1
|
Preethi PS, Hariharan NM, Kumar SD, Rameshpathy M, Subbaiya R, Karmegam N. Actinobacterial peroxidase-mediated biodeterioration of hazardous explosive, 2, 4, 6, trinitrophenol by in silico and in vitro approaches. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:102. [PMID: 38433158 DOI: 10.1007/s10653-024-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.
Collapse
Affiliation(s)
- Prasath Sai Preethi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India
| | - Shanmugam Dilip Kumar
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
| | - Manian Rameshpathy
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India.
| |
Collapse
|
2
|
Fernandez-Lopez C, Posada-Baquero R, Ortega-Calvo JJ. Nature-based approaches to reducing the environmental risk of organic contaminants resulting from military activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157007. [PMID: 35768030 DOI: 10.1016/j.scitotenv.2022.157007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
As is the case with many other industrial activities, the organic contaminants at military-impacted sites may pose significant hazards to the environment and human health. Given the expected increase in defense investments globally, there is a need to make society aware of the risks of emissions of organic contaminants generated by military activities and to advance risk minimization approaches. The most recent advances in environmental analytical chemistry, persistence, bioavailability and risk assessment of organic contaminants indicate that efficient risk reductions through biological means are possible. This review debates the organic contaminants of interest associated with military activities, the methodology used to extract and analyze these contaminants, and the nature-based remediation technologies available to recover these sites. In addition, we revise the military environmental regulatory frameworks designed to sustain such actions. Military activities that potentially release organic contaminants on land could be classified as infrastructure and base operations, training exercises and armed conflicts; additionally, chemicals may include potentially toxic compounds, energetic compounds, chemical warfare agents and military chemical compounds. Fuel components, PFASs, TNT, RDX and dyphenylcyanoarsine are examples of organic contaminants of environmental concern. Particularly in the case of potentially toxic and energetic compounds, bioremediation and phytoremediation are considered eco-friendly and low-cost technologies that can be used to remediate these contaminated sites. In addition, this article identifies implementing the bioavailability of organic contaminants as a justifiable approach to facilitate the application of these nature-based approaches and to reduce remediation costs. More realistic risk assessment in combination with new and economically feasible remediation methods that reduce risk by reducing bioavailability (instead of lowering the total contaminant concentration) will serve as an incentive for the military and regulators to accept nature-based approaches.
Collapse
Affiliation(s)
- Carmen Fernandez-Lopez
- University Centre of Defense at the Spanish Air Force Academy (CUD-AGA), Santiago de la Ribera, Spain
| | - Rosa Posada-Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | |
Collapse
|
3
|
Yang X, Lai JL, Zhang Y, Luo XG. Reshaping the microenvironment and bacterial community of TNT- and RDX-contaminated soil by combined remediation with vetiver grass (Vetiveria ziznioides) and effective microorganism (EM) flora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152856. [PMID: 34998745 DOI: 10.1016/j.scitotenv.2021.152856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Explosive pollutants remaining in global soils are serious threats to human health and ecological safety. Soils contaminated by trinitrotoluene (TNT) and cyclotrimethylene trinitramine (RDX) are simulated in this study and remediated using vetiver grass and effective microorganism (EM) flora to determine the efficacy of combined remediation in reshaping the microenvironment and bacterial community of soils contaminated by explosives. The degradation rates of TNT and RDX after 60 days of combined remediation were 95.66% and 84.37%, respectively. Soil microbial activity and enzyme activities related to the nitrogen cycle were upregulated. The content of soil elements in the remediation group changed significantly. Vetiver remediation increased the diversity and significantly changed the structure of the microbial community. Notably, bacteria, such as Sphingomonadaceae and Actinobacteriota, which can degrade explosives, occupied the soil niche, and the Proteobacteria and Bacteroidota, which are involved in sugar metabolism, showed particularly increased abundance. The metabolism of soil carbohydrates, fatty acids, and amino acids was upregulated in the vetiver, EM flora, and combined vetiver+EM flora remediation groups, and the most significantly upregulated pathway was galactose metabolism. The combined vetiver and EM flora treatment of soil contaminated by explosives greatly improved the ecology of the soil microenvironment.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
4
|
Zhang Y, Ma Y, Wang L. Simple Copper Nanoparticle/Polyfurfural Film Modified Electrode for the Determination of 2, 4, 6-Trinitrotoluene (TNT). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1751182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yunlong Zhang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Ya Ma
