1
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
3
|
Grebinoski S, Zhang Q, Cillo AR, Manne S, Xiao H, Brunazzi EA, Tabib T, Cardello C, Lian CG, Murphy GF, Lafyatis R, Wherry EJ, Das J, Workman CJ, Vignali DAA. Autoreactive CD8 + T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nat Immunol 2022; 23:868-877. [PMID: 35618829 PMCID: PMC9179227 DOI: 10.1038/s41590-022-01210-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 01/02/2023]
Abstract
Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a differentiation state in which T cells have reduced and altered effector function that can be partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically and metabolically possess features of canonically exhausted T cells, yet maintain important differences. This 'restrained' phenotype can be perturbed and disease accelerated by CD8+ T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking to the islets, and have a diminished exhausted phenotype, highlighting a physiological role for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for autoimmune therapy.
Collapse
Affiliation(s)
- Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Raposo CJ, Cserny JD, Serena G, Chow JN, Cho P, Liu H, Kotler D, Sharei A, Bernstein H, John S. Engineered RBCs Encapsulating Antigen Induce Multi-Modal Antigen-Specific Tolerance and Protect Against Type 1 Diabetes. Front Immunol 2022; 13:869669. [PMID: 35444659 PMCID: PMC9014265 DOI: 10.3389/fimmu.2022.869669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific therapies that suppress autoreactive T cells without inducing systemic immunosuppression are a much-needed treatment for autoimmune diseases, yet effective strategies remain elusive. We describe a microfluidic Cell Squeeze® technology to engineer red blood cells (RBCs) encapsulating antigens to generate tolerizing antigen carriers (TACs). TACs exploit the natural route of RBC clearance enabling tolerogenic presentation of antigens. TAC treatment led to antigen-specific T cell tolerance towards exogenous and autoantigens in immunization and adoptive transfer mouse models of type 1 diabetes (T1D), respectively. Notably, in several accelerated models of T1D, TACs prevented hyperglycemia by blunting effector functions of pathogenic T cells, particularly in the pancreas. Mechanistically, TACs led to impaired trafficking of diabetogenic T cells to the pancreas, induced deletion of autoreactive CD8 T cells and expanded antigen specific Tregs that exerted bystander suppression. Our results highlight TACs as a novel approach for reinstating immune tolerance in CD4 and CD8 mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shinu John
- SQZ Biotechnologies, Watertown, MA, United States
| |
Collapse
|
5
|
Dangkoub F, Sankian M, Tafaghodi M, Jaafari MR, Badiee A. The impact of nanocarriers in the induction of antigen-specific immunotolerance in autoimmune diseases. J Control Release 2021; 339:274-283. [PMID: 34600024 DOI: 10.1016/j.jconrel.2021.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
Immunotolerance induction in an antigen-specific manner is the long-term goal of immunotherapy to treat autoimmune diseases. Nanocarriers (NCs) can be designed as a new generation of delivery systems to modulate the immune responses through targeted delivery of antigens and immunomodulators to antigen presenting cells (APCs). In this manuscript, several formulation factors in the preparation of NCs which affect their uptake using APCs and generation of tolerance have been reviewed. The physicochemical properties and composition of NCs have been shown to play essential roles in achieving the desired immunological outcome. Also, targeting of dendritic cells and macrophages as APCs and direct targeting of the autoreactive lymphocytes have been presented as two main ways for induction of antigen-specific tolerance by these tolerogenic nanocarriers (tNCs). These particles herald a promising approach to treat or even prevent unwanted immune reactions in humans specifically.
Collapse
Affiliation(s)
- Faezeh Dangkoub
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Sadanandan P, Payne NL, Sun G, Ashokan A, Gowd SG, Lal A, Satheesh KMK, Pulakkat S, Nair SV, Menon KN, Bernard CCA, Koyakutty M. Exploiting the preferential phagocytic uptake of nanoparticle-antigen conjugates for the effective treatment of autoimmunity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102481. [PMID: 34748963 DOI: 10.1016/j.nano.2021.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
Tolerance induction is central to the suppression of autoimmunity. Here, we engineered the preferential uptake of nano-conjugated autoantigens by spleen-resident macrophages to re-introduce self-tolerance and suppress autoimmunity. The brain autoantigen, myelin oligodendrocyte glycoprotein (MOG), was conjugated to 200 or 500 nm silica nanoparticles (SNP) and delivered to the spleen and liver-resident macrophages of experimental autoimmune encephalomyelitis (EAE) mice model of multiple sclerosis. MOG-SNP conjugates significantly reduced signs of EAE at a very low dose (50 μg) compared to the higher dose (>800 μg) of free-MOG. This was associated with reduced proliferation of splenocytes and pro-inflammatory cytokines secretion, decreased spinal cord inflammation, demyelination and axonal damage. Notably, biodegradable porous SNP showed an enhanced disease suppression assisted by elevated levels of regulatory T cells and programmed-death ligands (PD-L1/2) in splenic and lymph node cells. Our results demonstrate that targeting nano-conjugated autoantigens to tissue-resident macrophages in lymphoid organs can effectively suppress autoimmunity.
