1
|
Rong X, Fan M. Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission. Math Biosci 2024; 377:109304. [PMID: 39368545 DOI: 10.1016/j.mbs.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox's predation rate is low (high), the chemical (integrated) control will be more effective.
Collapse
Affiliation(s)
- Xinmiao Rong
- College of Mathematical Sciences, Harbin Engineering University, 145 Nantong Street, Harbin, Heilongjiang, 150001, China
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, China.
| |
Collapse
|
2
|
Kamiński M, Chyb A, Matson KD, Minias P. Constitutive innate immune defenses in relation to urbanization and population density in an urban bird, the feral pigeon Columba livia domestica. Integr Zool 2024. [PMID: 39295232 DOI: 10.1111/1749-4877.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Urbanization processes modulate the immunological challenges faced by animals. Urban habitat transformations reshape pathogen diversity and abundance, while high population density-common in urban exploiter species-promotes disease transmission. Responses to urbanization may include adaptive adjustments of constitutive innate immune defenses (e.g. complement system and natural antibodies [NAbs]), which serve as first-line protection against infections. Here, we investigated associations of habitat urbanization and host population density with complement and NAbs in an urban bird, the feral pigeon Columba livia domestica. To do so, we employed the hemolysis-hemagglutination assay to analyze nearly 200 plasma samples collected across urbanization and pigeon population density gradients in five major cities in Poland. We found a negative association between urbanization score and hemagglutination (i.e. NAbs activity), but not hemolysis (i.e. complement activity), indicating either immunosuppression or adaptive downregulation of this immune defense in highly transformed urban landscape. Population density was not significantly related to either immune parameter, providing no evidence for density-dependent modulation of immune defenses. At the same time, there was a negative association of hemolysis with condition (scaled mass index), suggesting resource allocation trade-offs or contrasting effects of the urban environment on immune defenses and body condition. The results demonstrate that habitat structure can be an important factor shaping the immune defenses of the feral pigeon, although these associations were not mediated by variation in population density. Our study highlights the complexity of the links between immune defenses in wildlife and urbanization and reinforces the need for comprehensive ecoimmunological studies on urban animals.
Collapse
Affiliation(s)
- Maciej Kamiński
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Šikutová S, Mendel J, Mravcová K, Kejíková R, Hubálek Z, Kampen H, Rudolf I. Detection of Usutu virus in a house martin bug Oeciacus hirundinis (Hemiptera: Cimicidae): implications for virus overwintering in a temperate zone. Parasitol Res 2024; 123:304. [PMID: 39162844 PMCID: PMC11335831 DOI: 10.1007/s00436-024-08325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
The family Cimicidae comprises ectoparasites feeding exclusively on the blood of endothermic animals. Cimicid swallow bugs specifically target swallow birds (Hirundinidae) and their nestlings in infested nests. Bugs of the genus Oeciacus are commonly found in mud nests of swallows and martins, while they rarely visit the homes of humans. Although-unlike other cimicid species-the house martin bug Oeciacus hirundinis has never been reported as a vector of zoonotic pathogens, its possible role in arbovirus circulation in continental Europe is unclear. Samples of O. hirundinis were therefore collected from abandoned house martin (Delichon urbicum) nests in southern Moravia (Czech Republic) during the 2021/2022 winter season and checked for alpha-, flavi- and bunyaviruses by RT-PCR. Of a total of 96 pools consisting of three adult bugs each, one pool tested positive for Usutu virus (USUV)-RNA. Phylogenetic analysis showed that the virus strain was closely related to Italian and some Central European strains and corresponded to USUV lineage 5. The detection of USUV in O. hirundinis during wintertime in the absence of swallows raises the question for a possible role of this avian ectoparasite in virus overwintering in Europe.
Collapse
Affiliation(s)
- Silvie Šikutová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Jan Mendel
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Kristína Mravcová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Romana Kejíková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 1749, Greifswald - Insel Riems, Germany.
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753-5, 625 00, Brno, Czech Republic
| |
Collapse
|
4
|
Brown CR, Brown MB, Hannebaum SL, Wagnon GS, Pletcher OM, Page CE, West AC, O’Brien VA. Social foraging and the associated benefits of group-living in Cliff Swallows decrease over 40 years. ECOL MONOGR 2024; 94:e1602. [PMID: 39398381 PMCID: PMC11469590 DOI: 10.1002/ecm.1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 10/15/2024]
Abstract
Animals that feed socially can sometimes better locate prey, often by transferring information about food that is patchy, dense, and temporally and spatially unpredictable. Information transfer is a potential benefit of living in breeding colonies where unsuccessful foragers can more readily locate successful ones and thereby improve feeding efficiency. Most studies on social foraging have been short-term, and how long-term environmental change affects both foraging strategies and the associated benefits of coloniality is generally unknown. In the colonial Cliff Swallow (Petrochelidon pyrrhonota), we examined how social foraging, information transfer, and feeding ecology changed over a 40-year period in western Nebraska. Relative to the 1980's, Cliff Swallows in 2016-2022 were more likely to forage solitarily or in smaller groups, spent less time foraging, were more successful as solitaries, fed in more variable locations, and engaged less in information transfer at the colony site. The total mass of insects brought back to nestlings per parental visit declined over the study. The diversity of insect families captured increased over time, and some insect taxa dropped out of the diet, although the three most common insect families remained the same among the decades. Nestling Cliff Swallow body mass at 10 days of age and the number of nestlings surviving per nest declined more sharply with colony size in 2015-2022 than in 1984-1991 at sites where the confounding effects of ectoparasites were removed. Adult body mass during provisioning of nestlings was lower in more recent years, but the change did not vary with colony size. The reason(s) for the reduction in social foraging and information transfer over time are unclear, but the consequence is that colonial nesting may no longer offer the same fitness advantages for Cliff Swallows as in the 1980's. The results illustrate flexibility of foraging behavior and dynamic shifts in the potential selective pressures for group-living.