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Lishi Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Nawała J, Szala M, Dziedzic D, Gordon D, Dawidziuk B, Fabisiak J, Popiel S. Analysis of samples of explosives excavated from the Baltic Sea floor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135198. [PMID: 31812376 DOI: 10.1016/j.scitotenv.2019.135198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
After World War II, conventional and chemical ammunition containing mainly secondary and primary explosives was dumped in the sea. Explosives have medium toxicity to aquatic organisms, earthworms and indigenous soil microorganisms. Therefore, environmental monitoring is required, especially for dumped munitions. The main aspect of this work was to analyse the samples of lumps and sediments taken from the Baltic seabed. These samples were potentially explosives. The main goal of the study was to identify the type and composition of studied materials. In order to determine the chemical composition of samples of explosives, we used as follows: GC-MS/MS, LC-HRMS and NMR. Additionally, to determine the energetic properties we performed microcalorimetric-thermogravimetric analysis. Based on the obtained results, the composition of this explosive was TNT (41%), RDX (53%), aluminium powder (5%), and degradation products (below 1%). The resulting composition indicates that the analysed material can be classified in the "torpex" family, widely used during World War II. Regarding the results of the microcalorimetric analysis, we can conclude that excavated fragments of explosives are in very good condition and they still can detonate after being initiated. Therefore, there is a threat that they could be used for criminal or terrorist purposes.
Collapse
Affiliation(s)
- Jakub Nawała
- Military University of Technology, ul. Gen. Sylwestra Kaliskieo 2, Warsaw, Poland.
| | - Mateusz Szala
- Military University of Technology, ul. Gen. Sylwestra Kaliskieo 2, Warsaw, Poland
| | - Daniel Dziedzic
- Military University of Technology, ul. Gen. Sylwestra Kaliskieo 2, Warsaw, Poland
| | - Diana Gordon
- Military University of Technology, ul. Gen. Sylwestra Kaliskieo 2, Warsaw, Poland
| | - Barbara Dawidziuk
- Military University of Technology, ul. Gen. Sylwestra Kaliskieo 2, Warsaw, Poland
| | | | - Stanisław Popiel
- Military University of Technology, ul. Gen. Sylwestra Kaliskieo 2, Warsaw, Poland
| |
Collapse
|
6
|
Rylott EL, Bruce NC. Right on target: using plants and microbes to remediate explosives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1051-1064. [PMID: 31056922 DOI: 10.1080/15226514.2019.1606783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While the immediate effect of explosives in armed conflicts is frequently in the public eye, until recently, the insidious, longer-term corollaries of these toxic compounds in the environment have gone largely unnoticed. Now, increased public awareness and concern are factors behind calls for more effective remediation solutions to these global pollutants. Scientists have been working on bioremediation projects in this area for several decades, characterizing genes, biochemical detoxification pathways, and field-applicable plant species. This review covers the progress made in understanding the fundamental biochemistry behind the detoxification of explosives, including new shock-insensitive explosive compounds; how field-relevant plant species have been characterized and genetically engineered; and the major roles that endophytic and rhizospheric microorganisms play in the detoxification of organic pollutants such as explosives.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| |
Collapse
|
7
|
Guyot L, Honorat M, Jacob G, Bardel C, Tod M, Puisieux A, Guitton J, Payen L. Toxicokinetics and tolerance of a high energy material 3,4,5-trinitropyrazole (TNP) in mice. Toxicol Appl Pharmacol 2018; 355:103-111. [PMID: 29959026 DOI: 10.1016/j.taap.2018.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The high-energy compound 3,4,5-trinitropyrazole (TNP) was developed as an alternative to other less energetic and more sensitive explosive materials, in particular 1-methyl-2,4,6-trinitrobenzene (TNT). However, the level of toxicity of TNP remains understudied. Here using an in vivo CD1 mouse model, we mimicked an acute exposure (24 h) to TNP, given either orally or intravenously, and determined the maximum administrable doses (190 mg/kg and 11 mg/kg, respectively), as well as the lethal dose for 50% (LD50) of female or male mice (390 mg/kg for both) treated intravenously with TNP alone. Several metabolites including nitroso-dinitro-pyrazole, hydroxylamino-dinitro-pyrazole, hydroxyl-dinitro-pyrazole and amino-dinitro-pyrazole were identified in urine. TNP is quickly metabolized and eliminated via urine as two main amino-dinitro-pyrazole metabolites. A comparison of the transcriptomic effects of TNP and TNT after 10 days exposure enabled us to demonstrate no major induction of transcripts involved both in cell death mechanisms (apoptosis, necrosis, autophagy) and physiological pathways (glycolysis, ATP production). Finally, subchronic exposure to TNP was replicated in female mice, fed 16.8-52.8 mg/kg/day of TNP for one month, to study the impact on cellular functions. Although blood TNP levels remained high, a lower rate of TNP accumulation in the liver and lungs were observed than during an acute exposure. Conversely, cellular stress functions explored using the RT2 Profiler™ PCR Array Mouse Molecular Toxicology PathwayFinder remained unaltered after this chronic exposure. These findings demonstrate that TNP can be rapidly eliminated in vivo without accumulating in vital organs.