Collapse
Affiliation(s)
- Prashant Sadanandan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Natalie L Payne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Guizhi Sun
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Anusha Ashokan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Siddaramana G Gowd
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Arsha Lal
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kumar M K Satheesh
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sreeranjini Pulakkat
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shantikumar V Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Krishnakumar N Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Claude C A Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
7
|
Talamini L, Matsuura E, De Cola L, Muller S. Immunologically Inert Nanostructures as Selective Therapeutic Tools in Inflammatory Diseases. Cells 2021; 10:cells10030707. [PMID: 33806746 PMCID: PMC8004653 DOI: 10.3390/cells10030707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The current therapies based on immunosuppressant or new biologic drugs often show some limitations in term of efficacy and applicability, mainly because of their inadequate targeting and of unwanted adverse reactions they generate. To overcome these inherent problems, in the last decades, innovative nanocarriers have been developed to encapsulate active molecules and offer novel promising strategies to efficiently modulate the immune system. This review provides an overview of how it is possible, exploiting the favorable features of nanocarriers, especially with regard to their immunogenicity, to improve the bioavailability of novel drugs that selectively target immune cells in the context of autoimmune disorders and inflammatory diseases. A focus is made on nanoparticles that selectively target neutrophils in inflammatory pathologies.
Collapse
Affiliation(s)
- Laura Talamini
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Eiji Matsuura
- Neutron Therapy Research Center, Collaborative Research Center, Department of Cell Chemistry, Okayama University, Okayama 700-8558, Japan
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20122 Milan, Italy
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
8
|
Bassin EJ, Piganelli JD, Little SR. Auto-antigen and Immunomodulatory Agent-Based Approaches for Antigen-Specific Tolerance in NOD Mice. Curr Diab Rep 2021; 21:9. [PMID: 33547977 DOI: 10.1007/s11892-021-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.
Collapse
Affiliation(s)
- Ethan J Bassin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jon D Piganelli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, 6125 Rangos Research Center, Pittsburgh, PA, 15224, USA.
| | - Steven R Little
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Carambia A, Gottwick C, Schwinge D, Stein S, Digigow R, Şeleci M, Mungalpara D, Heine M, Schuran FA, Corban C, Lohse AW, Schramm C, Heeren J, Herkel J. Nanoparticle-mediated targeting of autoantigen peptide to cross-presenting liver sinusoidal endothelial cells protects from CD8 T-cell-driven autoimmune cholangitis. Immunology 2021; 162:452-463. [PMID: 33346377 PMCID: PMC7968394 DOI: 10.1111/imm.13298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are caused by adaptive immune responses to self‐antigens. The development of antigen‐specific therapies that suppress disease‐related, but not unrelated immune responses in general, is an important goal of biomedical research. We have previously shown that delivery of myelin peptides to liver sinusoidal endothelial cells (LSECs) using LSEC‐targeting nanoparticles provides effective protection from CD4 T‐cell‐driven autoimmune encephalomyelitis. Here, we investigated whether this methodology might also serve antigen‐specific treatment of a CD8 T‐cell‐driven autoimmune disease. As a model for CD8 T‐cell‐mediated autoimmunity, we used OT‐1 T‐cell‐driven cholangitis in K14‐OVAp mice expressing the cognate MHC I‐restricted SIINFEKL peptide in cholangiocytes. To study whether peptide delivery to LSECs could modulate cholangitis, SIINFEKL peptide‐conjugated nanoparticles were administered intravenously one day before transfer of OT‐1 T cells; five days after cell transfer, liver pathology and hepatic infiltrates were analysed. SIINFEKL peptide‐conjugated nanoparticles were rapidly taken up by LSECs in vivo, which effectively cross‐presented the delivered peptide on MHC I molecules. Intriguingly, K14‐OVAp mice receiving SIINFEKL‐loaded nanoparticles manifested significantly reduced liver damage compared with vehicle‐treated K14‐OVAp mice. Mechanistically, treatment with LSEC‐targeting SIINFEKL‐loaded nanoparticles significantly reduced the number of liver‐infiltrating OT‐1 T cells, which up‐regulated expression of the co‐inhibitory receptor PD‐1 and down‐regulated cytotoxic effector function and inflammatory cytokine production. These findings show that tolerogenic LSECs can effectively internalize circulating nanoparticles and cross‐present nanoparticle‐bound peptides on MHC I molecules. Therefore, nanoparticle‐mediated autoantigen peptide delivery to LSECs might serve the antigen‐specific treatment of CD8 T‐cell‐driven autoimmune disease.
