1
|
Wang Y, Zhu Y, He L, Yu H, Lin X, Ran J, Xie F. Phenotypic and Transcriptomic Analysis Revealed a Lack of Risk Perception by Native Tadpoles Toward Novel Non-Native Fish. Ecol Evol 2024; 14:e70481. [PMID: 39435436 PMCID: PMC11493475 DOI: 10.1002/ece3.70481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
The introduction of alien species poses a serious threat to native biodiversity, and mountain lake systems in the southwest of China are particularly vulnerable to the introduction of non-native fish. The prey naivety hypothesis states that native species may not be able to recognize novel introduced species due to a lack of common evolutionary background and therefore become easy targets, so the impacts of non-native fish on mountain endemic amphibians need to be urgently assessed. In an ex-situ experiment, we exposed the tadpoles of the Chaochiao Brown Frog (Rana chaochiaoensis), endemic to western China, to kairomones of both native and translocated fish species, and their phenotypic and genetic response patterns were compared. The results revealed significant phenotypic plasticity responses in total length (TOL), tail length (TL), and tail muscle width (TW) of tadpoles induced by native fish kairomone, while tadpoles exposed to translocated fish kairomone exhibited weaker phenotypic changes. At the transcriptional level, the number of differently expressed genes (DEGs) in the native fish treatment was 3.1-fold (liver) and 52.6-fold (tail muscle) higher than in the translocated fish treatment, respectively. There were more unique DEGs in the native fish treatment, primarily enriched in terms and pathways related to stress response, energy metabolism, and muscle development. The study revealed a lack of risk perception by native tadpoles toward novel non-native fish, providing new evidence for the prey naivety hypothesis from both phenotypic and molecular perspectives. Future conservation efforts should prioritize assessing the impacts of non-native fish on alpine and subalpine threatened and narrowly distributed amphibians. Additionally, prevention, early warning, monitoring, and removal of non-native fish should be carried out as soon as possible.
Collapse
Affiliation(s)
- Yuanfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Key Laboratory of Bio‐Resource and Eco‐Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yudong Zhu
- Sichuan Liziping National Nature ReserveShimianChina
- Open Laboratory of Shimian Research Center of Giant Panda Small Population Conservation and RejuvenationShimianChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceShimianChina
| | - Liuyang He
- Sichuan Liziping National Nature ReserveShimianChina
- Open Laboratory of Shimian Research Center of Giant Panda Small Population Conservation and RejuvenationShimianChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceShimianChina
| | - Haoqi Yu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Key Laboratory of Bio‐Resource and Eco‐Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Jianghong Ran
- Key Laboratory of Bio‐Resource and Eco‐Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Zarzyczny KM, Rius M, Williams ST, Fenberg PB. The ecological and evolutionary consequences of tropicalisation. Trends Ecol Evol 2024; 39:267-279. [PMID: 38030539 DOI: 10.1016/j.tree.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.
Collapse
Affiliation(s)
- Karolina M Zarzyczny
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB), Consejo Superior de Investigaciones Científicas (CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain; Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| | | | - Phillip B Fenberg
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
3
|
Corbett JJ, Trussell GC. Local adaptation in trait-mediated trophic cascades. Proc Biol Sci 2024; 291:20232583. [PMID: 38196361 PMCID: PMC10777162 DOI: 10.1098/rspb.2023.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
Predator-induced changes in prey foraging can influence community dynamics by increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of these cascades may be altered by eco-evolutionary relationships between predators and prey, but the role of basal resources has received limited attention. We hypothesized that trait-mediated trophic cascade strength may be shaped by selection from trophic levels above and below prey. Field and laboratory experiments used snails (Nucella lapillus) from two regions in the Gulf of Maine (GoM) that vary in basal resource availability (e.g. mussels), seawater temperature, and contact history with the invasive green crab, Carcinus maenas. In field and laboratory experiments, Nucella from both regions foraged on mussels in the presence or absence of green crab risk cues. In the field, Nucella from the northern GoM, where mussels are scarce, were less responsive to risk cues and more responsive to seawater temperature than southern Nucella. In the lab, however, northern Nucella foraged and grew more than southern snails in the presence of risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to basal resource availability may shape geographical variation in the strength of trait-mediated trophic cascades.
Collapse
Affiliation(s)
- James J. Corbett
- Department of Marine and Environmental Sciences and Coastal Sustainability Institute, Northeastern University, Nahant, MA 01908, USA
| | - Geoffrey C. Trussell
- Department of Marine and Environmental Sciences and Coastal Sustainability Institute, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
4
|
Corbett JJ, Trussell GC. Local and regional geographic variation in inducible defenses. Ecology 2024; 105:e4207. [PMID: 37948134 DOI: 10.1002/ecy.4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Invasive predators can cause substantial evolutionary change in native prey populations. Although invasions by predators typically occur over large scales, their distributions are usually characterized by substantial spatiotemporal heterogeneity that can lead to patchiness in the response of native prey species. Our ability to understand how local variation shapes patterns of inducible defense expression has thus far been limited by insufficient replication of populations within regions. Here, we examined local and regional variation in the inducible defenses of 12 native marine snail (Littorina obtusata) populations within two geographic regions in the Gulf of Maine that are characterized by vastly different contact histories with the invasive predatory green crab (Carcinus maenas). When exposed in the field to waterborne risk cues from the green crab for 90 days, snails expressed plastic increases in shell thickness that reduced their vulnerability to this shell-crushing predator. Despite significant differences in contact history with this invasive predator, snail populations from both regions produced similar levels of shell thickness and shell thickness plasticity in response to risk cues. Such phenotypic similarity emerged even though there were substantial geographic differences in the shell thickness of juvenile snails at the beginning of the experiment, and we suggest that it may reflect the effects of warming ocean temperatures and countergradient variation. Consistent with plasticity theory, a trend in our results suggests that southern snail populations, which have a longer contact history with the green crab, paid less in the form of reduced tissue mass for thicker shells than northern populations.