Collapse
Affiliation(s)
- Laetitia Guyot
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, F-69495 Pierre Bénite, France; EMR 3738, Université Lyon 1, Faculté de Médecin Lyon-Sud-Charles Mérieux, F-69921 Oullins, France
| | - Myléne Honorat
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, F-69495 Pierre Bénite, France
| | - Guy Jacob
- Airbus Safran Launchers, Centre de Recherches du Bouchet, 9 Rue Lavoisier, 91710 Vert le Petit, France
| | - Claire Bardel
- Hospices Civils de Lyon, Department of biostatistics, Lyon, France
| | - Michel Tod
- EMR 3738, Université Lyon 1, Faculté de Médecin Lyon-Sud-Charles Mérieux, F-69921 Oullins, France
| | - Alain Puisieux
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 69373 Lyon, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, F-69495 Pierre Bénite, France; EMR 3738, Université Lyon 1, Faculté de Médecin Lyon-Sud-Charles Mérieux, F-69921 Oullins, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, 69373 Lyon, France.
| | - Léa Payen
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, F-69495 Pierre Bénite, France; UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 69373 Lyon, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, 69373 Lyon, France
| |
Collapse
|
8
|
Ghosh P, Thakur IS. An integrated approach to study the risk from landfill soil of Delhi: Chemical analyses, in vitro assays and human risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:120-128. [PMID: 28525815 DOI: 10.1016/j.ecoenv.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In the present study, landfill soil of three municipal solid waste landfill sites of Delhi, India were toxico-chemically analyzed for human risk assessment as inadequate information is available on the possible health effects of the contaminants present in landfill soil. The landfill soil samples were prepared for analyzing heavy metal concentration, organic contaminants and toxicity analysis separately. Composite soil sample collected from three landfill sites were analyzed for heavy metal by ICP-AES. Metal concentration so obtained was below the permissible limit of soil but higher than the set limits for effluent. Some of the persistent organic contaminants like phthalates, benzene derivatives, halogenated aliphatic compounds and PAHs derivatives were detected by scan mode GC-MS. Further, concentration of 17 polycyclic aromatic hydrocarbons (PAHs) in landfill soil of Delhi was evaluated by selective ion monitoring GC-MS in order to ascertain their contamination levels and potential health risk. The concentration of total PAHs in the samples ranged from 192 to 348µg/kg. The maximum concentrations of PAHs were found in Ghazipur landfill site followed by Okhla and Bhalswa landfills. Cancer risk (CR) values of sampling sites were within the acceptable range for adults, adolescents and children (both male and female) suggesting that PAHs present in landfill soil are unlikely to pose any cancer risk for population based on dermal contact, ingestion and inhalation exposure pathways. However, landfill soil organic extract showed significant cytotoxic and genotoxic effects on HepG2 cell line as revealed by MTT and Comet assays respectively. The observed MTT EC50 values ranged from 7.58 to 12.9g SedEq/Lalong with statistically significant DNA damage. Thus, although the soil organic extract contained low concentrations of PAHs with negligible carcinogenic potential, but the mixture of organic pollutants present in soil were found to be toxic enough to affect human health due to their synergistic or additive actions.