Collapse
Affiliation(s)
- Antonella Carambia
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Gottwick
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Stein
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Markus Heine
- Department of Biochemistry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Fenja A Schuran
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Carlotta Corban
- Department of Biochemistry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Gan PY, Godfrey AS, Ooi JD, O'Sullivan KM, Oudin V, Kitching AR, Holdsworth SR. Apoptotic Cell-Induced, Antigen-Specific Immunoregulation to Treat Experimental Antimyeloperoxidase GN. J Am Soc Nephrol 2019; 30:1365-1374. [PMID: 31337690 DOI: 10.1681/asn.2018090955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myeloperoxidase (MPO)-ANCA-associated GN is a significant cause of renal failure. Manipulating autoimmunity by inducing regulatory T cells is potentially a more specific and safer therapeutic option than conventional immunosuppression. METHODS To generate MPO-specific regulatory T cells, we used a modified protein-conjugating compound, 1-ethyl-3-(3'dimethylaminopropyl)-carbodiimide (ECDI), to couple the immunodominant MPO peptide (MPO409-428) or a control ovalbumin peptide (OVA323-339) to splenocytes and induced apoptosis in the conjugated cells. We then administered MPO- and OVA-conjugated apoptotic splenocytes (MPO-Sps and OVA-Sps, respectively) to mice and compared their effects on development and severity of anti-MPO GN. We induced autoimmunity to MPO by immunizing mice with MPO in adjuvant; to trigger GN, we used low-dose antiglomerular basement membrane globulin, which transiently recruits neutrophils that deposit MPO in glomeruli. We also compared the effects of transferring CD4+ T cells from mice treated with MPO-Sp or OVA-Sp to recipient mice with established anti-MPO autoimmunity. RESULTS MPO-Sp but not OVA-Sp administration increased MPO-specific, peripherally derived CD4+Foxp3- type 1 regulatory T cells and reduced anti-MPO autoimmunity and GN. However, in mice depleted of regulatory T cells, MPO-Sp administration did not protect from anti-MPO autoimmunity or GN. Mice with established anti-MPO autoimmunity that received CD4+ T cells transferred from mice treated with MPO-Sp (but not CD4+ T cells transferred from mice treated with OVA-Sp) were protected from anti-MPO autoimmunity and GN, confirming the induction of therapeutic antigen-specific regulatory T cells. CONCLUSIONS These findings in a mouse model indicate that administering apoptotic splenocytes conjugated with the immunodominant MPO peptide suppresses anti-MPO GN by inducing antigen-specific tolerance.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of .,Immunology
| | - Andrea S Godfrey
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Joshua D Ooi
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Kim-Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Virginie Oudin
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - A Richard Kitching
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Nephrology, and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Immunology.,Nephrology, and
| |
Collapse
|
12
|
Optimizing PLG nanoparticle-peptide delivery platforms for transplantation tolerance using an allogeneic skin transplant model. Biomaterials 2019; 210:70-82. [PMID: 31077862 DOI: 10.1016/j.biomaterials.2019.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
Abstract
A robust regimen for inducing allogeneic transplantation tolerance involves pre-emptive recipient treatment with donor splenocytes (SP) rendered apoptotic by 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide(ECDI) treatment. However, such a regimen is limited by availability of donor cells, cost of cell procurement, and regulatory hurdles associated with cell-based therapies. Nanoparticles (NP) delivering donor antigens are a promising alternative for promoting transplantation tolerance. Here, we used a B6.C-H-2bm12(bm12) to C57BL/6(B6) skin transplant model involving a defined major histocompatibility antigen mismatch to investigate design parameters of poly(lactide-co-glycolide) (PLG) NPs delivering peptides containing the donor antigen for optimizing skin allograft survival. We showed that an epitope-containing short peptide (P1) was more effective than a longer peptide (P2) at providing graft protection. Importantly, the NP and P1 complex (NP-ECDI-P1) resulted in a significant expansion of graft-infiltrating Tregs. Interestingly, in comparison to donor ECDI-SP that provided indefinite graft protection, NP-ECDI-P1 targeted different splenic phagocytes and skin allografts in these recipients harbored significantly more graft-infiltrating CD8+IFN-γ+ cells. Collectively, the current study provides initial engineering parameters for a cell-free and biocompatible NP-peptide platform for transplant immunoregulation. Moreover, it also provides guidance to future NP engineering endeavors to recapitulate the effects of donor ECDI-SP as a goal for maximizing tolerance efficacy of NP formulations.
