St., Hue, Vietnam
| | - Thi Thanh Nhi Nguyen
- Department of Radiology, Hue University of Medicine and Pharmacy Hospital, Hue, Vietnam
| | - Trong Binh Le
- Department of Radiology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen St., Hue, Vietnam
| | - Dinh Dam Le
- Department of Surgery, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Van Mao Nguyen
- Department of Histology, Embryology, Pathology and Forensic Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Dinh Khanh Le
- Department of Surgery, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| |
Collapse
|