Collapse
Affiliation(s)
- Pooja Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Rapp-Wright H, McEneff G, Murphy B, Gamble S, Morgan R, Beardah M, Barron L. Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:11-21. [PMID: 28119193 DOI: 10.1016/j.jhazmat.2017.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The first comprehensive assessment of 34 solid phase extraction sorbents is presented for organic explosive residues in wastewater prior to analysis with liquid chromatography-high resolution accurate mass spectrometry (LC-HRMS). A total of 18 explosives were selected including nitramines, nitrate esters, nitroaromatics and organic peroxides. Three polymeric divinylbenzene-based sorbents were found to be most suitable and one co-polymerised with n-vinyl pyrrolidone offered satisfactory recoveries for 14 compounds in fortified wastewater (77-124%). Limits of detection in matrix ranged from 0.026-23μgL-1 with R2≥0.98 for most compounds. The method was applied to eight 24-h composite wastewater samples from a London wastewater works and one compound, 2,4-dinitrotoluene, was determined over five days between 332 and 468g day-1 (225-303ngL-1). To further exploit the suspect screening capability, 17 additional explosives, precursors and transformation products were screened in spiked wastewater samples. Of these, 14 were detected with recoveries from 62 to 92%, highlighting the broad applicability of the method. To our knowledge, this represents the first screen of explosives-related compounds in wastewater from a major European city. This method also allows post-analysis detection of new or emerging compounds using full-scan HRMS datasets to potentially identify and locate illegal manufacture of explosives via wastewater analysis.
Collapse
Affiliation(s)
- Helena Rapp-Wright
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gillian McEneff
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Bronagh Murphy
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Sally Gamble
- UCL Department of Security and Crime Science, 35 Tavistock Square, London WC1H 9EZ, UK
| | - Ruth Morgan
- UCL Department of Security and Crime Science, 35 Tavistock Square, London WC1H 9EZ, UK
| | - Matthew Beardah
- Forensic Explosives Laboratory, Dstl Fort Halstead, TN14 7BP, UK
| | - Leon Barron
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
10
|
Tzafestas K, Razalan MM, Gyulev I, Mazari AMA, Mannervik B, Rylott EL, Bruce NC. Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6-trinitrotoluene. THE NEW PHYTOLOGIST 2017; 214:294-303. [PMID: 27924627 DOI: 10.1111/nph.14326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
The explosive 2,4,6-trinitrotoluene (TNT) is a significant, global environmental pollutant that is both toxic and recalcitrant to degradation. Given the sheer scale and inaccessible nature of contaminated areas, phytoremediation may be a viable clean-up approach. Here, we have characterized a Drosophila melanogaster glutathione transferase (DmGSTE6) which has activity towards TNT. Recombinantly expressed, purified DmGSTE6 produces predominantly 2-glutathionyl-4,6-dinitrotoluene, and has a 2.5-fold higher Maximal Velocity (Vmax ), and five-fold lower Michaelis Constant (Km ) than previously characterized TNT-active Arabidopsis thaliana (Arabidopsis) GSTs. Expression of DmGSTE6 in Arabidopsis conferred enhanced resistance to TNT, and increased the ability to remove TNT from contaminated soil relative to wild-type plants. Arabidopsis lines overexpressing TNT-active GSTs AtGST-U24 and AtGST-U25 were compromised in biomass production when grown in the absence of TNT. This yield drag was not observed in the DmGSTE6-expressing Arabidopsis lines. We hypothesize that increased levels of endogenous TNT-active GSTs catalyse excessive glutathionylation of endogenous substrates, depleting glutathione pools, an activity that DmGST may lack. In conclusion, DmGSTE6 has activity towards TNT, producing a compound with potential for further biodegradation. Selecting or manipulating plants to confer DmGSTE6-like activity could contribute towards development of phytoremediation strategies to clean up TNT from polluted military sites.