Collapse
|
13
|
Cafferata EA, Alvarez C, Diaz KT, Maureira M, Monasterio G, González FE, Covarrubias C, Vernal R. Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies. Oral Dis 2019; 25:1866-1878. [PMID: 30565778 DOI: 10.1111/odi.13023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Periodontitis is an inflammatory disease, in which the host immuno-inflammatory response against the dysbiotic subgingival biofilm leads to the breakdown of periodontal tissues. Most of the available treatments seem to be effective in the short-term; nevertheless, permanent periodical controls and patient compliance compromise long-term success. Different strategies have been proposed for the modulation of the host immune response as potential therapeutic tools to take a better care of most susceptible periodontitis patients, such as drug local delivery approaches. Though, maintaining an effective drug concentration for a prolonged period of time has not been achieved yet. In this context, advanced drug delivery strategies using biodegradable nanocarriers have been proposed to avoid toxicity and frequency-related problems of treatment. The versatility of distinct nanocarriers allows the improvement of their loading and release capabilities and could be potentially used for microbiological control, periodontal regeneration, and/or immunomodulation. In the present review, we revise and discuss the most frequent biodegradable nanocarrier strategies proposed for the treatment of periodontitis, including polylactic-co-glycolic acid (PLGA), chitosan, and silica-derived nanoparticles, and further suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Carla Alvarez
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Karla T Diaz
- School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Maureira
- Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Fermín E González
- Laboratory of Experimental Immunology and Cancer, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
14
|
Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. Polymeric micro- and nanoparticles for immune modulation. Biomater Sci 2018; 7:14-30. [PMID: 30418444 PMCID: PMC6664797 DOI: 10.1039/c8bm01285g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New advances in biomaterial-based approaches to modulate the immune system are being applied to treat cancer, infectious diseases, and autoimmunity. Particulate systems are especially well-suited to deliver immunomodulatory factors to immune cells since their small size allows them to engage cell surface receptors or deliver cargo intracellularly after internalization. Biodegradable polymeric particles are a particularly versatile platform for the delivery of signals to the immune system because they can be easily surface-modified to target specific receptors and engineered to release encapsulated cargo in a precise, sustained manner. Micro- and nanoscale systems have been used to deliver a variety of therapeutic agents including monoclonal antibodies, peptides, and small molecule drugs that function to activate the immune system against cancer or infectious disease, or suppress the immune system to combat autoimmune diseases and transplant rejection. This review provides an overview of recent advances in the development of polymeric micro- and nanoparticulate systems for the presentation and delivery of immunomodulatory agents targeted to a variety of immune cell types including APCs, T cells, B cells, and NK cells.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
15
|
Luo X, Chen J, Schroeder JA, Allen KP, Baumgartner CK, Malarkannan S, Hu J, Williams CB, Shi Q. Platelet Gene Therapy Promotes Targeted Peripheral Tolerance by Clonal Deletion and Induction of Antigen-Specific Regulatory T Cells. Front Immunol 2018; 9:1950. [PMID: 30237796 PMCID: PMC6136275 DOI: 10.3389/fimmu.2018.01950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Delivery of gene therapy as well as of biologic therapeutics is often hampered by the immune response of the subject receiving the therapy. We have reported that effective gene therapy for hemophilia utilizing platelets as a delivery vehicle engenders profound tolerance to the therapeutic product. In this study, we investigated whether this strategy can be applied to induce immune tolerance to a non-coagulant protein and explored the fundamental mechanism of immune tolerance induced by platelet-targeted gene delivery. We used ovalbumin (OVA) as a surrogate non-coagulant protein and constructed a lentiviral vector in which OVA is driven by the platelet-specific αIIb promoter. Platelet-specific OVA expression was introduced by bone marrow transduction and transplantation. Greater than 95% of OVA was stored in platelet α-granules. Control mice immunized with OVA generated OVA-specific IgG antibodies; however, mice expressing OVA in platelets did not. Furthermore, OVA expression in platelets was sufficient to prevent the rejection of skin grafts from CAG-OVA mice, demonstrating that immune tolerance developed in platelet-specific OVA-transduced recipients. To assess the mechanism(s) involved in this tolerance we used OTII mice that express CD4+ effector T cells specific for an OVA-derived peptide. After platelet-specific OVA gene transfer, these mice showed normal thymic maturation of the T cells ruling against central tolerance. In the periphery, tolerance involved elimination of OVA-specific CD4+ effector T cells by apoptosis and expansion of an OVA-specific regulatory T cell population. These experiments reveal the existence of natural peripheral tolerance processes to platelet granule contents which can be co-opted to deliver therapeutically important products.
Collapse
Affiliation(s)
- Xiaofeng Luo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Jocelyn A Schroeder
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| | - Kenneth P Allen
- Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Subramaniam Malarkannan
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Calvin B Williams
- Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| |
Collapse
|
16
|
Baker RL, Jamison BL, Wiles TA, Lindsay RS, Barbour G, Bradley B, Delong T, Friedman RS, Nakayama M, Haskins K. CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 2018; 67:1836-1846. [PMID: 29976617 PMCID: PMC6110316 DOI: 10.2337/db18-0200] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Abstract
We recently established that hybrid insulin peptides (HIPs), formed in islet β-cells by fusion of insulin C-peptide fragments to peptides of chromogranin A or islet amyloid polypeptide, are ligands for diabetogenic CD4 T-cell clones. The goal of this study was to investigate whether HIP-reactive T cells were indicative of ongoing autoimmunity. MHC class II tetramers were used to investigate the presence, phenotype, and function of HIP-reactive and insulin-reactive T cells in NOD mice. Insulin-reactive T cells encounter their antigen early in disease, but they express FoxP3 and therefore may contribute to immune regulation. In contrast, HIP-reactive T cells are proinflammatory and highly diabetogenic in an adoptive transfer model. Because the frequency of antigen-experienced HIP-reactive T cells increases over progression of disease, they may serve as biomarkers of autoimmune diabetes.