Collapse
Affiliation(s)
- Charles R. Brown
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Mary B. Brown
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Stacey L. Hannebaum
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Gigi S. Wagnon
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Olivia M. Pletcher
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Catherine E. Page
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Amy C. West
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| | - Valerie A. O’Brien
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| |
Collapse
|
5
|
Epidemiology of protozoan and helminthic parasites in wild passerine birds of Britain and Ireland. Parasitology 2023; 150:297-310. [PMID: 36597822 PMCID: PMC10090598 DOI: 10.1017/s0031182022001779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Avian endoparasites play important roles in conservation, biodiversity and host evolution. Currently, little is known about the epidemiology of intestinal helminths and protozoans infecting wild birds of Britain and Ireland. This study aimed to determine the rates of parasite prevalence, abundance and infection intensity in wild passerines. Fecal samples (n = 755) from 18 bird families were collected from 13 sites across England, Wales and Ireland from March 2020 to June 2021. A conventional sodium nitrate flotation method allowed morphological identification and abundance estimation of eggs/oocysts. Associations with host family and age were examined alongside spatiotemporal and ecological factors using Bayesian phylogenetically controlled models. Parasites were detected in 20.0% of samples, with corvids and finches having the highest prevalences and intensities, respectively. Syngamus (33%) and Isospora (32%) were the most prevalent genera observed. Parasite prevalence and abundance differed amongst avian families and seasons, while infection intensity varied between families and regions. Prevalence was affected by diet diversity, while abundance differed by host age and habitat diversity. Infection intensity was higher in birds using a wider range of habitats, and doubled in areas with feeders present. The elucidation of these patterns will increase the understanding of parasite fauna in British and Irish birds.
Collapse
|
6
|
Gadek CR, Williamson JL, Witt CC. Intra‐ and interspecific nest stacking in marsh‐dwelling songbirds. Biotropica 2022. [DOI: 10.1111/btp.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chauncey R. Gadek
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico USA
| | - Jessie L. Williamson
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico USA
| | - Christopher C. Witt
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
7
|
Braga Goncalves I, Morris-Drake A, Kennedy P, Radford AN. Fitness consequences of outgroup conflict. eLife 2022; 11:e74550. [PMID: 35833830 PMCID: PMC9282852 DOI: 10.7554/elife.74550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
In social species across the animal kingdom, conspecific outsiders threaten the valuable resources of groups and their members. This outgroup conflict is recognised as a powerful selection pressure, but we argue that studies explicitly quantifying the fitness consequences need to be broader in scope: more attention should be paid to delayed, cumulative, and third-party fitness consequences, not just those arising immediately to group members involved in physical contests. In the first part of this review, we begin by documenting how single contests can have survival and reproductive consequences either immediately or with a delay. Then, we step beyond contests to describe fitness consequences that can also result from interactions with cues of rival presence and the general landscape of outgroup threat, and beyond single interactions to describe cumulative effects of territorial pressure and elevated outgroup-induced stress. Using examples from a range of taxa, we discuss which individuals are affected negatively and positively, considering both interaction participants and third-party group members of the same or the next generation. In the second part of the review, we provide suggestions about how to move forward. We highlight the importance of considering how different types of outgroup conflict can generate different selection pressures and of investigating variation in fitness consequences within and between species. We finish by discussing the value of theoretical modelling and long-term studies of natural populations, experimental manipulations, and meta-analyses to develop further our understanding of this crucial aspect of sociality.
Collapse
Affiliation(s)
| | - Amy Morris-Drake
- School of Biological Sciences, University of BristolBristolUnited Kingdom
| | - Patrick Kennedy
- School of Biological Sciences, University of BristolBristolUnited Kingdom
| | - Andrew N Radford
- School of Biological Sciences, University of BristolBristolUnited Kingdom
| |
Collapse
|
8
|
Population density mediates induced immune response, but not physiological condition in a well-adapted urban bird. Sci Rep 2022; 12:9150. [PMID: 35650222 PMCID: PMC9160275 DOI: 10.1038/s41598-022-12910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Thriving under high population density is considered a major feature of urban exploiter species. Nevertheless, population density appears to be a surprisingly overlooked factor in urban ecology studies. High population numbers observed in urban species might promote pathogen transmission and negatively affect health or condition, thus requiring investments in immunocompetence. The feral pigeon Columba livia domestica is an example of a successful city-dweller, found in great abundance in large cities across the globe. We investigated the effects of population density on induced immune response (phytohaemagglutinin skin test) and body condition (blood haemoglobin concentration and size-corrected body mass) in 120 feral pigeons, captured along population density gradient in Łódź (central Poland). We found that stronger immune response was associated with higher population density, but was not related to physiological condition and physiological stress (heterophil/lymphocyte ratio). Moreover, condition indices were not associated with population density. However, since pigeon population density was highly correlated with the level of habitat urbanization, we cannot exclude that any density-dependent effects may be mediated by habitat variation. Our results indicate that urban environment, via population density, might exert different selective pressures on immunocompetence and body condition in this successful urban exploiter.
Collapse
|
9
|
Brown CR, Hannebaum SL. Birds of a Feather Flock Together: Extent of Long-Term Consistency of Colony-Size Choice in Cliff Swallows. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.860407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Explaining why animal groups vary in size is a fundamental problem in behavioral ecology. One hypothesis is that life-history differences among individuals lead to sorting of phenotypes into groups of different sizes where each individual does best. This hypothesis predicts that individuals should be relatively consistent in their use of particular group sizes across time. Little is known about whether animals’ choice of group size is repeatable across their lives, especially in long-lived species. We studied consistency in choice of breeding-colony size in colonially nesting cliff swallows (Petrochelidon pyrrhonota) in western Nebraska, United States, over a 32-year period, following 6,296 birds for at least four breeding seasons. Formal repeatability of size choice for the population was about 0.41. About 45% of individuals were relatively consistent in choice of colony size, while about 40% varied widely in the colony size they occupied. Birds using the smaller and larger colonies appeared more consistent in size use than birds occupying more intermediate sized colonies. Consistency in colony size was also influenced by whether a bird used the same physical colony site each year and whether the site had been fumigated to remove ectoparasites. The difference between the final and initial colony sizes for an individual, a measure of the net change in its colony size over its life, did not significantly depart from 0 for the dataset as a whole. However, different year-cohorts did show significant net change in colony size, both positive and negative, that may have reflected fluctuating selection on colony size among years based on climatic conditions. The results support phenotypic sorting as an explanation for group size variation, although cliff swallows also likely use past experience at a given site and the extent of ectoparasitism to select breeding colonies.