Collapse
Affiliation(s)
- James J Corbett
- Department of Marine and Environmental Sciences and Coastal Sustainability Institute, Northeastern University, Nahant, Massachusetts, USA
| | - Geoffrey C Trussell
- Department of Marine and Environmental Sciences and Coastal Sustainability Institute, Northeastern University, Nahant, Massachusetts, USA
| |
Collapse
|
5
|
Batabyal A. Predator-prey systems as models for integrative research in biology: the value of a non-consumptive effects framework. J Exp Biol 2023; 226:jeb245851. [PMID: 37772622 DOI: 10.1242/jeb.245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Predator-prey interactions are a cornerstone of many ecological and evolutionary processes that influence various levels of biological organization, from individuals to ecosystems. Predators play a crucial role in shaping ecosystems through the consumption of prey species and non-consumptive effects. Non-consumptive effects (NCEs) can induce changes in prey behavior, including altered foraging strategies, habitat selection, life history and anti-predator responses. These defensive strategies have physiological consequences for prey, affecting their growth, reproduction and immune function to name a few. Numerous experimental studies have incorporated NCEs in investigating predator-prey dynamics in the past decade. Interestingly, predator-prey systems can also be used as experimental models to answer physiology, cognition and adaptability questions. In this Commentary, I highlight research that uses NCEs in predator-prey systems to provide novel insights into cognition, adaptation, epigenetic inheritance and aging. I discuss the evolution of instinct, anxiety and other cognitive disorders, the shaping of brain connectomes, stress-induced aging and the development of behavioral coping styles. I outline how studies can integrate the investigation of NCEs with advanced behavioral, genomic and neurological tools to provide novel insights into physiological and cognitive health.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| |
Collapse
|
6
|
Polo-Cavia N, Arribas R, Caballero-Díaz C, Baltanás Á, Gomez-Mestre I. Widespread learned predator recognition to an alien predator across populations in an amphibian species. Sci Rep 2023; 13:14599. [PMID: 37669978 PMCID: PMC10480198 DOI: 10.1038/s41598-023-41624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Alien predators are a major cause of decline and extinction of species worldwide, since native organisms are rarely equipped with specific antipredatory strategies to cope with them. However, phenotypic plasticity and learned predator recognition may help prey populations to survive novel predators. Here we examine geographical variation in the learning ability of larval spadefoot toads (Pelobates cultripes) to recognize invasive predatory crayfish (Procambarus clarkii). We compare the learning-mediated behavioural responses of tadpoles from six populations across two regions in Spain (central and southern), with different histories of exposure to the presence of the invasive species. Two of the populations showed innate recognition of chemical cues from the invasive crayfish, whereas three of them learned to recognize such cues as a threat after conditioning with conspecific alarm cues. Learning abilities did not differ among southern populations, but they did among central populations. We assessed patterns of genetic variation within and among these two regions through microsatellite markers and found low genetic divergence among the southern populations but greater differentiation among the central ones. We hypothesize that similar responses to the invasive crayfish in southern populations may have arisen from a combination of extended historical exposure to this introduced predator (~ 50 y) and higher levels of gene flow, as they inhabit a highly interconnected pond network. In contrast, populations from central Spain show lower connectivity, have been exposed to the invasive crayfish for a shorter period of time, and are more divergent in their plastic responses.
Collapse
Affiliation(s)
- Nuria Polo-Cavia
- Department of Biology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Rosa Arribas
- Department of Biology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Monitoring Team on Natural Processes ICTS-RBD, Doñana Biological Station, CSIC, E-41092, Seville, Spain
| | - Carlos Caballero-Díaz
- Department of Biology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ángel Baltanás
- Department of Ecology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Doñana Biological Station, CSIC, E-41092, Seville, Spain
| |
Collapse
|
7
|
Febrer-Serra M, Lassnig N, Colomar V, Picó G, Tejada S, Sureda A, Pinya S. Oxidative stress and behavioral responses of moorish geckos (Tarentola mauritanica) submitted to the presence of an introduced potential predator (Hemorrhois hippocrepis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158864. [PMID: 36169021 DOI: 10.1016/j.scitotenv.2022.158864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Stressful situations induce an increase in the production of reactive oxygen species (ROS) which can lead to molecular damage and alteration of cell function. The introduction of new potential predators induces physiological stress in native fauna. However, behavioral responses have been reported in preys, demonstrating an induction of the defenses against alien species. Behavioral and antioxidant enzyme responses in the moorish gecko, Tarentola mauritanica, against the invasive predator horseshoe whip snake (Hemorrhois hippocrepis) were assessed. Behavior was recorded and a tissue sample from the tail was collected after placing the gecko in a terrarium with previous absence or presence of the snake in 'Control' and 'H. hippocrepis' groups, respectively. Fifteen behavioral variables were examined, including tongue flick (TF) and locomotion patterns. Antioxidant enzyme activities -catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR)-, and the levels of reduced (GSH) and oxidized glutathione (GSSG), glutathione/glutathione disulfide ratio (GSH/GSSG) and malondialdehyde (MDA) concentrations were measured in the tissue sampled. Geckos exposed to the snake's odor showed a higher number of TF, longer amounts of time remaining motionless or moving in slow motion and they spent less time on the ground in comparison to the 'Control' group. The presence of the snake produced a significant increase in the activities of CAT, SOD and GR and a decrease in the GSH/GSSG ratio in T. mauritanica individuals exposed to the snake's scent. Thus, both behavioral responses and oxidative stress biomarkers clearly showed that T. mauritanica is able to recognize H. hippocrepis as a potential predator, despite being a recently introduced snake at the Balearic Islands.
Collapse
Affiliation(s)
- Maria Febrer-Serra
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain.
| | - Nil Lassnig
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain
| | - Víctor Colomar
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Spain
| | - Gabriela Picó
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Spain
| | - Silvia Tejada
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain.
| | - Antoni Sureda
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain.
| |
Collapse
|
8
|
Antipredator responses of Indosylvirana indica tadpoles do not match the level of predation risk. J Biosci 2022. [DOI: 10.1007/s12038-022-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Schneider HM. Characterization, costs, cues and future perspectives of phenotypic plasticity. ANNALS OF BOTANY 2022; 130:131-148. [PMID: 35771883 PMCID: PMC9445595 DOI: 10.1093/aob/mcac087] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plastic responses of plants to the environment are ubiquitous. Phenotypic plasticity occurs in many forms and at many biological scales, and its adaptive value depends on the specific environment and interactions with other plant traits and organisms. Even though plasticity is the norm rather than the exception, its complex nature has been a challenge in characterizing the expression of plasticity, its adaptive value for fitness and the environmental cues that regulate its expression. SCOPE This review discusses the characterization and costs of plasticity and approaches, considerations, and promising research directions in studying plasticity. Phenotypic plasticity is genetically controlled and heritable; however, little is known about how organisms perceive, interpret and respond to environmental cues, and the genes and pathways associated with plasticity. Not every genotype is plastic for every trait, and plasticity is not infinite, suggesting trade-offs, costs and limits to expression of plasticity. The timing, specificity and duration of plasticity are critical to their adaptive value for plant fitness. CONCLUSIONS There are many research opportunities to advance our understanding of plant phenotypic plasticity. New methodology and technological breakthroughs enable the study of phenotypic responses across biological scales and in multiple environments. Understanding the mechanisms of plasticity and how the expression of specific phenotypes influences fitness in many environmental ranges would benefit many areas of plant science ranging from basic research to applied breeding for crop improvement.