Collapse
MESH Headings
- Animals
- Autoantigens/chemistry
- Autoantigens/genetics
- Autoantigens/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Autoimmunity
- Biomarkers/blood
- C-Peptide/chemistry
- C-Peptide/genetics
- C-Peptide/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cells, Cultured
- Chromogranin A/chemistry
- Chromogranin A/genetics
- Chromogranin A/metabolism
- Clone Cells
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Progression
- Female
- Islet Amyloid Polypeptide/chemistry
- Islet Amyloid Polypeptide/genetics
- Islet Amyloid Polypeptide/metabolism
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Recombination, Genetic
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Braxton L Jamison
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Timothy A Wiles
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Robin S Lindsay
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Gene Barbour
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Thomas Delong
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| |
Collapse
|
17
|
Chen N, Kroger CJ, Tisch RM, Bachelder EM, Ainslie KM. Prevention of Type 1 Diabetes with Acetalated Dextran Microparticles Containing Rapamycin and Pancreatic Peptide P31. Adv Healthc Mater 2018; 7:e1800341. [PMID: 30051618 DOI: 10.1002/adhm.201800341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) is a common autoimmune disease with no cure. T1D subjects are dependent on daily exogenous insulin administration, due to the loss of functional insulin-producing β cells. Needed are immunotherapies that prevent and/or treat T1D. One approach of immunotherapy is to administer an autoantigen to selectively tolerize diabetogenic effector T cells without global immunosuppression. To date, however, strategies of antigen-specific immunotherapy are largely ineffective in the clinic. Using an antigen-specific approach, a biodegradable polymeric delivery vehicle, acetalated dextran microparticles (Ace-DEX MPs), is applied and T1D development is prevented through coadministration of the immunosuppressant rapamycin and the diabetogenic peptide P31 (Rapa/P31/MPs), via alterations of both innate and adaptive immunity. Ex vivo, adoptively transferred CD4+ T cells exhibit reduced proliferation and an increased ratio of FoxP3+ to IFNγ+ T cells. In vitro analysis indicates dendritic cells exhibit a less mature phenotype following coculture with Rapa/P31/MPs, which results in reduced CD4+ T cell proliferation and proinflammatory cytokine production (IFNγ and IL-2), but promotes PD-1 expression. Together these results demonstrate Ace-DEX MP-based antigen-specific therapy effectively tolerizes diabetogenic CD4+ T cells to prevent T1D, thereby demonstrating one of the first successful attempts of T1D prevention using a single-formulation particulate delivery platform.
Collapse
Affiliation(s)
- Naihan Chen
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Charles J. Kroger
- Department of Microbiology and Immunology; School of Medicine; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Roland M. Tisch
- Department of Microbiology and Immunology; School of Medicine; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| |
Collapse
|
18
|
Creusot RJ, Postigo-Fernandez J, Teteloshvili N. Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy? Diabetes 2018; 67:1481-1494. [PMID: 30030289 PMCID: PMC6054431 DOI: 10.2337/db17-1564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) arises from a failure to maintain tolerance to specific β-cell antigens. Antigen-specific immunotherapy (ASIT) aims to reestablish immune tolerance through the supply of pertinent antigens to specific cell types or environments that are suitable for eliciting tolerogenic responses. However, antigen-presenting cells (APCs) in T1D patients and in animal models of T1D are affected by a number of alterations, some due to genetic polymorphism. Combination of these alterations, impacting the number, phenotype, and function of APC subsets, may account for both the underlying tolerance deficiency and for the limited efficacy of ASITs so far. In this comprehensive review, we examine different aspects of APC function that are pertinent to tolerance induction and summarize how they are altered in the context of T1D. We attempt to reconcile 25 years of studies on this topic, highlighting genetic, phenotypic, and functional features that are common or distinct between humans and animal models. Finally, we discuss the implications of these defects and the challenges they might pose for the use of ASITs to treat T1D. Better understanding of these APC alterations will help us design more efficient ways to induce tolerance.
Collapse
Affiliation(s)
- Rémi J Creusot
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
19
|
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:201-211. [DOI: 10.1080/08923973.2018.1437625] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Arya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Xu X, Bian L, Shen M, Li X, Zhu J, Chen S, Xiao L, Zhang Q, Chen H, Xu K, Yang T. Multipeptide-coupled nanoparticles induce tolerance in 'humanised' HLA-transgenic mice and inhibit diabetogenic CD8 + T cell responses in type 1 diabetes. Diabetologia 2017; 60:2418-2431. [PMID: 28887632 DOI: 10.1007/s00125-017-4419-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Induction of antigen-specific immunological tolerance may provide an attractive immunotherapy in the NOD mouse model but the conditions that lead to the successful translation to human type 1 diabetes are limited. In this study, we covalently linked 500 nm carboxylated polystyrene beads (PSB) with a mixture of immunodominant HLA-A*02:01-restricted epitopes (peptides-PSB) that may have high clinical relevance in humans as they promote immune tolerance; we then investigated the effect of the nanoparticle-peptide complexes on T cell tolerance. METHODS PSB-coupled mixtures of HLA-A*02:01-restricted epitopes were administered to HHD II mice via intravenous injection. The effects on delaying the course of the disease were verified in NOD.β2m null HHD mice. The diabetogenic HLA-A*02:01-restricted cytotoxic lymphocyte (CTL) responses to treatment with peptides-PSB were validated in individuals with type 1 diabetes. RESULTS We showed that peptides-PSB could induce antigen-specific tolerance in HHD II mice. The protective immunological mechanisms were mediated through the function of CD4+CD25+ regulatory T cells, suppressive T cell activation and T cell anergy. Furthermore, the peptides-PSB induced an activation and accumulation of regulatory T cells and CD11c+ dendritic cells through a rapid production of CD169+ macrophage-derived C-C motif chemokine 22 (CCL22). Peptides-PSB also prevented diabetes in 'humanised' NOD.β2m null HHD mice and suppressed pathogenic CTL responses in people with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our findings demonstrate for the first time the potential for using multipeptide-PSB complexes to induce T cell tolerance and halt the autoimmune process. These findings represent a promising platform for an antigen-specific tolerance strategy in type 1 diabetes and highlight a mechanism through which metallophilic macrophages mediate the early cell-cell interactions required for peptides-PSB-induced immune tolerance.