Collapse
|
10
|
Group-size effects on virus prevalence depend on the presence of an invasive species. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Brown CR, Hannebaum SL, O’Brien VA, Page CE, Rannala B, Roche EA, Wagnon GS, Knutie SA, Moore AT, Brown MB. The cost of ectoparasitism in Cliff Swallows declines over 35 years. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Charles R. Brown
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Stacey L. Hannebaum
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Valerie A. O’Brien
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Catherine E. Page
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Bruce Rannala
- Department of Evolution and Ecology University of California Davis California 95616 USA
| | - Erin A. Roche
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Gigi S. Wagnon
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut 75 N. Eagleville Rd. Storrs Connecticut 06269 USA
| | - Amy T. Moore
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Mary B. Brown
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| |
Collapse
|
12
|
Urmy SS. Visual trail following in colonial seabirds: theory, simulation, and remote observations. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samuel S. Urmy
- School of Marine and Atmospheric Sciences Stony Brook University 239 Montauk Highway Southampton New York11968USA
| |
Collapse
|
13
|
Hannebaum SL, Brown MB, Brown CR. Ecological correlates of group integrity among dispersing cliff swallows. Ecosphere 2020; 10. [PMID: 33042598 DOI: 10.1002/ecs2.2913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Breeding colonies of birds represent groups of individuals that associate during one breeding season, at least partially dissociate for the non-breeding season, and may re-associate the next year through collective settlement at another breeding site. Little is known about the extent to which colonial birds maintain group integrity when occupying different sites in different years or the benefits of long-term associations among colonial individuals. For cliff swallows (Petrochelidon pyrrhonota) in western Nebraska, USA, we examined ecological correlates and potential benefits associated with group integrity. Using a dataset of over 25,000 individuals, we found that associations between dispersing cliff swallows were greater than would be predicted by purely random settlement among colony sites. The extent of group integrity varied widely among sites, with birds seeming to settle together more often at sites with fewer ectoparasites and at colonies similar in size and closer in physical proximity to the one they had previously occupied. Some associations of birds lasted three years in which they used a different site each year. Successful colonies had higher levels of group integrity among their settlers than did colonies that failed completely. Cliff swallows that were known to have settled with at least one conspecific from the previous year's site had a higher survival the next year than those not known to have settled with past residents. The results are consistent with cliff swallows choosing colonies based in part on parasite load and with sorting among colonies based on the birds' preferences for colonies of certain sizes.
Collapse
Affiliation(s)
- Stacey L Hannebaum
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA.,Present address: 230 Water Lily Dr., #12, Bozeman, Montana 59718 USA
| | - Mary Bomberger Brown
- School of Natural Resources, University of Nebraska, Lincoln, Nebraska 68583 USA.,Deceased, 24 August 2019
| | - Charles R Brown
- Department of Biological Sciences, University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104 USA
| |
Collapse
|
14
|
Hannebaum SL, Wagnon GS, Brown CR. Variation in neophobia among cliff swallows at different colonies. PLoS One 2019; 14:e0226886. [PMID: 31869383 PMCID: PMC6927619 DOI: 10.1371/journal.pone.0226886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022] Open
Abstract
Animal groups often represent nonrandom subsets of individuals, and increasing evidence indicates that individuals may sort among groups based on their personalities. The size of a group can predict its personality composition in some species due to differential suitability of a personality for groups of certain sizes, and the group itself may function more effectively if particular personality types are present. We quantified cliff swallow (Petrochelidon pyrrhonota) behavioral measures using linear and generalized linear mixed models to identify whether they: (1) varied among individuals within colonies and among colonies, (2) were related to reproductive success, and (3) predicted levels of parental care. Significant among-individual and among-colony site variation in a cliff swallow's latency to enter its nest when presented with a novel stimulus was revealed. We also found significant among-individual variation in the number of attacks directed toward a novel stimulus at the nest and in the response to broadcast of a cliff swallow alarm call recording, but among site variation in these measures was not significant. We did not find evidence for behavioral syndromes linking the personalities measured. Differences among individuals in latency to enter the nest and the number of attacks were not significantly related to reproductive success or to the extent to which birds fed their nestlings. However, extent of nestling feeding was significantly predicted by the number of mist net captures. The limited evidence in general of systematic variation in the behavior we measured among cliff swallow colonies may reflect the different and sometimes opposing selection pressures on behavior in different social environments. Future work should perhaps examine variation in other behavioral traits, such as foraging, in cliff swallow colonies of different sizes.
Collapse
Affiliation(s)
- Stacey L. Hannebaum
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
- * E-mail:
| | - Gigi S. Wagnon
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Charles R. Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
| |
Collapse
|
15
|
Minias P. Evolution of heterophil/lymphocyte ratios in response to ecological and life‐history traits: A comparative analysis across the avian tree of life. J Anim Ecol 2019; 88:554-565. [DOI: 10.1111/1365-2656.12941] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and BioeducationFaculty of Biology and Environmental ProtectionUniversity of Łódź Łódź Poland
| |
Collapse
|
16
|
Reproductive success related to uropygial gland volume varies with abundance of conspecifics in barn swallows Hirundo rustica. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2598-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Spiezio C, Valsecchi V, Sandri C, Regaiolli B. Investigating individual and social behaviour of the Northern bald ibis ( Geronticus eremita): behavioural variety and welfare. PeerJ 2018; 6:e5436. [PMID: 30202642 PMCID: PMC6128256 DOI: 10.7717/peerj.5436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023] Open
Abstract
The Northern bald ibis (Geronticus eremita) (NBI) is one of the most threatened birds in the world. Intense conservation efforts have been undertaken and several research projects on the species are being done in Morocco and in Europe. Observing animal behaviour has been proved to be an efficient and non-invasive technique to assess the animal welfare, with the performance of a wide array of natural behaviours being one of the mostly used indicators of good mental and physical well-being. The aim of this study was to investigate the behaviour of a flock of 14 zoo-living NBI of different ages. The study focused on the variety of species-specific individual and social behaviours, in the light of reintroduction of the study juveniles in the wild. Per subject, 20 10-min. sessions were done. A continuous focal animal sampling method was used to collect individual and social behaviours. Behavioural data have been compared between adults and juveniles. Moreover, a Behavioural Variety Index (BVI) has been proposed and calculated based on previous literature describing natural ibis behaviours. The BVI might help in the evaluation of the variety of behaviours performed by each individual and the monitoring of the diversity of the behavioural repertoire of zoo animals. Our results showed that the birds performed species-specific behaviours and no abnormal behaviour was reported. Moreover, the BVI highlighted a good behavioural variety as each bird performed approximately 78% of the natural behaviours described in the Northern bald ibis and in close relative species. Our findings seem to suggest the presence of qualitative and quantitative similarities between the behavioural repertoires of the study ibises and those described in wild conspecifics, suggesting a good welfare of the colony. Finally, the BVI proposed in the current study seems to be a useful and practical tool to test behavioural diversity in zoo animals.