Collapse
|
10
|
Venable CP, Langkilde T. Avoidance of invasive prey reduces subsequent consumption of similar native prey. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Azzurro E, Smeraldo S, Minelli A, D'Amen M. ORMEF: a Mediterranean database of exotic fish records. Sci Data 2022; 9:363. [PMID: 35752639 PMCID: PMC9233665 DOI: 10.1038/s41597-022-01487-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
The Mediterranean Sea is recognized today as the World's most invaded marine region, but observations of species occurrences remain scattered in the scientific literature and scarcely accessible. Here we introduce the ORMEF database: a first comprehensive and robust compilation of exotic fish observations recorded over more than a century in the Mediterranean. ORMEF consists today of 4015 geo-referenced occurrences from 20 Mediterranean Countries, extracted from 670 scientific published papers. We collated information on 188 fish taxa that are thus divided: 106 species entered through the Suez Canal; 25 species introduced by shipping, mariculture, aquarium release or by means of other human activities; 57 Atlantic species, whose arrival in the Mediterranean has been attributed to the unassisted immigration through the strait of Gibraltar. Each observation included in the ORMEF database was submitted to a severe quality control and checked for geographical and taxonomic biases. ORMEF is a new authoritative reference for Mediterranean bio-invasion research and a living archive to inform management strategies and policymakers in a period of rapid environmental transformation.
Collapse
Affiliation(s)
- Ernesto Azzurro
- CNR-IRBIM. National Research Council. Institute of Biological Resources and Marine Biotechnologies, Ancona, Italy.
- Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Sonia Smeraldo
- CNR-IRBIM. National Research Council. Institute of Biological Resources and Marine Biotechnologies, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Fano, PU, Italy
| | - Annalisa Minelli
- ISPRA. Institute for Environmental Protection and Research, DG-SINA, Rome, Italy
| | - Manuela D'Amen
- CNR-IRBIM. National Research Council. Institute of Biological Resources and Marine Biotechnologies, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Fano, PU, Italy
- ISPRA. Institute for Environmental Protection and Research, PRES-PSMA, Rome, Italy
| |
Collapse
|
12
|
Vanessa DS, Davide C, Ilaria B, Chiara B, Stefano B, Mattia I, Silvia Z, Pietro V. Non-native fish assemblages display potential competitive advantages in two protected small and shallow lakes of northern Italy. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Different time patterns of the presence of red-eared slider influence the ontogeny dynamics of common frog tadpoles. Sci Rep 2022; 12:7876. [PMID: 35552438 PMCID: PMC9098440 DOI: 10.1038/s41598-022-11561-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
The coexistence of species in a given community depends on the set of species involved and the timing of their interactions. Many native communities are increasingly forced to face both direct and indirect pressures from new alien predators, which, in extreme cases, can lead to the extinction of prey populations. In this study, we examine the dynamics of the ontogeny of common frog (Rana temporaria) tadpoles under different time patterns of an alien predator-the red-eared slider (Trachemys scripta elegans) presence. We found that the tadpoles had a longer larval period and were smaller in size at metamorphosis and lower in body mass when the predator was present in early development than when the tadpoles developed without a predator. The early presence of a predator conspicuously reduced the growth increments of the tadpoles at early development. After the removal of the predator, growth accelerated above the level measured under the conditions of both the late predator and no predator. However, these growth rates did not exceed the growth rates of equally sized tadpoles in the other treatments and therefore were not sufficient to compensate for the growth slowdown in the first part of development. The presence of a predator in late tadpole development influenced neither the time to metamorphosis nor size/body mass at metamorphosis. In conclusion, the predator had the effect on metamorphosis traits only if it was present in the early development of tadpoles.
Collapse
|
14
|
Boelter T, Moreira LFB, Pires MM, Stenert C, Maltchik L. Growing a fin: wetland and upland effects on tadpole morphology of Scinax squalirostris (Anura: Hylidae). ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Cliff HB, Jones ME, Johnson CN, Pech RP, Biemans BT, Barmuta LA, Norbury GL. Rapid gain and loss of predator recognition by an evolutionarily naïve lizard. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hannah B. Cliff
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
- Indigenous Desert Alliance 587 Newcastle St West Perth Western Australia 6005 Australia
| | - Menna E. Jones
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Chris N. Johnson
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Roger P. Pech
- Manaaki Whenua – Landcare Research PO Box 69040 Lincoln 7640 New Zealand
| | - Bart T. Biemans
- Wageningen University and Research Wageningen The Netherlands
- Arcadis Nederland B.V. 5223 LL s‐Hertogenbosch The Netherlands
| | - Leon A. Barmuta
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Grant L. Norbury
- Manaaki Whenua – Landcare Research PO Box 176 Alexandra 9340 New Zealand
| |
Collapse
|
16
|
Aiyer A, Shine R, Somaweera R, Bell T, Ward-Fear G. Shifts in the foraging tactics of crocodiles following invasion by toxic prey. Sci Rep 2022; 12:1267. [PMID: 35075144 PMCID: PMC8786828 DOI: 10.1038/s41598-021-03629-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Biological invasions can modify the behaviour of vulnerable native species in subtle ways. For example, native predators may learn or evolve to reduce foraging in conditions (habitats, times of day) that expose them to a toxic invasive species. In tropical Australia, freshwater crocodiles (Crocodylus johnstoni) are often fatally poisoned when they ingest invasive cane toads (Rhinella marina). The risk may be greatest if toads are seized on land, where a predator cannot wash away the toxins before they are absorbed into its bloodstream. Hence, toad invasion might induce crocodiles to forage in aquatic habitats only, foregoing terrestrial hunting. To test this idea, we conducted standardised trials of bait presentation to free-ranging crocodiles in sites with and without invasive toads. As anticipated, crocodiles rapidly learned to avoid consuming toads, and shifted to almost exclusively aquatic foraging.
Collapse
Affiliation(s)
- Abhilasha Aiyer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Richard Shine
- School of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Ruchira Somaweera
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Tina Bell
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Georgia Ward-Fear
- School of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
17
|
Muraro M, Romagnoli S, Barzaghi B, Falaschi M, Manenti R, Ficetola GF. Invasive predators induce plastic and adaptive responses during embryo development in a threatened frog. NEOBIOTA 2021. [DOI: 10.3897/neobiota.70.65454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive predators can strongly affect native populations. If alien predator pressure is strong enough, it can induce anti-predator responses, including phenotypic plasticity of exposed individuals and local adaptations of impacted populations. Furthermore, maternal investment is an additional pathway that could provide resources and improve performance in the presence of alien predators. We investigated the potential responses to an alien predator crayfish (Procambarus clarkii) in a threatened frog (Rana latastei) by combining field observations with laboratory measurements of embryo development rate, to assess the importance of parental investment, origin and exposure to the crayfish cues. We detected a strong variation in parental investment amongst frog populations, but this variation was not related to the invasion status of the site of origin, suggesting that mothers did not modulate parental investment in relation to the presence of alien predators. However, cues of the invasive crayfish elicited plastic responses in clutches and tadpoles development: embryos developed faster when exposed to the predator. Furthermore, embryos from invaded sites reached Gosner’s development stage 25 faster than those from non-invaded sites. This ontogenetic shift can be interpreted as a local adaptation to the alien predator and suggests that frogs are able to recognise the predatory risk. If these plastic responses and local adaptation are effective escape strategies against the invasive predator, they may improve the persistence of native frog populations.