Collapse
Affiliation(s)
- Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lingling Bian
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
- Department of Endocrinology, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu Province, People's Republic of China
| | - Min Shen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xin Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jing Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shuang Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lei Xiao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qingqing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Heng Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kuanfeng Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Pearson RM, Casey LM, Hughes KR, Wang LZ, North MG, Getts DR, Miller SD, Shea LD. Controlled Delivery of Single or Multiple Antigens in Tolerogenic Nanoparticles Using Peptide-Polymer Bioconjugates. Mol Ther 2017; 25:1655-1664. [PMID: 28479234 PMCID: PMC5498834 DOI: 10.1016/j.ymthe.2017.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022] Open
Abstract
Polymeric nanoparticles (NPs) have demonstrated their potential to induce antigen (Ag)-specific immunological tolerance in multiple immune models and are at various stages of commercial development. Association of Ag with NPs is typically achieved through surface coupling or encapsulation methods. However, these methods have limitations that include high polydispersity, uncontrollable Ag loading and release, and possible immunogenicity. Here, using antigenic peptides conjugated to poly(lactide-co-glycolide), we developed Ag-polymer conjugate NPs (acNPs) with modular loading of single or multiple Ags, negligible burst release, and minimally exposed surface Ag. Tolerogenic responses of acNPs were studied in vitro to decouple the role of NP size, concentration, and Ag loading on regulatory T cell (Treg) induction. CD4+CD25+Foxp3+ Treg induction was dependent on NP size, but CD25 expression of CD4+ T cells was not. NP concentration and Ag loading could be modulated to achieve maximal levels of Treg induction. In relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE), a murine model of multiple sclerosis, acNPs were effective in inhibiting disease induced by a single peptide or multiple peptides. The acNPs provide a simple, modular, and well-defined platform, and the NP physicochemical properties offer potential to design and answer complex mechanistic questions surrounding NP-induced tolerance.
Collapse
MESH Headings
- Animals
- Antigens/chemistry
- Antigens/immunology
- Antigens/pharmacology
- Biomarkers/metabolism
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Delayed-Action Preparations/administration & dosage
- Delayed-Action Preparations/chemistry
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Immune Tolerance/drug effects
- Immunoconjugates/chemistry
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/immunology
- Mice
- Mice, Inbred C57BL
- Myelin Proteolipid Protein/chemistry
- Myelin Proteolipid Protein/immunology
- Myelin Proteolipid Protein/pharmacology
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Ovalbumin/chemistry
- Ovalbumin/immunology
- Ovalbumin/pharmacology
- Particle Size
- Polyglactin 910/chemistry
- Polyglactin 910/metabolism
- Primary Cell Culture
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Leon Z Wang
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Madeleine G North
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Daniel R Getts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|
22
|
Baekkeskov S, Hubbell JA, Phelps EA. Bioengineering strategies for inducing tolerance in autoimmune diabetes. Adv Drug Deliv Rev 2017. [PMID: 28625830 DOI: 10.1016/j.addr.2017.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease marked by the destruction of insulin-producing beta cells in the pancreatic islets. Strategies to delay onset or prevent the autoimmune recognition of beta cell antigens or T cell-mediated killing of beta cells have mainly focused on systemic immunomodulation and antigen-specific immunotherapy. To bridge the fields of type 1 diabetes immunology and biomaterials engineering, this article will review recent trends in the etiology of type 1 diabetes immunopathology and will focus on the contributions of emerging bioengineered strategies in the fight against beta cell autoimmunity in type 1 diabetes.