Collapse
Affiliation(s)
- Caterina Spiezio
- Research and Conservation Department, Parco Natura Viva-Garda Zoological Park, Verona, Italy
| | - Valentina Valsecchi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva-Garda Zoological Park, Verona, Italy.,Department of Food and Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Barbara Regaiolli
- Research and Conservation Department, Parco Natura Viva-Garda Zoological Park, Verona, Italy
| |
Collapse
|
18
|
Daversa DR, Fenton A, Dell AI, Garner TWJ, Manica A. Infections on the move: how transient phases of host movement influence disease spread. Proc Biol Sci 2018; 284:rspb.2017.1807. [PMID: 29263283 PMCID: PMC5745403 DOI: 10.1098/rspb.2017.1807] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes.
Collapse
Affiliation(s)
- D R Daversa
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - A Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - A I Dell
- National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA.,Department of Biology, Washington University in St Louis, 1 Brookings Dr, St Louis, MO 63130, USA
| | - T W J Garner
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - A Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
19
|
Tardy O, Massé A, Pelletier F, Fortin D. Interplay between contact risk, conspecific density, and landscape connectivity: An individual-based modeling framework. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Soltész Z, Seres N, Kovács-Hostyánszki A. Dipteran assemblages in Red-footed Falcon (Falco vespertinus) nest boxes. ACTA ZOOL ACAD SCI H 2018. [DOI: 10.17109/azh.64.1.91.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Abstract
Colonization comprises the physical arrival of a species in a new area, but also its successful establishment within the local community. Oceanic islands, like the Hawaiian and the Galapagos archipelagos, represent excellent systems to study the mechanisms of colonization because of their historical isolation. In this chapter, we first review some of the major mechanisms by which parasites and vectors could arrive to an oceanic island, both naturally or due to human activities, and the factors that may influence their successful establishment in the insular host community. We then explore examples of natural and anthropogenic colonization of the Galapagos Islands by parasites and vectors, focusing on one or more case studies that best represent the diversity of colonization mechanisms that has shaped parasite distribution in the archipelago. Finally, we discuss future directions for research on parasite and vector colonization in Galapagos Islands.
Collapse
Affiliation(s)
- Patricia G. Parker
- Department of Biology, University of Missouri – St. Louis, St. Louis, Missouri USA
| |
Collapse
|
22
|
Brown CR, Brown MB. Parasites favour intermediate nestling mass and brood size in cliff swallows. J Evol Biol 2017; 31:254-266. [PMID: 29194840 DOI: 10.1111/jeb.13218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/14/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023]
Abstract
A challenge of life-history theory is to explain why animal body size does not continue to increase, given various advantages of larger size. In birds, body size of nestlings and the number of nestlings produced (brood size) have occasionally been shown to be constrained by higher predation on larger nestlings and those from larger broods. Parasites also are known to have strong effects on life-history traits in birds, but whether parasitism can be a driver for stabilizing selection on nestling body size or brood size is unknown. We studied patterns of first-year survival in cliff swallows (Petrochelidon pyrrhonota) in western Nebraska in relation to brood size and nestling body mass in nests under natural conditions and in those in which hematophagous ectoparasites had been removed by fumigation. Birds from parasitized nests showed highest first-year survival at the most common, intermediate brood-size and nestling-mass categories, but cliff swallows from nonparasitized nests had highest survival at the heaviest nestling masses and no relationship with brood size. A survival analysis suggested stabilizing selection on brood size and nestling mass in the presence (but not in the absence) of parasites. Parasites apparently favour intermediate offspring size and number in cliff swallows and produce the observed distributions of these traits, although the mechanisms are unclear. Our results emphasize the importance of parasites in life-history evolution.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA
| | | |
Collapse
|
23
|
Angley LP, Combs M, Firth C, Frye MJ, Lipkin I, Richardson JL, Munshi-South J. Spatial variation in the parasite communities and genomic structure of urban rats in New York City. Zoonoses Public Health 2017; 65:e113-e123. [PMID: 29143489 DOI: 10.1111/zph.12418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 01/06/2023]
Abstract
Brown rats (Rattus norvegicus) are a globally distributed pest. Urban habitats can support large infestations of rats, posing a potential risk to public health from the parasites and pathogens they carry. Despite the potential influence of rodent-borne zoonotic diseases on human health, it is unclear how urban habitats affect the structure and transmission dynamics of ectoparasite and microbial communities (all referred to as "parasites" hereafter) among rat colonies. In this study, we use ecological data on parasites and genomic sequencing of their rat hosts to examine associations between spatial proximity, genetic relatedness and the parasite communities associated with 133 rats at five sites in sections of New York City with persistent rat infestations. We build on previous work showing that rats in New York carry a wide variety of parasites and report that these communities differ significantly among sites, even across small geographical distances. Ectoparasite community similarity was positively associated with geographical proximity; however, there was no general association between distance and microbial communities of rats. Sites with greater overall parasite diversity also had rats with greater infection levels and parasite species richness. Parasite community similarity among sites was not linked to genetic relatedness of rats, suggesting that these communities are not associated with genetic similarity among host individuals or host dispersal among sites. Discriminant analysis identified site-specific associations of several parasite species, suggesting that the presence of some species within parasite communities may allow researchers to determine the sites of origin for newly sampled rats. The results of our study help clarify the roles that colony structure and geographical proximity play in determining the ecology of R. norvegicus as a significant urban reservoir of zoonotic diseases. Our study also highlights the spatial variation present in urban rat parasite communities, indicating that rats across New York City are not reservoirs for a homogenous set of parasites and pathogens. As a result, the epidemiological risks may be similarly heterogeneous for people in urban habitats.