Collapse
|
18
|
Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming, predation and competition: A meta-analysis. Ecol Lett 2021; 25:541-554. [PMID: 34850533 DOI: 10.1111/ele.13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
19
|
Mühlenhaupt M, Baxter-Gilbert J, Makhubo BG, Riley JL, Measey J. Growing up in a new world: trait divergence between rural, urban, and invasive populations of an amphibian urban invader. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.67995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cities are focal points of introduction for invasive species. Urban evolution might facilitate the success of invasive species in recipient urban habitats. Here we test this hypothesis by rearing tadpoles of a successful amphibian urban coloniser and invader in a common garden environment. We compared growth rate, morphological traits, swimming performance, and developmental rate of guttural toad tadpoles (Sclerophrys gutturalis) from native rural, native urban, and non-native urban habitats. By measuring these traits across ontogeny, we were also able to compare divergence across different origins as the tadpoles develop. The tadpoles of non-native urban origin showed significantly slower developmental rate (e.g., the proportion of tadpoles reaching Gosner stage 31 or higher was lower at age 40 days) than tadpoles of native urban origin. Yet, tadpoles did not differ in growth rate or any morphological or performance trait examined, and none of these traits showed divergent ontogenetic changes between tadpoles of different origin. These findings suggest that prior adaptation to urban habitats in larval traits likely does not play an important role in facilitating the invasion success of guttural toads into other urban habitats. Instead, we suggest that evolutionary changes in larval traits after colonization (e.g., developmental rate), together with decoupling of other traits and phenotypic plasticity might explain how this species succeeded in colonising extra-limital urban habitats.
Collapse
|
20
|
Guadin B, Gazzola A, Balestrieri A, Scribano G, Martín J, Pellitteri-Rosa D. Effects of a group-living experience on the antipredator responses of individual tadpoles. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Siddiqui JA, Bamisile BS, Khan MM, Islam W, Hafeez M, Bodlah I, Xu Y. Impact of invasive ant species on native fauna across similar habitats under global environmental changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54362-54382. [PMID: 34405331 DOI: 10.1007/s11356-021-15961-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Biotic invasions can predominantly alter the dynamics, composition, functions, and structure of natural ecosystems. Social insects, particularly ants, are among the most damaging invasive alien species. Invasive ant species are among the supreme threats to ecosystems. There are about 23 species of invasive ants recorded worldwide, according to the ant invasive databases. The ecological impacts of invasive ants comprise predation, hybridization, and competition with native species that changes the ecosystem processes with the biodiversity loss and upsurge of pests. The effects of invasion on native fauna in the same habitats might be catastrophic for the native community through various ecological mechanisms, e.g., habitat disturbance, resource competition, limiting the foraging activity of native species, and various other indirect mechanisms of invasive species. Invasive species may have harmful impacts on habitats and devastating effects on natural flora and fauna, and stopping these new species from being introduced is the most effective way to deter future invasions and maintain biodiversity. This paper reviews the literature to evaluate the effects of invasive ant species on the native species, including vertebrates, invertebrates, and plants sharing the same habitats as the non-native species under global environmental changes. We also highlighted the various management strategies that could be adopted in minimizing the adverse effects of these invasive ant species on the natural ecosystem. To this end, strategies that could regulate the mode and rate of invasion by these alien ant species are the most effective ways to deter future invasions and maintain biodiversity.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bamisope Steve Bamisile
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Imran Bodlah
- Insect Biodiversity and Conservation Group, Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Yijuan Xu
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
22
|
Melotto A, Ficetola GF, Alari E, Romagnoli S, Manenti R. Visual recognition and coevolutionary history drive responses of amphibians to an invasive predator. Behav Ecol 2021. [DOI: 10.1093/beheco/arab101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
During biotic invasions, native prey are abruptly exposed to novel predators and are faced with unprecedented predatory pressures. Under these circumstances, the lack of common evolutionary history may hamper predator recognition by native prey, undermining the expression of effective antipredator responses. Nonetheless, mechanisms allowing prey to overcome evolutionary naïveté exist. For instance, in naïve prey, history of coevolution with similar native predators or detection of general traits characterizing predators can favor the recognition of stimuli released by invasive predators. However, few studies have assessed how these mechanisms shape prey response at the community level. Here, we evaluated behavioral responses in naïve larvae of 13 amphibian species to chemical and visual cues associated with an invasive predator, the American red swamp crayfish (Procambarus clarkii). Moreover, we investigated how variation among species responses was related to their coexistence with similar native crayfish predators. Amphibian larvae altered their behavior in presence of visual stimuli of the alien crayfish, while chemical cues elicited feeble and contrasting behavioral shifts. Activity reduction was the most common and stronger response, whereas some species exhibited more heterogeneous strategies also involving distancing and rapid escape response. Interestingly, species sharing coevolutionary history with the native crayfish were able to finely tune their response to the invasive one, performing bursts to escape. These results suggest native prey can respond to invasive predators through recognition of generic risk cues (e.g., approaching large shapes), still the capability of modulating antipredator strategies may also depend on their coevolutionary history with similar native predators.
Collapse
Affiliation(s)
- Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan 20133, Italy
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan 20133, Italy
- Laboratoire D’Ecologie Alpine (LECA), CNRS, Université de Grenoble Alpes, Grenoble 38000, France
| | - Elisa Alari
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan 20133, Italy
| | - Samuele Romagnoli
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan 20133, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
23
|
Raised by aliens: constant exposure to an invasive predator triggers morphological but not behavioural plasticity in a threatened species tadpoles. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDuring biotic invasions, native communities are abruptly exposed to novel and often severe selective pressures. The lack of common evolutionary history with invasive predators can hamper the expression of effective anti-predator responses in native prey, potentially accelerating population declines. Nonetheless, rapid adaptation and phenotypic plasticity may allow native species to cope with the new ecological pressures. We tested the hypothesis that phenotypic plasticity is fostered when facing invasive species and evaluated whether plasticity offers a pool of variability that might help the fixation of adaptive phenotypes. We assessed behavioural and morphological trait variation in tadpoles of the Italian agile frog (Rana latastei) in response to the invasive crayfish predator, Procambarus clarkii, by rearing tadpoles under different predation-risk regimes: non-lethal crayfish presence and crayfish absence. After two-month rearing, crayfish-exposed tadpoles showed a plastic shift in their body shape and increased tail muscle size, while behavioural tests showed no effect of crayfish exposure on tadpole behaviour. Furthermore, multivariate analyses revealed weak divergence in morphology between invaded and uninvaded populations, while plasticity levels were similar between invaded and uninvaded populations. Even if tadpoles displayed multiple plastic responses to the novel predator, none of these shifts underwent fixation after crayfish arrival (10–15 years). Overall, these findings highlight that native prey can finely tune their responses to invasive predators through plasticity, but the adaptive value of these responses in whitstanding the novel selective pressures, and the long-term consequences they can entail remain to be ascertained.