Collapse
Affiliation(s)
- Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; Departments of Medicine and Microbiology/Immunology, Diabetes Center, 513 Parnassus Ave, 20159, Box 0534, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60615, USA
| | - Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Verbeke CS, Gordo S, Schubert DA, Lewin SA, Desai RM, Dobbins J, Wucherpfennig KW, Mooney DJ. Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation. Adv Healthc Mater 2017; 6:10.1002/adhm.201600773. [PMID: 28116870 PMCID: PMC5518671 DOI: 10.1002/adhm.201600773] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore-forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide-co-glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle-based delivery leads to antigen-specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel-based peptide delivery, transient expansion of endogenous antigen-specific T cells is observed in the draining lymph nodes. Antigen-specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen-specific CD4+ T cells in the gels are Tregs. Antigen-specific T cells are also enriched in the pancreatic islets, and administration of peptide-loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen-specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
Collapse
Affiliation(s)
- Catia S Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Susana Gordo
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Sarah A Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rajiv M Desai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | | | | | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
24
|
McCarthy DP, Yap JWT, Harp CT, Song WK, Chen J, Pearson RM, Miller SD, Shea LD. An antigen-encapsulating nanoparticle platform for T H1/17 immune tolerance therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:191-200. [PMID: 27720992 PMCID: PMC5237397 DOI: 10.1016/j.nano.2016.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023]
Abstract
Tolerogenic nanoparticles (NPs) are rapidly being developed as specific immunotherapies to treat autoimmune disease. However, many NP-based therapies conjugate antigen (Ag) directly to the NP posing safety concerns due to antibody binding or require the co-delivery of immunosuppressants to induce tolerance. Here, we developed Ag encapsulated NPs comprised of poly(lactide-co-glycolide) [PLG(Ag)] and investigated the mechanism of action for Ag-specific tolerance induction in an autoimmune model of T helper type 1/17 dysfunction - relapse-remitting experimental autoimmune encephalomyelitis (R-EAE). PLG(Ag) completely abrogated disease induction in an organ specific manner, where the spleen was dispensable for tolerance induction. PLG(Ag) delivered intravenously distributed to the liver, associated with macrophages, and recruited Ag-specific T cells. Furthermore, programmed death ligand 1 (PD-L1) was increased on Ag presenting cells and PD-1 blockade lessened tolerance induction. The robust promotion of tolerance by PLG(Ag) without co-delivery of immunosuppressive drugs, suggests that these NPs effectively deliver antigen to endogenous tolerogenic pathways.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Christopher T Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Kelsey Song
- Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Jeane Chen
- Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, Evanston, IL, USA; Department of Chemical and Biological Engineering, Evanston, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
26
|
TGF-β1 along with other platelet contents augments Treg cells to suppress anti-FVIII immune responses in hemophilia A mice. Blood Adv 2016; 1:139-151. [PMID: 28164173 DOI: 10.1182/bloodadvances.2016001453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Platelets are a rich source of many cytokines and chemokines including transforming growth factor β 1 (TGF-β1). TGF-β1 is required to convert conventional CD4+ T (Tconv) cells into induced regulatory T (iTreg) cells that express the transcription factor Foxp3. Whether platelet contents will affect Treg cell properties has not been explored. In this study, we show that unfractionated platelet lysates (pltLys) containing TGF-β1 efficiently induced Foxp3 expression in Tconv cells. The common Treg cell surface phenotype and in vitro suppressive activity of unfractionated pltLys-iTreg cells were similar to those of iTreg cells generated using purified TGF-β1 (purTGFβ-iTreg) cells. However, there were substantial differences in gene expression between pltLys-iTreg and purTGFβ-iTreg cells, especially in granzyme B, interferon γ, and interleukin-2 (a 30.99-, 29.18-, and 17.94-fold difference, respectively) as determined by gene microarray analysis. In line with these gene signatures, we found that pltLys-iTreg cells improved cell recovery after transfer and immune suppressive function compared with purTGFβ-iTreg cells in factor VIII (FVIII)-deficient (F8null, hemophilia A model) mice after recombinant human FVIII (rhF8) infusion. Acute antibody-mediated platelet destruction in F8null mice followed by rhF8 infusion increased the number of Treg cells and suppressed the antibody response to rhF8. Consistent with these data, ex vivo proliferation of F8-specific Treg cells from platelet-depleted animals increased when restimulated with rhF8. Together, our data suggest that pltLys-iTreg cells may have advantages in emerging clinical applications and that platelet contents impact the properties of iTreg cells induced by TGF-β1.
Collapse
|
27
|
Arellano B, Graber DJ, Sentman CL. Regulatory T cell-based therapies for autoimmunity. DISCOVERY MEDICINE 2016; 22:73-80. [PMID: 27585233 PMCID: PMC5573148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autoimmune disorders are long-term diseases that adversely affect the quality of life for patients, and they are one of the top ten leading causes of death. While each autoimmune disorder is unique, they all are caused by a breakdown of tolerance against endogenous proteins. This leads to auto-inflammatory events that promote the destruction of organs in a humoral and cellular immune mediated manner. Treatment options for autoimmunity can involve the use of chemical and biologic agents that suppress inflammation. While these treatment options for patients have shown to be beneficial in autoimmunity, they can result in patients being vulnerable to opportunistic infections. Newer therapies aim to identify methods to specifically block auto-inflammatory immune cells while allowing for an intact immune response to other antigens. T regulatory (Treg) cells are a subtype of the adoptive immune cell that is capable of suppressing inflammatory events in an antigen-specific manner, but they are often poorly functioning within autoimmune patients. Treg cells have been well characterized for their immune modulating capabilities and preclinical and early clinical studies support their therapeutic potential for antigen-specific immune suppression. This review will examine the current understanding of Treg cell function and the therapeutic potential of enhancing Treg cells in patients with inflammatory disorders.