Collapse
Affiliation(s)
- L P Angley
- Department of Biology, Providence College, Providence, RI, USA
| | - M Combs
- Louis Calder Center and Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - C Firth
- Mailman School of Public Health, Columbia University, New York, NY, USA.,School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - M J Frye
- New York State Integrated Pest Management Program, Cornell University, Geneva, NY, USA
| | - I Lipkin
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - J L Richardson
- Department of Biology, Providence College, Providence, RI, USA
| | - J Munshi-South
- Louis Calder Center and Department of Biological Sciences, Fordham University, Armonk, NY, USA
| |
Collapse
|
24
|
Why come back home? Breeding-site fidelity varies with group size and parasite load in a colonial bird. Anim Behav 2017; 132:167-180. [PMID: 29662246 DOI: 10.1016/j.anbehav.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fidelity to a past breeding site is widespread among animals and may confer both costs and benefits. Colonial species occur at specific sites that can accommodate multiple breeders, and the choice of whether to return to last year's site or disperse elsewhere can affect colony site use, the colony size distribution and individual fitness. For the colonial cliff swallow, Petrochelidon pyrrhonota, which occupies colonies of widely different sizes, we used a 30-year field study in western Nebraska to investigate how the extent of infestation by ectoparasites and colony size affected breeders' colony site fidelity between years. We compared philopatry at colonies where parasitic swallow bugs, Oeciacus vicarius, had been removed by fumigation with that at nonfumigated sites exposed to natural levels of ectoparasites. About 25% of birds at nonfumigated colonies returned to their previous year's site, whereas about 69% of birds at fumigated colonies did so. Site fidelity was greatest at nonfumigated sites that changed the least in size between years. Birds were less likely to return to a nonfumigated site as the colony there became increasingly larger. Individuals philopatric to both nonfumigated and fumigated sites resided in colonies more similar in size between years than did dispersing birds. Most cliff swallows settled within 6 km of their previous year's site, indicating that many nonphilopatric birds still may have had some familiarity with the local landscape surrounding the site to which they moved. Removal of ectoparasites at a site allows large colonies to persist there perennially, probably contributing to higher philopatry because such large colonies are rare and would have been difficult to find had the residents dispersed. Cliff swallows are likely to be sensitive to both colony size and general familiarity with a given site or landscape region, and probably integrate these with other cues to select breeding colonies.
Collapse
|
25
|
Ecological and evolutionary approaches to managing honeybee disease. Nat Ecol Evol 2017; 1:1250-1262. [PMID: 29046562 PMCID: PMC5749923 DOI: 10.1038/s41559-017-0246-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
Honeybee declines are a serious threat to global agricultural security and productivity. Although multiple factors contribute to these declines, parasites are a key driver. Disease problems in honeybees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and control these threats via honeybee management. We cover the ecological context of honeybee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honeybees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences. Multiple interacting factors have contributed to the rapid decline of honeybee populations worldwide. Here, the authors review the impact of parasites and pathogens, and how ecological and evolutionary principles can guide management practices.
Collapse
|
26
|
Runjaic J, Bellovich IJ, Page CE, Brown CR, Booth W. No Detectable Insecticide Resistance in Swallow Bugs (Hemiptera: Cimicidae) Following Long-Term Exposure to Naled (Dibrom 8). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:994-998. [PMID: 28399289 DOI: 10.1093/jme/tjw230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Indexed: 06/07/2023]
Abstract
The swallow bug, Oeciacus vicarius Horvath, is a hematophagous ectoparasite of the cliff swallow, Petrochelidon pyrrhonota Vieillot, and is closely related to bed bugs (Cimex spp.). Evolution of insecticide resistance has been documented for bed bugs but not studied in Oeciacus. For periods of 17 and 32 yr, two cliff swallow colonies in western Nebraska were treated during the summer breeding season using the organophosphate insecticide Dibrom. Despite continual treatments, O. vicarius has been observed frequently within these colonies. We evaluated the efficacy of Dibrom 8 on O. vicarius during the 2016 season at two treated colonies and four that had never experienced treatment. Dibrom 8 was found to be effective in 100% of trials, with immobilization within minutes and death within 72 h, for individuals from all colonies. In control treatments (water), individuals collected from treated colonies exhibited greater survival than individuals from untreated colonies, and those from active colonies (bugs fed) had greater survival than those from inactive colonies (bugs unfed). A residual effect was observed in both lab and field trials: 100% mortality occurred in the lab after exposure to filter paper substrates treated both 5 and 10 d earlier, and in the field, nests treated once early in the season had O. vicarius counts 43 d later that were <1% of those from untreated nests within the same colony. We hypothesize that the lack of resistance results from the limited potential for resistance allele fixation due to outbreeding and frequent immigration of insecticide-naïve individuals.
Collapse
Affiliation(s)
- Jelena Runjaic
- Department of Integrative Biology and School of Geosciences, University of South Florida, Tampa, FL 33620
| | - Ian J Bellovich
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104
| | - Catherine E Page
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104
| | - Charles R Brown
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104
| | - Warren Booth
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104
| |
Collapse
|
27
|
|
28
|
Vaumourin E, Vourc'h G, Gasqui P, Vayssier-Taussat M. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors 2015; 8:545. [PMID: 26482351 PMCID: PMC4617890 DOI: 10.1186/s13071-015-1167-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Most parasites co-occur with other parasites, although the importance of such multiparasitism has only recently been recognised. Co-infections may result when hosts are independently infected by different parasites at the same time or when interactions among parasite species facilitate co-occurrence. Such interactions can have important repercussions on human or animal health because they can alter host susceptibility, infection duration, transmission risks, and clinical symptoms. These interactions may be synergistic or antagonistic and thus produce diverse effects in infected humans and animals. Interactions among parasites strongly influence parasite dynamics and therefore play a major role in structuring parasite populations (both within and among hosts) as well as host populations. However, several methodological challenges remain when it comes to detecting parasite interactions. The goal of this review is to summarise current knowledge on the causes and consequences of multiparasitism and to discuss the different methods and tools that researchers have developed to study the factors that lead to multiparasitism. It also identifies new research directions to pursue.
Collapse
Affiliation(s)
- Elise Vaumourin
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France. .,USC BIPAR, INRA-ANSES-ENVA, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | - Patrick Gasqui
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | | |
Collapse
|
29
|
Brown CR, Page CE, Robison GA, O'Brien VA, Booth W. Predation by ants controls swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) infestations. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:152-157. [PMID: 26047195 DOI: 10.1111/jvec.12144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74-90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance.