Collapse
|
24
|
Reuben PL, Touchon JC. Nothing as it seems: behavioural plasticity appears correlated with morphology and colour, but is not in a Neotropical tadpole. Proc Biol Sci 2021; 288:20210246. [PMID: 33849314 PMCID: PMC8059526 DOI: 10.1098/rspb.2021.0246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
In response to environmental stressors, organisms often demonstrate flexible responses in morphology, life history or behaviour. However, it is currently unclear if such plastic responses are coordinated or operate independently of one another. In vertebrates, this may partly result from studies examining population- or species-level mean responses, as opposed to finer grained analyses of individuals or families. We measured predator-specific morphological and coloration plasticity in 42 families of tadpoles of the treefrog Dendropsophus ebraccatus and behavioural plasticity from 18 of these families, allowing us to examine the correlation between three predator-induced plastic responses. For all three plastic responses, tadpoles showed strong opposing responses to each of two predators, providing the appearance of covariation in plasticity. However, the examination of individual families revealed a strong correlation between morphological and coloration plasticity, but no correlations between either morphology or colour and behavioural plasticity. Thus, our analysis shows that some aspects of the plastic phenotype develop together while others function independently. This highlights the importance of examining individual- and family-level variation for understanding the adaptive significance of developmental plasticity, which is crucial for a holistic appreciation of phenotypic plasticity and its importance in ecology and evolution.
Collapse
Affiliation(s)
- Phoebe L. Reuben
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Justin C. Touchon
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
25
|
Rapid responses in morphology and performance of native frogs induced by predation pressure from invasive mongooses. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Antipredator behaviour affected by prey condition, food availability and pH-mediated info-disruption. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Pujol-Buxó E, Kaliontzopoulou A, Unanue-Goikoetxea G, Ambrós B, Llorente GA. Geographical differences in competitive hierarchy in a native–invasive system. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Biological invasions can create novel competitive interactions and force ecological shifts in both native and invasive species. Anuran tadpoles are able to modify their behaviour, morphology, growth and development to cope with competitive pressure. This plasticity is a good target for natural selection and can drive rapid evolutionary changes in response to novel interactions. Here, we explore changes in plastic responses and fitness of competing invasive and native tadpoles by exposing tadpoles from different locations with contrasting evolutionary histories to the same set of varied competitive conditions. Eggs were collected from one site near the first introduction of the invasive frog (~110 years of coexistence) and from a second site that was invaded recently. We hypothesized less favourable outcomes for the invasive species in long-coexisting populations, where the native competitor might have developed adaptive responses. Most results support the hypothesis. Where the invasion was older, invasive tadpoles exposed to native competitors grew less, developed more slowly and displayed morphologies linked to competitive stress, whereas the developmental stability and canalization of native tadpoles increased. On the whole, the asymmetric competitive relationship thus appeared to approach symmetry after ~35 generations, highlighting a noteworthy example of rapid adaptation after an invasion.
Collapse
Affiliation(s)
- Eudald Pujol-Buxó
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Antigoni Kaliontzopoulou
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus Agrario de Vairão, Vairão, Portugal
| | - Gerezti Unanue-Goikoetxea
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Bàrbara Ambrós
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Gustavo A Llorente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Small-scale population divergence is driven by local larval environment in a temperate amphibian. Heredity (Edinb) 2020; 126:279-292. [PMID: 32958927 DOI: 10.1038/s41437-020-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene-environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6-8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.
Collapse
|
29
|
Melotto A, Manenti R, Ficetola GF. Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation. Nat Commun 2020; 11:3608. [PMID: 32681028 PMCID: PMC7368066 DOI: 10.1038/s41467-020-17406-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive predators can exert strong selection on native populations. If selection is strong enough, populations could lose the phenotypic variation caused by adaptation to heterogeneous environments. We compare frog tadpoles prior to and 14 years following invasion by crayfish. Prior to the invasion, populations differed in their intrinsic developmental rate, with tadpoles from cold areas reaching metamorphosis sooner than those from warm areas. Following the invasion, tadpoles from invaded populations develop faster than those from non-invaded populations. This ontogenetic shift overwhelmed the intraspecific variation between populations in a few generations, to the point where invaded populations develop at a similar rate regardless of climate. Rapid development can have costs, as fast-developing froglets have a smaller body size and poorer jumping performance, but compensatory growth counteracts some costs of development acceleration. Strong selection by invasive species can disrupt local adaptations by dampening intraspecific phenotypic variation, with complex consequences on lifetime fitness.
Collapse
Affiliation(s)
- Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA - Laboratoire d'Écologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
30
|
Affiliation(s)
- Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| |
Collapse
|
31
|
Secondi J, Raux F. An invasive amphibian drives antipredator responses in two prey at different trophic positions. Behav Ecol 2020. [DOI: 10.1093/beheco/araa036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Generalist invasive predators consume prey at different trophic levels and generate drastic changes in local communities. However, the long-term effects of predation may be reduced by eco-evolutionary responses of native populations. The capacity of prey species distributed across the trophic network to develop antipredator responses may determine the ecosystem potential to buffer against the invader. The African clawed frog is a major invader on several continents. Because of its large size, generalist diet, and aquatic lifestyle, we predicted the development of antipredator responses in prey species at different trophic levels. We tested for behavioral shifts between populations within and outside the invasive range in the herbivorous snail Physella acuta and the predatory heteropteran, the backswimmer Notonecta glauca. We detected antipredator responses in both prey species. In sympatry, P. acuta stayed higher in the water column, while N. glauca spent more time swimming underwater and less time surfacing when the predator cues were present. In allopatry, P. acuta dived deeper and N. glauca spent more time surfacing and stayed longer still underwater. In both species, sympatric populations showed evidence of olfactory recognition of the frog. Our results show that the introduction of a top predator like Xenopus laevis in the pond ecosystem drives behavioral antipredator responses in species across the trophic network. Eco-evolutionary processes may allow some degree of long-term resilience of pond communities to the invasion of X. laevis.