Collapse
Affiliation(s)
- Benjamine Arellano
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| | - David J Graber
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Charles L Sentman
- The Center for Synthetic Immunity and the Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03756, USA
| |
Collapse
|
28
|
Abstract
The undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Division of Nephrology and Hypertension.,Comprehensive Cancer Center, and
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; ,
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
29
|
Creusot RJ, Battaglia M, Roncarolo MG, Fathman CG. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells 2016; 34:809-19. [PMID: 26840009 PMCID: PMC5021120 DOI: 10.1002/stem.2290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease‐specific or patient‐oriented approaches such as antigen‐specific and cell‐based therapies, with a goal to provide efficacy, safety, and long‐term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high‐risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced (“omic”‐based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug‐based therapies for T1D, with a special emphasis on cell‐based therapies, their status in the clinic and potential for treatment and/or prevention. Stem Cells2016;34:809–819
Collapse
Affiliation(s)
- Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, USA
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
30
|
Abstract
Type 1 diabetes (T1D) results from a chronic and selective destruction of insulin-secreting β-cells within the islets of Langerhans of the pancreas by autoreactive CD4(+) and CD8(+) T lymphocytes. The use of animal models of T1D was instrumental for deciphering the steps of the autoimmune process leading to T1D. The non-obese diabetic (NOD) mouse and the bio-breeding (BB) rat spontaneously develop the disease similar to the human pathology in terms of the immune responses triggering autoimmune diabetes and of the genetic and environmental factors influencing disease susceptibility. The generation of genetically modified models allowed refining our understanding of the etiology and the pathogenesis of the disease. In the present review, we provide an overview of the experimental models generated and used to gain knowledge on the molecular and cellular mechanisms underlying the breakdown of self-tolerance in T1D and the progression of the autoimmune response. Immunotherapeutic interventions designed in these animal models and translated into the clinical arena in T1D patients will also be discussed.
Collapse
|
31
|
Bednar KJ, Tsukamoto H, Kachapati K, Ohta S, Wu Y, Katz JD, Ascherman DP, Ridgway WM. Reversal of New-Onset Type 1 Diabetes With an Agonistic TLR4/MD-2 Monoclonal Antibody. Diabetes 2015; 64:3614-26. [PMID: 26130764 PMCID: PMC9162148 DOI: 10.2337/db14-1868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/23/2015] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) is currently an incurable disease, characterized by a silent prodromal phase followed by an acute clinical phase, reflecting progressive autoimmune destruction of insulin-producing pancreatic β-cells. Autoreactive T cells play a major role in β-cell destruction, but innate immune cell cytokines and costimulatory molecules critically affect T-cell functional status. We show that an agonistic monoclonal antibody to TLR4/MD-2 (TLR4-Ab) reverses new-onset diabetes in a high percentage of NOD mice. TLR4-Ab induces antigen-presenting cell (APC) tolerance in vitro and in vivo, resulting in an altered cytokine profile, decreased costimulatory molecule expression, and decreased T-cell proliferation in APC:T-cell assays. TLR4-Ab treatment increases T-regulatory cell (Treg) numbers in both the periphery and the pancreatic islet, predominantly expanding the Helios(+)Nrp-1(+)Foxp3(+) Treg subset. TLR4-Ab treatment in the absence of B cells in NOD.scid mice prevents subsequent T cell-mediated disease, further suggesting a major role for APC tolerization in disease protection. Specific stimulation of the innate immune system through TLR4/MD-2, therefore, can restore tolerance in the aberrant adaptive immune system and reverse new-onset T1D, suggesting a novel immunological approach to treatment of T1D in humans.
Collapse
Affiliation(s)
- Kyle J Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan D Katz
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Dana P Ascherman
- Division of Rheumatology, Miller School of Medicine, University of Miami, Miami, FL
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
32
|
Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol 2015; 34:460-85. [PMID: 25970132 DOI: 10.3109/08830185.2015.1027822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current treatments for autoimmune diseases are typically non-specific anti-inflammatory agents that affect not only the autoreactive cells but also the parts of the immune system that are required to maintain health. There is a need for the development of antigen-specific therapeutic agents that can effectively prevent the autoimmune attack while leaving the rest of the immune system functioning as normal. The simplest way to achieve this is using the autoantigen itself as a tolerizing agent; however, there is some risk involved with administering a potentially pathogenic antigen. In this review, we focus instead on the development and use of modified T cell receptor (TCR) ligands, in which the peptide ligand is modified to change the response by the T cell from a disease inducing to a protective response, and still retain the antigen-specificity necessary to target the autoreactive T cells. We review the use of modified TCR ligands as therapeutic agents in animal models of autoimmunity and in human autoimmune disease, and finally consider how they need to be improved in order to use them effectively in patients with autoimmune disease.
Collapse
Affiliation(s)
- Evan L Sauer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Nancy C Cloake
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Judith M Greer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
33
|
Therapeutic applications of nanomedicine in autoimmune diseases: From immunosuppression to tolerance induction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1003-18. [DOI: 10.1016/j.nano.2014.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
|
34
|
Johannesson B, Sui L, Freytes DO, Creusot RJ, Egli D. Toward beta cell replacement for diabetes. EMBO J 2015; 34:841-55. [PMID: 25733347 DOI: 10.15252/embj.201490685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes.
Collapse
Affiliation(s)
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Donald O Freytes
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, NY, USA Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|