Collapse
Affiliation(s)
- Charles R Brown
- University of Tulsa, Department of Biological Sciences, 800 S. Tucker Dr., Tulsa, OK, U.S.A., 74104.
| | - Catherine E Page
- University of Tulsa, Department of Biological Sciences, 800 S. Tucker Dr., Tulsa, OK, U.S.A., 74104
| | - Grant A Robison
- University of Tulsa, Department of Biological Sciences, 800 S. Tucker Dr., Tulsa, OK, U.S.A., 74104
| | - Valerie A O'Brien
- University of Tulsa, Department of Biological Sciences, 800 S. Tucker Dr., Tulsa, OK, U.S.A., 74104
| | - Warren Booth
- University of Tulsa, Department of Biological Sciences, 800 S. Tucker Dr., Tulsa, OK, U.S.A., 74104
| |
Collapse
|
30
|
Gangoso L, Afán I, Grande J, Figuerola J. Sociospatial structuration of alternative breeding strategies in a color polymorphic raptor. Behav Ecol 2015. [DOI: 10.1093/beheco/arv058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Brown CR, Brown MB. Ectoparasitism shortens the breeding season in a colonial bird. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140508. [PMID: 26064606 PMCID: PMC4448812 DOI: 10.1098/rsos.140508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
When blood-feeding parasites increase seasonally, their deleterious effects may prevent some host species, especially those living in large groups where parasites are numerous, from reproducing later in the summer. Yet the role of parasites in regulating the length of a host's breeding season-and thus the host's opportunity for multiple brooding-has not been systematically investigated. The highly colonial cliff swallow (Petrochelidon pyrrhonota), a temperate-latitude migratory songbird in the western Great Plains, USA, typically has a relatively short (eight to nine week) breeding season, with birds rarely nesting late in the summer. Colonies at which ectoparasitic swallow bugs (Oeciacus vicarius) were experimentally removed by fumigation were over 45 times more likely to have birds undertake a second round of nesting than were colonies exposed to parasites. Late nesting approximately doubled the length of the breeding season, with some birds raising two broods. Over a 27 year period the percentage of birds engaging in late nesting each year increased at a colony site where parasites were removed annually. This trend could not be explained by changes in group size, climate or nesting phenology during the study. The results suggest that ectoparasitism shortens the cliff swallow's breeding season and probably prevents many individuals from multiple brooding. When this constraint is removed, selection may rapidly favour late nesting.
Collapse
Affiliation(s)
- Charles R. Brown
- Department of Biological Sciences, University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | | |
Collapse
|
32
|
Brown CR, Brown MB. Breeding time in a migratory songbird is predicted by drought severity and group size. Ecology 2014. [DOI: 10.1890/14-0425.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Costs and benefits of late nesting in cliff swallows. Oecologia 2014; 177:413-21. [DOI: 10.1007/s00442-014-3095-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
|
34
|
Brown CR, Roche EA, Brown MB. Variation in age composition among colony sizes in Cliff Swallows. JOURNAL OF FIELD ORNITHOLOGY 2014; 85:289-300. [PMID: 29628606 PMCID: PMC5884171 DOI: 10.1111/jofo.12068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Variation in group size is characteristic of most social species. The extent to which individuals sort among group sizes based on age may yield insight into why groups vary in size and the age-specific costs and benefits of different social environments. We investigated the age composition of Cliff Swallow (Petrochelidon pyrrhonota) colonies of different sizes over 18 years at a long-term study site in western Nebraska, USA. Using years elapsed since banding as a relative measure of age for over 194,000 birds, we found that the proportion of age-class-1 swallows (birds banded as nestlings or juveniles or adults in the year of banding) of both sexes increased in larger colonies and at colony sites becoming active later in the summer. Age composition was unrelated to how often a particular colony site was used. The effect of colony size most likely reflected the fact that older birds return to the same colony site in successive years even when the colony size there decreases, and that yearlings and immigrants benefit more from larger colonies than do older, more experienced individuals. The date effect probably resulted in part from later spring arrival by younger and/or immigrant swallows. At fumigated sites where ectoparasitic swallow bugs (Oeciacus vicarius) had been removed, age composition did not vary with either colony size or colony initiation date. The patterns reported here appear to be driven partially by the presence of ectoparasites and suggest that the hematophagous bugs influence variation in Cliff Swallow group composition. Our results are consistent with the hypothesis that variation in colony size reflects, in part, age-based sorting of individuals among groups.
Collapse
Affiliation(s)
- Charles R. Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma 74104, USA
| | - Erin A. Roche
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma 74104, USA
| | - Mary Bomberger Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma 74104, USA
| |
Collapse
|
35
|
Abstract
A challenge in managing vector-borne zoonotic diseases in human and wildlife populations is predicting where epidemics or epizootics are likely to occur, and this requires knowing in part the likelihood of infected insect vectors dispersing pathogens from existing infection foci to novel areas. We measured prevalence of an arbovirus, Buggy Creek virus, in dispersing and resident individuals of its exclusive vector, the ectoparasitic swallow bug (Oeciacus vicarius), that occupies cliff swallow (Petrochelidon pyrrhonota) colonies in western Nebraska. Bugs colonizing new colony sites and immigrating into established colonies by clinging to the swallows' legs and feet had significantly lower virus prevalence than bugs in established colonies and those that were clustering in established colonies before dispersing. The reduced likelihood of infected bugs dispersing to new colony sites indicates that even heavily infected sites may not always export virus to nearby foci at a high rate. Infected arthropods should not be assumed to exhibit the same dispersal or movement behaviour as uninfected individuals, and these differences in dispersal should perhaps be considered in the epidemiology of vector-borne pathogens such as arboviruses.
Collapse
Affiliation(s)
- Amy T Moore
- Department of Biological Sciences, University of Tulsa, , Tulsa, OK 74104, USA
| | | |
Collapse
|
36
|
Brown CR, Brown MB, Roche EA. Spatial and temporal unpredictability of colony size in Cliff Swallows across 30 years. ECOL MONOGR 2013. [DOI: 10.1890/12-2001.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Sherley RB, Barham PJ, Barham BJ, Crawford RJM, Dyer BM, Leshoro TM, Makhado AB, Upfold L, Underhill LG. Growth and decline of a penguin colony and the influence on nesting density and reproductive success. POPUL ECOL 2013. [DOI: 10.1007/s10144-013-0394-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Dardenne S, Ducatez S, Cote J, Poncin P, Stevens VM. Neophobia and social tolerance are related to breeding group size in a semi-colonial bird. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1560-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Fassbinder-Orth CA, Barak VA, Brown CR. Immune responses of a native and an invasive bird to Buggy Creek Virus (Togaviridae: Alphavirus) and its arthropod vector, the swallow bug (Oeciacus vicarius). PLoS One 2013; 8:e58045. [PMID: 23460922 PMCID: PMC3584039 DOI: 10.1371/journal.pone.0058045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023] Open
Abstract
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.