Collapse
Affiliation(s)
- Jean Secondi
- UMR5023 LEHNA, ENTPE, CNRS, University of Lyon, Université Claude Bernard Lyon 1, 43, Boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
- Faculté des sciences, Université d’Angers, 2 bld Lavoisier, F-49045 Angers, France
| | - Fanny Raux
- Faculté des sciences, Université d’Angers, 2 bld Lavoisier, F-49045 Angers, France
| |
Collapse
|
32
|
Romagnoli S, Ficetola GF, Manenti R. Invasive crayfish does not influence spawning microhabitat selection of brown frogs. PeerJ 2020; 8:e8985. [PMID: 32328354 PMCID: PMC7166042 DOI: 10.7717/peerj.8985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
Microhabitat selection is a key component of amphibian breeding biology and can be modulated in response to the features of breeding sites and the presence of predators. Despite invasive alien species being among the major threats to amphibians, there is limited information on the role of invasive species in shaping amphibians’ breeding microhabitat choice. The invasive red swamp crayfish (Procambarus clarkii) is a major predator of amphibians’ larvae, including those of the brown frogs Rana dalmatina and Rana latastei. Although qualitative information about the spawning site preferences and breeding microhabitat choice of brown frogs is available in the literature, only a few studies performed quantitative analyses, and the relationship between microhabitat choice and the presence of alien predators has not been investigated yet. The aims of this study were: (1) to characterize the microhabitats selected for clutch deposition by R. dalmatina and R. latastei and (2) to test if the position and the aggregation of egg clutches differ in sites invaded or not invaded by P. clarkii. During spring 2017, we surveyed multiple times 15 breeding sites of both brown frogs in Northern Italy; in each site we assessed the features of the microhabitat where each egg clutch was laid, considering its position (distance from the shore, depth of the water column) and the degree of aggregation of clutches. In each site we also assessed the presence/absence of the invasive crayfish and the relative abundance in the breeding period. We detected egg clutches in all sites; the crayfish occurred in eight ponds. Our results showed substantial differences between the spawning microhabitat features of the two brown frogs: Rana latastei clutches showed a higher degree of aggregation and were associated with deeper areas of the ponds , while Rana dalmatina deposited more spaced out clutches in areas of the ponds that were less deep. For both species, spawning microhabitat features were not significantly different between sites with and without P. clarkii. Although we did not detect behavioural responses to P. clarkii in the choice of spawning microhabitat , additional studies are required to assess whether these frogs modulate other behavioural traits (e.g. during larval development) in response to the invasive predator.
Collapse
Affiliation(s)
- Samuele Romagnoli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, University of Milan, Milan, Italy.,Laboratoire d'Ecologie Alpine (LECA), Université Grenoble-Alpes, Grenoble, France
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Bleicher SS, Kotler BP, Downs CJ, Brown JS. Intercontinental test of constraint-breaking adaptations: Testing behavioural plasticity in the face of a predator with novel hunting strategies. J Anim Ecol 2020; 89:1837-1850. [PMID: 32271948 DOI: 10.1111/1365-2656.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/04/2020] [Indexed: 11/30/2022]
Abstract
Constraint-breaking adaptations are evolutionary tools that provide a mechanism for incumbent-replacement between species filling similar ecological roles. In common-garden experiments, we exposed populations of two desert rodents to two different viper species, testing their ability to adjust to novel predators that use different hunting strategies. We aimed to understand whether both predators and prey with constraint-breaking adaptations actually manifest comparative advantage over their counterparts. We used convergent species from desert dunes in the Mojave Desert in North America, Merriam's kangaroo rat Dipodomys merriami and the sidewinder rattlesnake Crotalus cerastes, and from the Negev Desert in the Middle East, the greater Egyptian gerbil Gerbillus pyramidum and the Saharan horned viper Cerastes cerastes. Both Mojave species hold constraint-breaking adaptations in relation to their counterparts from the Negev. The rattlesnakes have heat sensing organs (pits) and the kangaroo rats have fur-lined cheek pouches that allow for greater foraging efficiency and food preservation. Using patch-use theory, we evaluated the rodents' risk-assessment from each snake-separately, together and in combination with barn owls. Initially each rodent species foraged less in the presence of its familiar snake, but within a month both foraged less in the presence of the pit-viper (sidewinder). Our findings indicate a level of learning, and behavioural plasticity, in both rodents and ability to assess the risk from novel predators. The kangaroo rats were capable of harvesting far greater amounts of resources under the same conditions of elevated risk. However, the reason for their advantage may lie in bi-pedal agility and not only their ability collect food more efficiently.
Collapse
Affiliation(s)
- Sonny S Bleicher
- Biology Department, Washington and Lee University, Lexington, VA, USA.,Environmental Science and Policy, George Mason University, Fairfax, VA, USA.,Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boker, Israel
| | - Burt P Kotler
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boker, Israel
| | - Cynthia J Downs
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boker, Israel.,Environmental and Forest Biology, SUNY-ESF, Syracuse, NY, USA
| | - Joel S Brown
- Mathematical Oncology, Moffitt Cancer Research Center, Tampa, FL, USA
| |
Collapse
|
34
|
Bonamour S, Chevin LM, Charmantier A, Teplitsky C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180178. [PMID: 30966957 DOI: 10.1098/rstb.2018.0178] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity is a major mechanism of response to global change. However, current plastic responses will only remain adaptive under future conditions if informative environmental cues are still available. We briefly summarize current knowledge of the evolutionary origin and mechanistic underpinnings of environmental cues for phenotypic plasticity, before highlighting the potentially complex effects of global change on cue availability and reliability. We then illustrate some of these aspects with a case study, comparing plasticity of blue tit breeding phenology in two contrasted habitats: evergreen and deciduous forests. Using long-term datasets, we investigate the climatic factors linked to the breeding phenology of the birds and their main food source. Blue tits occupying different habitats differ extensively in the cues affecting laying date plasticity, as well as in the reliability of these cues as predictors of the putative driver of selective pressure, the date of caterpillar peak. The temporal trend for earlier laying date, detected only in the evergreen populations, is explained by increased temperature during their cue windows. Our results highlight the importance of integrating ecological mechanisms shaping variation in plasticity if we are to understand how global change will affect plasticity and its consequences for population biology. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Suzanne Bonamour
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Luis-Miguel Chevin
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| |
Collapse
|
35
|
Komine H, Fukasawa K, Akasaka M, Watari Y, Iwai N, Kaji K. Rapid behavioural responses of native frogs caused by past predation pressure from invasive mongooses. J Zool (1987) 2019. [DOI: 10.1111/jzo.12734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- H. Komine
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology Fuchu, Tokyo Japan
| | - K. Fukasawa
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| | - M. Akasaka
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology Fuchu, Tokyo Japan
- Institute of Agriculture Tokyo University of Agriculture and Technology Fuchu, Tokyo Japan
| | - Y. Watari
- Department of Wildlife Biology Forestry and Forest Products Research Institute Tsukuba Japan
| | - N. Iwai
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology Fuchu, Tokyo Japan
- Institute of Agriculture Tokyo University of Agriculture and Technology Fuchu, Tokyo Japan
| | - K. Kaji
- Institute of Agriculture Tokyo University of Agriculture and Technology Fuchu, Tokyo Japan
| |
Collapse
|
36
|
Zamora‐Camacho FJ, Aragón P. Failed predator attacks have detrimental effects on antipredatory capabilities through developmental plasticity inPelobates cultripestoads. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Pedro Aragón
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| |
Collapse
|
37
|
Tóth Z, Kurali A, Móricz ÁM, Hettyey A. Changes in Toxin Quantities Following Experimental Manipulation of Toxin Reserves in Bufo bufo Tadpoles. J Chem Ecol 2019; 45:253-263. [PMID: 30684072 PMCID: PMC6477007 DOI: 10.1007/s10886-019-01045-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/25/2018] [Accepted: 01/06/2019] [Indexed: 01/08/2023]
Abstract
Possessing toxins can contribute to an efficient defence against various threats in nature. However, we generally know little about the energy- and time-demands of developing toxicity in animals, which determines the efficiency of chemical defence and its trade-off with other risk-induced phenotypic responses. In this study we examined how immersion into norepinephrine solution inducing the release of stored toxins, administration of mild stress mimicking predator attack or simple handling during experimental procedure affected the quantity and number of toxin compounds present in common toad (Bufo bufo) tadpoles as compared to undisturbed control individuals, and investigated how fast toxin reserves were restored. We found that total bufadienolide quantity (TBQ) significantly decreased only in the norepinephrine treatment group immediately after treatment compared to the control, but this difference disappeared after 12 h; there were no consistent differences in TBQ between treatments at later samplings. Interestingly, in the norepinephrine treatment approximately half of the compounds characterized by >700 m/z values showed the same changes in time as TBQ, but several bufadienolides characterized by <600 m/z values showed the opposite pattern: they were present in higher quantities immediately after treatment. The number of bufadienolide compounds was not affected by any treatments, but was positively related to TBQ. Our study represents the first experimental evidence that toxin quantities returned to the original level following induced toxin release within a very short period of time in common toad tadpoles and provide additional insights into the physiological background of chemical defence in this model vertebrate species.