Collapse
Affiliation(s)
- Kyriakos Tzafestas
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Maria M Razalan
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Ivan Gyulev
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Aslam M A Mazari
- Department of Neurochemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
11
|
Şener H, Anilanmert B, Cengiz S. A fast method for monitoring of organic explosives in soil: a gas temperature gradient approach in LC–APCI/MS/MS. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0042-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Krivoshiev BV, Dardenne F, Blust R, Covaci A, Husson SJ. Elucidating toxicological mechanisms of current flame retardants using a bacterial gene profiling assay. Toxicol In Vitro 2015; 29:2124-32. [DOI: 10.1016/j.tiv.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/31/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
|
13
|
Baderna D, Colombo A, Romeo M, Cambria F, Teoldi F, Lodi M, Diomede L, Benfenati E. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays. ENVIRONMENTAL RESEARCH 2014; 133:220-231. [PMID: 24968084 DOI: 10.1016/j.envres.2014.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/30/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Soil quality is traditionally evaluated by chemical characterization to determine levels of pollutants. Biological tools are now employed for soil monitoring since they can take account of the global biological effects induced by all xenobiotics. A combined monitoring of soils based on chemical analyses, human-related in vitro models and ecotoxicological assay was applied in the Lomellina, a semirural area of northern Italy. Chemical characterization indicated overall good quality of the soils, with low levels of toxic and carcinogenic pollutants such as heavy metals, PAHs, PCDD/Fs and PCBs. HepG2 cells were used as a model for the human liver and BALB/c 3T3 cells to evaluate carcinogenic potential. Cells were treated with soil extractable organic matter (EOM) and the MTS assay, DNA release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity only at doses of 500 and 1000 mg soil equivalents/ml. Potential issues for human health can be hypothesized after ingestion of soil samples from some sites. No statistically significant inductions of foci were recorded after exposure to EOMs, indicating that the levels of the soil-extracted organic pollutants were too low to induce carcinogenesis in our experimental conditions. An acute phytotoxicity test and studies on Caenorhabditis elegans were used as ecotoxicological assays for plants and small invertebrates. No significant alerts for ecotoxicity were found. In this proposed case study, HepG2 cells detected differences in the toxicity of soil EOMs, indicating that this cell line could be appropriate to assess the potential harm caused by the ingestion of contaminated soil. Additional information on the carcinogenic potential of mixtures was provided by the cell transformation assay, strengthening the combined approach.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | - Andrea Colombo
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Felice Cambria
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Federico Teoldi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Marco Lodi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| |
Collapse
|
14
|
Geochemical modeling of trivalent chromium migration in saline-sodic soil during Lasagna process: impact on soil physicochemical properties. ScientificWorldJournal 2014; 2014:272794. [PMID: 25152905 PMCID: PMC4131513 DOI: 10.1155/2014/272794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/27/2014] [Indexed: 11/17/2022] Open
Abstract
Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %.
Collapse
|
15
|
Zhuang L, Gui L, Gillham RW, Landis RC. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:261-268. [PMID: 24316800 DOI: 10.1016/j.jhazmat.2013.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China.
| | - Lai Gui
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Pest Management and Regulatory Agency, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Robert W Gillham
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
16
|
Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil. ScientificWorldJournal 2013; 2013:346910. [PMID: 24235885 PMCID: PMC3819925 DOI: 10.1155/2013/346910] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.
Collapse
|
17
|
Baderna D, Colombo A, Amodei G, Cantù S, Teoldi F, Cambria F, Rotella G, Natolino F, Lodi M, Benfenati E. Chemical-based risk assessment and in vitro models of human health effects induced by organic pollutants in soils from the Olona Valley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:790-801. [PMID: 23859898 DOI: 10.1016/j.scitotenv.2013.06.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Risk assessment of soils is usually based on chemical measurements and assuming accidental soil ingestion and evaluating induced toxic and carcinogenic effects. Recently biological tools have been coupled to chemical-based risk assessment since they integrate the biological effects of all xenobiotics in soils. We employed integrated monitoring of soils based on chemical analyses, risk assessment and in vitro models in the highly urbanized semirural area of the Olona Valley in northern Italy. Chemical characterization of the soils indicated low levels of toxic and carcinogenic pollutants such as PAHs, PCDD/Fs, PCBs and HCB and human risk assessment did not give any significant alerts. HepG2 and BALB/c 3T3 cells were used as a model for the human liver and as a tool for the evaluation of carcinogenic potential. Cells were treated with soil extractable organic matters (EOMs) and the MTS assay, LDH release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity after exposure to higher doses. This might be the result of block of cell cycle progression to repair DNA damage caused by oxidative stress; if this DNA damage cannot be repaired, cells die. No significant inductions of foci were recorded after exposure to EOMs. These results indicate that, although the extracts contain compounds with proven carcinogenic potential, the levels of these pollutants in the analyzed soils were too low to induce carcinogenesis in our experimental conditions. In this proposed case study, HepG2 cells were found an appropriate tool to assess the potential harm caused by the ingestion of contaminated soil as they were able to detect differences in the toxicity of soil EOMs. Moreover, the cell transformation assay strengthened the combined approach giving useful information on carcinogenic potential of mixtures.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Explosives are synthesized globally mainly for military munitions. Nitrate esters, such as GTN and PETN, nitroaromatics like TNP and TNT and nitramines with RDX, HMX and CL20, are the main class of explosives used. Their use has resulted in severe contamination of environment and strategies are now being developed to clean these substances in an economical and eco-friendly manner. The incredible versatility inherited in microbes has rendered these explosives as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or nonspecific transformation of explosive waste either by aerobic or anaerobic processes. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward explosives and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. This may be useful in developing safer and economic microbiological methods for clean up of soil and water contaminated with such compounds. The necessity of further investigations concerning the microbial metabolism of these substances is also discussed.