Collapse
|
40
|
Bolzoni L, De Leo GA. Unexpected consequences of culling on the eradication of wildlife diseases: the role of virulence evolution. Am Nat 2013; 181:301-13. [PMID: 23448881 DOI: 10.1086/669154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The removal of individuals from an infected population (culling) is a common strategy used to eradicate wildlife diseases. The manipulation of host density can impose strong selective pressures on pathogen virulence by changing the ecological conditions, thus affecting the effectiveness of eradication programs. We present an analysis of the effect of virulence evolution on culling by extending a susceptible-infected model to the case of competing strains with superinfection. To assess both short- and long-term effects, we first carried out the analysis on an ecological timescale, with a two-strain competition model; then we explore the dynamics of a continuum of pathogenic strains on evolutionary timescales using a quantitative genetics approach (when infection and evolutionary processes occur on comparable timescales) and a game-theoretic approach (when evolutionary processes occur on a slower scale). We demonstrate that the competition among pathogenic variants in the presence of superinfection affects outcome of culling campaigns, since increased host mortality may select for less virulent strains able to establish in sparser populations. This can lead to the counterintuitive result that disease abundance and prevalence may even increase with culling, thus making the eradication of infections considerably less likely. This is particularly relevant in the case of zoonoses where higher prevalence and abundance of pathogens in wild reservoirs may increase the risk of spillover in livestock and humans.
Collapse
Affiliation(s)
- Luca Bolzoni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | | |
Collapse
|
41
|
Maternal effects in the highly communal sociable weaver may exacerbate brood reduction and prepare offspring for a competitive social environment. Oecologia 2012; 171:379-89. [PMID: 22948278 DOI: 10.1007/s00442-012-2439-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Maternal effects can influence offspring phenotype with short- and long-term consequences. Yet, how the social environment may influence egg composition is not well understood. Here, we investigate how laying order and social environment predict maternal effects in the sociable weaver, Philetairus socius, a species that lives in massive communal nests which may be occupied by only a few to 100+ individuals in a single nest. This range of social environments is associated with variation in a number of phenotypic and life-history traits. We investigate whether maternal effects are adjusted accordingly. We found no evidence for the prediction that females might benefit from modifying brood hierarchies through an increased deposition of androgens with laying order. Instead, females appear to exacerbate brood reduction by decreasing the costly production of yolk mass and antioxidants with laying order. Additionally, we found that this effect did not depend on colony size. Finally, in accordance with an expected increased intensity of environmental stress with increasing colony size, we found that yolk androgen concentration increased with colony size. This result suggests that females may enhance the competitive ability of offspring raised in larger colonies, possibly preparing the offspring for a competitive social environment.
Collapse
|
42
|
Rifkin JL, Nunn CL, Garamszegi LZ. Do animals living in larger groups experience greater parasitism? A meta-analysis. Am Nat 2012; 180:70-82. [PMID: 22673652 DOI: 10.1086/666081] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasitism is widely viewed as the primary cost of sociality and a constraint on group size, yet studies report varied associations between group size and parasitism. Using the largest database of its kind, we performed a meta-analysis of 69 studies of the relationship between group size and parasite risk, as measured by parasitism and immune defenses. We predicted a positive correlation between group size and parasitism with organisms that show contagious and environmental transmission and a negative correlation for searching parasites, parasitoids, and possibly vector-borne parasites (on the basis of the encounter-dilution effect). Overall, we found a positive effect of group size (r = 0.187) that varied in magnitude across transmission modes and measures of parasite risk, with only weak indications of publication bias. Among different groups of hosts, we found a stronger relationship between group size and parasite risk in birds than in mammals, which may be driven by ecological and social factors. A metaregression showed that effect sizes increased with maximum group size. Phylogenetic meta-analyses revealed no evidence for phylogenetic signal in the strength of the group size-parasitism relationship. We conclude that group size is a weak predictor of parasite risk except in species that live in large aggregations, such as colonial birds, in which effect sizes are larger.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
43
|
Roche EA, Brown CR, Brown MB. Heritable choice of colony size in cliff swallows: does experience trump genetics in older birds? Anim Behav 2011; 82:1275-1285. [PMID: 22247565 DOI: 10.1016/j.anbehav.2011.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The variation in breeding-colony size seen in populations of most colonial birds may reflect heritable choices made by individuals who are phenotypically specialized for particular social environments. Although a few studies have reported evidence for genetically based choice of group sizes in birds, we know relatively little about the extent to which animals potentially rely on experience versus innate preferences in deciding with how many conspecifics to settle at different times of their lives. We conducted a cross-fostering experiment in 1997-1998 on cliff swallows (Petrochelidon pyrrhonota) in southwestern Nebraska, USA, in which some individuals were reared in colonies different in size from those in which they were born. Breeding-colony sizes chosen by this cohort of birds were monitored by mark-recapture throughout their lives. A multistate mark-recapture analysis revealed that birds in their first breeding year chose colony sizes similar to those of their birth, regardless of their rearing environment, confirming a previous analysis. Beyond the first breeding year, however, cliff swallows' colony choice was less dependent on where they were born. Birds born in small colonies and reared in large colonies showed evidence of a delayed rearing effect, with these birds overwhelmingly choosing large colonies in later years. Heritabilities suggested strong genetic effects on first-year colony choice but not in later years. Cliff swallows' genetically based colony-size preferences their first year could be a way to ensure matching of their phenotype to an appropriate social environment as yearlings. In later years, familiarity with particular colony sites and available information on site quality may override innate group-size preferences when birds choose colonies.