Collapse
Affiliation(s)
- Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó Str. 15, Budapest, H-1022, Hungary.
| | - Anikó Kurali
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó Str. 15, Budapest, H-1022, Hungary
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó Str. 15, Budapest, H-1022, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó Str. 15, Budapest, H-1022, Hungary
| |
Collapse
|
38
|
Zamora-Camacho FJ, Cortés-Manzaneque S, Aragón P. Simulated predation pressure in Pelobates cultripes tadpoles modulates morphology at the metamorphic stage. Curr Zool 2018; 65:651-656. [PMID: 31857812 PMCID: PMC6911851 DOI: 10.1093/cz/zoy097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022] Open
Abstract
Studies on the impacts of variation of biotic interactions at key life cycle stages are crucial to understand the interface between ecological and developmental processes. Predators exert a major impact on prey fitness. Although direct consumption entails the greatest effect, predators can affect prey by means of other mechanisms. For instance, injuries inflicted by failed predation attempts can jeopardize prey fitness, even beyond the short-term. In anuran tadpoles, failed predation typically results in partial tail loss, which is known to reduce swimming speed. However, the potential consequences of tadpole partial tail loss after metamorphosis remain understudied. Because tail materials could be important in conforming metamorph body, we assess the effects of tadpole partial tail loss on metamorph body size in Iberian spadefoot toads Pelobates cultripes. We clipped 55% tail length of pre-tail-resorption stage anesthetized tadpoles, and compared their body size as metamorphs with anesthetized and non-anesthetized non-tail-clipped controls. Also, we tested whether tail length correlated with metamorph body size of individuals of the control groups. Tail-clipped tadpoles produced smaller metamorphs than both controls (the bdy size of metamorphs from both controls was similar), which could incur costs in mid-term survival or time to first reproduction. This effect could be particularly important in areas with introduced predators, if autochthonous tadpoles lack defenses against them. Results suggest that materials resorbed from tadpole tail tissues might be reallocated into metamorph body, according to the negative effect of shorter tails in a correlational analysis, and clipped tails in an experimental test, on metamorph body size.
Collapse
Affiliation(s)
| | | | - Pedro Aragón
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
39
|
Pujol-Buxó E, Riaño GM, Llorente GA. Stable isotopes reveal mild trophic modifications in a native–invasive competitive relationship. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Touchon JC, Robertson JM. You cannot have it all: Heritability and constraints of predator‐induced developmental plasticity in a Neotropical treefrog. Evolution 2018; 72:2758-2772. [DOI: 10.1111/evo.13632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Justin Charles Touchon
- Biology Department Boston University Boston Massachusetts 02215
- Current Address: Biology Department Vassar College Poughkeepsie New York 12604
| | - Jeanne Marie Robertson
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
- Current Address: Department of Biology California State University Northridge California 91330
| |
Collapse
|
41
|
Webster C, Massaro M, Michael DR, Bambrick D, Riley JL, Nimmo DG. Native reptiles alter their foraging in the presence of the olfactory cues of invasive mammalian predators. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180136. [PMID: 30473801 PMCID: PMC6227964 DOI: 10.1098/rsos.180136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Invasive mammalian predators are linked to terrestrial vertebrate extinctions worldwide. Prey naïveté may explain the large impact invasive predators have on native prey; prey may fail to detect and react appropriately to the cues of novel predators, which results in high levels of depredation. In Australia, the feral cat (Felis catus) and the red fox (Vulpes vulpes) are implicated in more than 30 animal extinctions and the naïveté of native prey is often used to explain this high extinction rate. Reptiles are one group of animals that are heavily preyed upon by F. catus and V. vulpes. However, very few studies have examined whether reptiles are naive to their cues. In this study, we examine the ability of two native reptile species (Morethia boulengeri and Christinus marmoratus) to detect and distinguish between the chemical cues of two invasive predators (V. vulpes and F. catus) and three native predators (spotted-tailed quoll, Dasyurus maculatus; dingo, Canis lupus dingo; eastern brown snake, Pseudonaja textilis), as well as two non-predator controls (eastern grey kangaroo, Macropus giganteus and water). We conducted experiments to quantify the effects of predator scents on lizard foraging (the amount of food eaten) during 1 h trials within Y-maze arenas. We found both study species reduced the amount they consumed when exposed to predator scents-both native and invasive-indicating that these species are not naive to invasive predators. An evolved generalized predator-recognition system, rapid evolution or learned behaviour could each explain the lack of naïveté in some native Australian reptiles towards invasive predators.