Collapse
|
19
|
|
20
|
Badjagbo K, Sauvé S. High-Throughput Trace Analysis of Explosives in Water by Laser Diode Thermal Desorption/Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. Anal Chem 2012; 84:5731-6. [DOI: 10.1021/ac300918f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koffi Badjagbo
- Department
of Chemistry, Université de Montréal, CP 6128 Centre-ville, Montréal,
QC, Canada, H3C 3J7
| | - Sébastien Sauvé
- Department
of Chemistry, Université de Montréal, CP 6128 Centre-ville, Montréal,
QC, Canada, H3C 3J7
| |
Collapse
|
21
|
Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). PURE APPL CHEM 2011. [DOI: 10.1351/pac-rep-10-01-05] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An explosion occurs when a large amount of energy is suddenly released. This energy may come from an over-pressurized steam boiler, from the products of a chemical reaction involving explosive materials, or from a nuclear reaction that is uncontrolled. In order for an explosion to occur, there must be a local accumulation of energy at the site of the explosion, which is suddenly released. This release of energy can be dissipated as blast waves, propulsion of debris, or by the emission of thermal and ionizing radiation. Modern explosives or energetic materials are nitrogen-containing organic compounds with the potential for self-oxidation to small gaseous molecules (N2, H2O, and CO2). Explosives are classified as primary or secondary based on their susceptibility of initiation. Primary explosives are highly susceptible to initiation and are often used to ignite secondary explosives, such as TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitroperhydro-1,3,5-triazine), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), and tetryl (N-methyl-N-2,4,6-tetranitro-aniline).
Collapse
|
22
|
Deng Y, Johnson DR, Guan X, Ang CY, Ai J, Perkins EJ. In vitro gene regulatory networks predict in vivo function of liver. BMC SYSTEMS BIOLOGY 2010; 4:153. [PMID: 21073692 PMCID: PMC2998496 DOI: 10.1186/1752-0509-4-153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/12/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Evolution of toxicity testing is predicated upon using in vitro cell based systems to rapidly screen and predict how a chemical might cause toxicity to an organ in vivo. However, the degree to which we can extend in vitro results to in vivo activity and possible mechanisms of action remains to be fully addressed. RESULTS Here we use the nitroaromatic 2,4,6-trinitrotoluene (TNT) as a model chemical to compare and determine how we might extrapolate from in vitro data to in vivo effects. We found 341 transcripts differentially expressed in common among in vitro and in vivo assays in response to TNT. The major functional term corresponding to these transcripts was cell cycle. Similarly modulated common pathways were identified between in vitro and in vivo. Furthermore, we uncovered the conserved common transcriptional gene regulatory networks between in vitro and in vivo cellular liver systems that responded to TNT exposure, which mainly contain 2 subnetwork modules: PTTG1 and PIR centered networks. Interestingly, all 7 genes in the PTTG1 module were involved in cell cycle and downregulated by TNT both in vitro and in vivo. CONCLUSIONS The results of our investigation of TNT effects on gene expression in liver suggest that gene regulatory networks obtained from an in vitro system can predict in vivo function and mechanisms. Inhibiting PTTG1 and its targeted cell cycle related genes could be key mechanism for TNT induced liver toxicity.