Collapse
Affiliation(s)
- Erin A Roche
- Department of Biological Sciences, University of Tulsa
| | | | | |
Collapse
|
44
|
O'Brien VA, Brown CR. Group size and nest spacing affect Buggy Creek virus (Togaviridae: Alphavirus) infection in nestling house sparrows. PLoS One 2011; 6:e25521. [PMID: 21966539 PMCID: PMC3180461 DOI: 10.1371/journal.pone.0025521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
The transmission of parasites and pathogens among vertebrates often depends on host population size, host species diversity, and the extent of crowding among potential hosts, but little is known about how these variables apply to most vector-borne pathogens such as the arboviruses (arthropod-borne viruses). Buggy Creek virus (BCRV; Togaviridae: Alphavirus) is an RNA arbovirus transmitted by the swallow bug (Oeciacus vicarius) to the cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that has recently invaded swallow nesting colonies. The virus has little impact on cliff swallows, but house sparrows are seriously affected by BCRV. For house sparrows occupying swallow nesting colonies in western Nebraska, USA, the prevalence of BCRV in nestling sparrows increased with sparrow colony size at a site but decreased with the number of cliff swallows present. If one nestling in a nest was infected with the virus, there was a greater likelihood that one or more of its nest-mates would also be infected than nestlings chosen at random. The closer a nest was to another nest containing infected nestlings, the greater the likelihood that some of the nestlings in the focal nest would be BCRV-positive. These results illustrate that BCRV represents a cost of coloniality for a vertebrate host (the house sparrow), perhaps the first such demonstration for an arbovirus, and that virus infection is spatially clustered within nests and within colonies. The decreased incidence of BCRV in sparrows as cliff swallows at a site increased reflects the "dilution effect," in which virus transmission is reduced when a vector switches to feeding on a less competent vertebrate host.
Collapse
Affiliation(s)
- Valerie A. O'Brien
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Charles R. Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
45
|
Johnson MB, Lafferty KD, van Oosterhout C, Cable J. Parasite transmission in social interacting hosts: monogenean epidemics in guppies. PLoS One 2011; 6:e22634. [PMID: 21897838 PMCID: PMC3163578 DOI: 10.1371/journal.pone.0022634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.
Collapse
Affiliation(s)
| | - Kevin D. Lafferty
- Western Ecological Research Center, U.S. Geological Survey, Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Aeby GS, Williams GJ, Franklin EC, Haapkyla J, Harvell CD, Neale S, Page CA, Raymundo L, Vargas-Ángel B, Willis BL, Work TM, Davy SK. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific. PLoS One 2011; 6:e16887. [PMID: 21365011 PMCID: PMC3041824 DOI: 10.1371/journal.pone.0016887] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.
Collapse
Affiliation(s)
- Greta S. Aeby
- Hawaii Institute of Marine Biology, Kaneohe, Hawaii, United States of America
- * E-mail: (GSA); (GJW)
| | - Gareth J. Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, California, United States of America
- * E-mail: (GSA); (GJW)
| | - Erik C. Franklin
- Hawaii Institute of Marine Biology, Kaneohe, Hawaii, United States of America
| | - Jessica Haapkyla
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Stephen Neale
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Cathie A. Page
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Laurie Raymundo
- University of Guam Marine Lab, University of Guam (UOG) Station, Mangilao, Guam
| | - Bernardo Vargas-Ángel
- University of Hawaii, Joint Institute for Marine and Atmospheric Research, Honolulu, Hawaii, United States of America
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Thierry M. Work
- U. S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii, United States of America
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
47
|
O'Brien VA, Moore AT, Young GR, Komar N, Reisen WK, Brown CR. An enzootic vector-borne virus is amplified at epizootic levels by an invasive avian host. Proc Biol Sci 2011; 278:239-46. [PMID: 20685711 PMCID: PMC3013387 DOI: 10.1098/rspb.2010.1098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 07/14/2010] [Indexed: 11/12/2022] Open
Abstract
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host-parasite system, the new host may either reduce ('dilute') or increase ('spillback') pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host-parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected.
Collapse
Affiliation(s)
- Valerie A O'Brien
- Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Padhi A, Moore AT, Brown MB, Foster JE, Pfeffer M, Brown CR. Isolation by distance explains genetic structure of Buggy Creek virus, a bird-associated arbovirus. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9419-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Brown CR, Strickler SA, Moore AT, Knutie SA, Padhi A, Brown MB, Young GR, O'Brien VA, Foster JE, Komar N. Winter ecology of Buggy Creek virus (Togaviridae, Alphavirus) in the Central Great Plains. Vector Borne Zoonotic Dis 2010; 10:355-63. [PMID: 19725760 DOI: 10.1089/vbz.2009.0031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A largely unanswered question in the study of arboviruses is the extent to which virus can overwinter in adult vectors during the cold winter months and resume the transmission cycle in summer. Buggy Creek virus (BCRV; Togaviridae, Alphavirus) is an unusual arbovirus that is vectored primarily by the swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) and amplified by the ectoparasitic bug's main avian hosts, the migratory cliff swallow (Petrochelidon pyrrhonota) and resident house sparrow (Passer domesticus). Bugs are sedentary and overwinter in the swallows' mud nests. We evaluated the prevalence of BCRV and extent of infection in swallow bugs collected at different times in winter (October-early April) in Nebraska and explored other ecological aspects of this virus's overwintering. BCRV was detected in 17% of bug pools sampled in winter. Virus prevalence in bugs in winter at a site was significantly correlated with virus prevalence at that site the previous summer, but winter prevalence did not predict BCRV prevalence there the following summer. Prevalence was higher in bugs taken from house sparrow nests in winter and (in April) at colony sites where sparrows had been present all winter. Virus detected by reverse transcription (RT)-polymerase chain reaction in winter was less cytopathic than in summer, but viral RNA concentrations of samples in winter were not significantly different from those in summer. Both of the BCRV lineages (A, B) overwintered successfully, with lineage A more common at sites with house sparrows and (in contrast to summer) generally more prevalent in winter than lineage B. BCRV's ability to overwinter in its adult vector probably reflects its adaptation to the sedentary, long-lived bug and the ecology of the cliff swallow and swallow bug host-parasite system. Its overwintering mechanisms may provide insight into those of other alphaviruses of public health significance for which such mechanisms are poorly known.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma 74104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Predictive modeling of coral disease distribution within a reef system. PLoS One 2010; 5:e9264. [PMID: 20174663 PMCID: PMC2822865 DOI: 10.1371/journal.pone.0009264] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/29/2010] [Indexed: 11/19/2022] Open
Abstract
Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1) coral diseases show distinct associations with multiple environmental factors, 2) incorporating interactions (synergistic collinearities) among environmental variables is important when predicting coral disease spatial patterns, and 3) modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value) will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA), Porites tissue loss (PorTL), Porites trematodiasis (PorTrem), and Montipora white syndrome (MWS), and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT) within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response), led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to particular environmental conditions. Predictive statistical modeling can help to increase our understanding of coral disease ecology worldwide.
Collapse
|