Collapse
Affiliation(s)
- C. Webster
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| | - M. Massaro
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| | - D. R. Michael
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory 2611, Australia
| | - D. Bambrick
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| | - J. L. Riley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - D. G. Nimmo
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| |
Collapse
|
42
|
Saxon-Mills EC, Moseby K, Blumstein DT, Letnic M. Prey naïveté and the anti-predator responses of a vulnerable marsupial prey to known and novel predators. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2568-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Kurali A, Pásztor K, Hettyey A, Tóth Z. Resource-dependent temporal changes in antipredator behavior of common toad (Bufo bufo) tadpoles. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2503-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Gazzola A, Russo G, Balestrieri A. Embryonic and larval defensive responses of agile frog (Rana dalmatina
) to alien crayfish. Ethology 2018. [DOI: 10.1111/eth.12737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Gazzola
- Eco-Ethology Lab.; DSTA-Department of Earth and Environmental Sciences; University of Pavia; Pavia Italy
| | - Giorgio Russo
- Department of Biological, Geological and Environmental Sciences, Animal Biology Section; University of Catania; Catania Italy
| | | |
Collapse
|
45
|
KIFC1 is essential for acrosome formation and nuclear shaping during spermiogenesis in the lobster Procambarus clarkii. Oncotarget 2018; 8:36082-36098. [PMID: 28415605 PMCID: PMC5482640 DOI: 10.18632/oncotarget.16429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 01/13/2023] Open
Abstract
In order to study the function of kinesin-14 motor protein KIFC1 during spermatogenesis of Procambarus clarkii, the full length of kifc1 was cloned from testes cDNA using Rapid-Amplification of cDNA Ends (RACE). The deduced KIFC1 protein sequence showed the highest similarity between Procambarus clarkii and Eriocheir senensis (similarity rate as 64%). According to the results of in situ hybridization (ISH), the kifc1 mRNA was gathered in the acrosome location above nucleus in the mid- and late-stage spermatids. Immunofluorescence results were partly consistent with the ISH in middle spermatids, while in the late spermatids the KIFC1 was distributed around the nucleus which had large deformation and formed four to six nuclear arms. In the mature sperm, KIFC1 and microtubules were distributed around the sperm, playing a role in maintaining the sperm morphology and normal function. Overexpression of P. clarkii kifc1 in GC1 cells for 24 hours resulted in disorganization of microtubules which changed the cell morphology from circular and spherical into fusiform. In addition, the overexpression also resulted in triple centrosomes during mitosis which eventually led to cell apoptosis. RNAi experiments showed that decreased KIFC1 protein levels resulted in total inhibition of spermatogenesis, with only mature sperm found in the RNAi-testis, implying an indispensable role of KIFC1 during P. clarkii spermiogenesis.
Collapse
|
46
|
Schmitz O. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions. F1000Res 2017; 6:1767. [PMID: 29043073 PMCID: PMC5621104 DOI: 10.12688/f1000research.11813.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts.
Collapse
Affiliation(s)
- Oswald Schmitz
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT, 06515, USA
| |
Collapse
|
47
|
Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii. PLoS One 2017; 12:e0183108. [PMID: 28873401 PMCID: PMC5584761 DOI: 10.1371/journal.pone.0183108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/28/2017] [Indexed: 11/30/2022] Open
Abstract
In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton’s condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species’ trophic niches, climate change may alter the main impacts of invasive alien species.
Collapse
|
48
|
Strayer DL, D'Antonio CM, Essl F, Fowler MS, Geist J, Hilt S, Jarić I, Jöhnk K, Jones CG, Lambin X, Latzka AW, Pergl J, Pyšek P, Robertson P, Schmalensee M, Stefansson RA, Wright J, Jeschke JM. Boom‐bust dynamics in biological invasions: towards an improved application of the concept. Ecol Lett 2017; 20:1337-1350. [DOI: 10.1111/ele.12822] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Affiliation(s)
- David L. Strayer
- Cary Institute of Ecosystem Studies Millbrook NY USA
- Freie Universität Berlin Berlin Germany
| | - Carla M. D'Antonio
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA USA
| | - Franz Essl
- Division of Conservation Vegetation and Landscape Ecology University of Vienna Vienna Austria
| | - Mike S. Fowler
- Department of Biosciences Swansea University Singleton Park UK
| | - Juergen Geist
- Aquatic Systems Biology Unit Technical University of Munich Freising Germany
| | - Sabine Hilt
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Ivan Jarić
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Institute for Multidisciplinary Research University of Belgrade BelgradeSerbia
| | - Klaus Jöhnk
- Commonwealth Scientific and Industrial Research Organisation Land and Water Black Mountain Canberra Australia
| | | | - Xavier Lambin
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | - Alexander W. Latzka
- Department of Natural Resource Sciences McGill University‐MacDonald Campus Saint‐Anne‐de‐Bellevue Canada
| | - Jan Pergl
- Institute of Botany Department of Invasion Ecology The Czech Academy of Sciences Průhonice Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology Institute of Botany The Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 Prague 2 Czech Republic
- Centre for Invasion Biology Department of Botany & Zoology Stellenbosch University Matieland7602 South Africa
| | | | - Menja Schmalensee
- West Iceland Nature Research Centre Stykkishólmur Iceland
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | | | | | - Jonathan M. Jeschke
- Freie Universität Berlin Berlin Germany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| |
Collapse
|
49
|
Mikó Z, Ujszegi J, Gál Z, Hettyey A. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:96-102. [PMID: 28242374 DOI: 10.1016/j.ecoenv.2017.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
The widespread application of pesticides emphasises the importance of understanding the impacts of these chemicals on natural communities. The most commonly applied broad-spectrum herbicides in the world are glyphosate-based herbicides, which have been suggested to induce significant behavioural changes in non-target organisms even at low environmental concentrations. To scrutinize the behavioural effects of herbicide-exposure we exposed agile frog (Rana dalmatina) tadpoles in an outdoor mesocosm experiment to three concentrations of a glyphosate-based herbicide (0, 2 and 6.5mg acid equivalent (a.e.) / L). To assess whether anti-predator behaviour is affected by the pesticide, we combined all levels of herbicide-exposure with three predator treatments (no predator, caged Aeshna cyanea dragonfly larvae or Lissotriton vulgaris newt adults) in a full factorial design. We observed hiding, activity, proximity to the predator cage and vertical position of tadpoles. We found that at the higher herbicide concentration tadpoles decreased their activity and more tadpoles were hiding, and at least at the lower concentration their vertical position was closer to the water surface than in tadpoles of the control treatment. Tadpoles also decreased their activity in the presence of dragonfly larvae, but did not hide more in response to either predator, nor did tadpoles avoid predators spatially. Further, exposure to the herbicide did not significantly influence behavioural responses to predation threat. Our study documents a definite influence of glyphosate-based herbicides on the behaviour of agile frog tadpoles and indicates that some of these changes are similar to those induced by dangerous predators. This may suggest that the underlying physiological mechanisms or the adaptive value of behavioural changes may similar.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/ C, Budapest 1117, Hungary
| | - Zoltán Gál
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary; NARIC, Agricultural Biotechnology Institute, Szent-Györgyi Albert u. 4., H-2100 Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| |
Collapse
|
50
|
Stastny M, Sargent RD. Evidence for rapid evolutionary change in an invasive plant in response to biological control. J Evol Biol 2017; 30:1042-1052. [PMID: 28370749 DOI: 10.1111/jeb.13078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes.
Collapse
Affiliation(s)
- M Stastny
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R D Sargent
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|