Collapse
Affiliation(s)
- Youping Deng
- Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Stenuit BA, Agathos SN. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 2010; 88:1043-64. [DOI: 10.1007/s00253-010-2830-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 12/11/2022]
|
24
|
Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 2010; 88:1007-25. [PMID: 20803141 DOI: 10.1007/s00253-010-2826-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/30/2023]
Abstract
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.
Collapse
|
25
|
Godejohann M, Heintz L, Daolio C, Berset JD, Muff D. Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7055-7061. [PMID: 19806741 DOI: 10.1021/es901068d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of the present study was to explore the capabilities of the combination of 1H NMR (proton nuclear magnetic resonance) mixture analysis and HPLC-SPE-NMR/TOF-MS (high-performance liquid chromatography coupled to solid-phase extraction and nuclear magnetic resonance and time-of-flight mass spectrometry) for the characterization of xenobiotic contaminants in groundwater samples. As an example, solid-phase extracts of two groundwater samples taken from a former ammunition destruction site in Switzerland were investigated. 1H NMR spectra of postcolumn SPE enriched compounds, together with accurate mass measurements, allowed the structural elucidation of unknowns. This untargeted approach allowed us to identify expected residues of explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT), Hexogen (RDX) and Octogen (HMX), degradation products of TNT (1,3,5-trinitrobenzene (1,3,5-TNB), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 3,5-dinitrophenol (3,5-DNP), 3,5-dinitroaniline (3,5-DNA), 2,6-dinitroanthranite, and 2-Hydroxy-4,6-dinitrobenzonitrile), benzoic acid, Bisphenol A (a known endocrine disruptor compound), and some toxicologically relevant additives for propelling charges: Centralite I (1,3-diethyl-1,3-diphenylurea), DPU (N,N-diphenylurethane), N,N-diphenylcarbamate (Acardite II), and N-methyl-N-phenylurethane. To our knowledge, this is the first report of the presence of these additives in environmental samples. Extraction recoveries for Centralite I and DPU have been determined. Contaminants identified by our techniques were quantified based on HPLC-UV (HPLC-ultraviolet detection) and 1H NMR mixture analysis. The concentrations of the contaminants ranged between 0.1 and 48 microg/L assuming 100% recovery for the SPE step.
Collapse
Affiliation(s)
- Markus Godejohann
- Bruker BioSpin GmbH, Silberstreifen 4, D-76287 Rheinstetten, Germany.
| | | | | | | | | |
Collapse
|
26
|
Das Potenzial genetisch modifizierter und gentechnisch konstruierter Organismen in der wirkungsbezogenen Analytik. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12302-009-0065-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Biotransformation of 2,4,6-Trinitrotoluene by Pure Culture Ruminal Bacteria. Curr Microbiol 2008; 58:81-6. [DOI: 10.1007/s00284-008-9281-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/20/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
28
|
Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4364-4370. [PMID: 18605556 DOI: 10.1021/es7028153] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant of soil and water at military facilities. The present study describes degradation of RDX with zerovalent iron nanoparticles (ZVINs) in water in the presence or absence of a stabilizer additive such as carboxymethyl cellulose (CMC) or poly(acrylic acid) (PAA). The rates of RDX degradation in solution followed this order CMC-ZVINs > PAA-ZVINs > ZVINs with k1 values of 0.816 +/- 0.067, 0.082 +/- 0.002, and 0.019 +/- 0.002 min(-1), respectively. The disappearance of RDX was accompanied by the formation of formaldehyde, nitrogen, nitrite, ammonium, nitrous oxide, and hydrazine by the intermediary formation of methylenedinitramine (MEDINA), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), DNX (hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine), TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). When either of the reduced RDX products (MNX or TNX) was treated with ZVINs we observed nitrite (from MNX only), NO (from TNX only), N2O, NH4+, NH2NH2 and HCHO. In the case of TNX we observed a new key product that we tentatively identified as 1,3-dinitroso-5-hydro-1,3,5-triazacyclo-hexane. However, we were unable to detect the equivalent denitrohydrogenated product of RDX and MNX degradation. Finally, during MNX degradation we detected a new intermediate identified as N-nitroso-methylenenitramine (ONNHCH2NHNO2), the equivalentof methylenedinitramine formed upon denitration of RDX. Experimental evidence gathered thus far suggested that ZVINs degraded RDX and MNX via initial denitration and sequential reduction to the corresponding nitroso derivatives prior to completed decomposition but degraded TNX exclusively via initial cleavage of the N-NO bond(s).
Collapse
Affiliation(s)
- Ghinwa Naja
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | |
Collapse
|
29
|
Ochsenbein U, Zeh M, Berset JD. Comparing solid phase extraction and direct injection for the analysis of ultra-trace levels of relevant explosives in lake water and tributaries using liquid chromatography-electrospray tandem mass spectrometry. CHEMOSPHERE 2008; 72:974-980. [PMID: 18472128 DOI: 10.1016/j.chemosphere.2008.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
Off-line solid phase extraction and direct injection analysis were evaluated for the determination of traces of explosives such as TNT and its mono and diamino metabolites, HMX, RDX, nitroglycerin and PETN in lake water and tributaries applying liquid chromatography-electrospray tandem mass spectrometry. Improved chromatographic separation was achieved on a phenyl based stationary phase with baseline resolution of the mono- and diamino metabolites of TNT. Identification and quantification of the target compounds was performed by multiple reaction monitoring applying electrospray ionization in either the positive mode for the diaminometabolites of TNT or the negative mode for all other compounds. An extensive method validation was performed and limits of quantification were obtained for the explosives in preconcentrated lake water samples from 0.03 to 1 ng l(-1) and 0.1 to 5 ng l(-1) in river water. Direct injection analysis revealed comparable results to preconcentrated water samples for the most persistent explosives. Analysis of lake water samples collected at different depths showed the presence of HMX, RDX and PETN at concentrations from 0.1 to 0.4 ng l(-1). The analysis of main tributaries revealed concentrations from 0.1 to 0.9 ng l(-1) of the same compounds. They seem to be responsible for the contamination of the explosives in the lakes.
Collapse
Affiliation(s)
- Ueli Ochsenbein
- Water and Soil Protection Laboratory (WSPL), Department of Organic Analytical Chemistry, Schermenweg 11, 3014 Bern, Switzerland
| | | | | |
Collapse
|
30
|
Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke TK, Eisentraeger A. Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2007; 26:1090-9. [PMID: 17571672 DOI: 10.1897/06-471r.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The soil and groundwater of former ordnance plants and their dumping sites have often been highly contaminated with the explosive 2,4,6-trinitrotoluene (2,4,6-TNT) leading to a potential hazard for humans and the environment. Further hazards can arise from metabolites of transformation, by-products of the manufacturing process, or incomplete combustion. This work examines the toxicity of polar nitro compounds relative to their parent compound 2,4,6-TNT using four different ecotoxicological bioassays (algae growth inhibition test, daphnids immobilization test, luminescence inhibition test, and cell growth inhibition test), three genotoxicological assays (umu test, NM2009 test, and SOS Chromotest), and the Ames fluctuation test for detection of mutagenicity. For this study, substances typical for certain steps of degradation/transformation of 2,4,6-TNT were chosen for investigation. This work determines that the parent compounds 2,4,6-TNT and 1,3,5-trinitrobenzene are the most toxic substances followed by 3,5-dinitrophenol, 3,5-dinitroaniline and 4-amino-2-nitrotoluene. Less toxic are the direct degradation products of 2,4,6-TNT like 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene. A weak toxic potential was observed for 2,4,6-trinitrobenzoic acid, 2,4-diamino-6-nitrotoluene, 2,4-dinitrotoluene-5-sulfonic acid, and 2,6-diamino-4-nitrotoluene. Octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-l,3,5-triazine show no hint of acute toxicity. Based on the results of this study, we recommend expanding future monitoring programs of not only the parent substances but also potential metabolites based on conditions at the contaminated sites and to use bioassays as tools for estimating the toxicological potential directly by testing environmental samples. Site-specific protocols should be developed. If hazardous substances are found in relevant concentrations, action should be taken to prevent potential risks for humans and the environment. Analyses can then be used to prioritise reliable estimates of risk.
Collapse
Affiliation(s)
- Judith Neuwoehner
- Aachen University of Technology, Institute of Hygiene and Environmental Medicine, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|