1
|
Gianfreda F, Marenzi G, Nicolai E, Muzzi M, Bari M, Bernardini S, Adamo D, Miniello A, Sammartino G, Bollero P. The Effects of Ultrasonic Scaling and Air-Abrasive Powders on the Topography of Implant Surfaces: Scanning Electron Analysis and In Vitro Study. Eur J Dent 2024; 18:1107-1115. [PMID: 38698614 PMCID: PMC11479722 DOI: 10.1055/s-0044-1782190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES This in vitro study aimed to investigate the impact of bicarbonate air-abrasive powders and ultrasonic scaling with stainless steel tips on the micro- and nanotopography and roughness of three different implant-abutment junction titanium surfaces. MATERIALS AND METHODS Three types of sterile and decontaminated titanium surfaces (RS, UTM, XA) were used for analysis. Nine disks per surface type were subjected to micro- and nanotopography analysis, scanning electron microscopy (SEM), roughness analysis, and fibroblast cultivation. Ultrasonic debridement and air polishing were performed on the surfaces. Human dermal fibroblasts were cultured on the surfaces for 5 days. STATISTICAL ANALYSIS Data analysis adhered to ISO 25178 standards for surface texture assessment. SEM micrographs were used to reconstruct areas for extracting roughness parameters. Excel and Mex 6.0 software were utilized for quantitative and stereoscopic analysis. RESULTS The study found varying effects on surface roughness posttreatment. RS Disco samples exhibited higher surface roughness compared with UTM and XA samples, both in average and nanoscale roughness. Decontamination led to increased surface roughness for all samples, particularly RS Disco. Fibroblast growth tests revealed enhanced cell network formation on decontaminated discs, possibly due to increased nanoscale roughness or the presence of bicarbonate salts. CONCLUSION The study underscores the complex interplay between surface topography, microbial biofilm, and treatment efficacy in peri-implant disease management. While smoother surfaces may resist biofilm accumulation, increased nanoscale roughness postdecontamination can enhance fibroblast attachment and soft tissue integration. This dichotomy highlights the need for tailored treatment protocols that consider material-specific factors, emphasizing that successful implant therapy should balance microbial control with conducive surface characteristics for long-term osseointegration and soft tissue stability.
Collapse
Affiliation(s)
- Francesco Gianfreda
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaetano Marenzi
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University Roma Tre, Viale G. Marconi, Rome, Italy
| | - Monica Bari
- Facoltà Dipartimentale di Medicina, Università Campus Bio-Medico, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Adamo
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
| | - Alessandra Miniello
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
| | - Patrizio Bollero
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Pujarern P, Klaophimai A, Amornsettachai P, Panyayong W, Chuenjitkuntaworn B, Rokaya D, Suphangul S. Efficacy of Biofilm Removal on the Dental Implant Surface by Sodium Bicarbonate and Erythritol Powder Airflow System. Eur J Dent 2024; 18:1022-1029. [PMID: 38555648 PMCID: PMC11479729 DOI: 10.1055/s-0044-1779424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Peri-implantitis is a common complication in implant therapy and it is one of the main contributing factors to implant failure. This can be prevented by regular maintenance with mechanical debridement. One of the recent mechanical debridement methods is air abrasion therapy using different abrasive powders. This study aimed to evaluate the two common abrasive powders of different sizes (sodium bicarbonate and erythritol) for their biofilm cleaning efficacy on dental implant surfaces. MATERIALS AND METHODS In an in vitro setting, a total of 33 implants were divided into three groups: Group 1 (n =11) = no treatment; group 2 (n = 11) = air abrasion therapy treated group using a sodium bicarbonate powder (AIRFLOW Powder Classic Comfort, EMS Electro Medical Systems, Nyon, Switzerland); and group 3 (n = 11) = air abrasion therapy treated group using an erythritol powder (AIRFLOW Powder Plus, EMS Electro Medical Systems, Nyon, Switzerland). The implants in each group were subjected to biofilm formation, and group 2 and group 3 were treated with air abrasion therapy of two different powders having different sizes with the same settings. The particle sizes were sodium bicarbonate (40 µm) and erythritol (14µm). The surface characteristics of the dental implants in three groups were studied from a digital camera and under the scanning electron microscope at different magnifications. The comparison of biofilm-removal efficacy between the three groups was performed by using a one-way analysis of variance with post-hoc Dunnett's T3 test. A p-value less than 0.05 was chosen to indicate statistical significance. RESULTS There were no statistical differences (p > 0.05) between the two powder-treated groups for the biofilm cleaning efficacy. However, both groups showed significantly better biofilm-cleaning efficacy than the control group (p < 0.05). CONCLUSION This suggests that both powders are effective in removing biofilm from the implant surface under ideal conditions. However, there was no clear distinction between the cleaning potential of the two powders, as both performed in a similar manner.
Collapse
Affiliation(s)
- Patr Pujarern
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Arthit Klaophimai
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Parinya Amornsettachai
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Woraphong Panyayong
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Suphachai Suphangul
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Roemermann DL, Atout R, Pesun I, Kelekis-Cholakis A, Stavropoulou C, Renvert SN, França R. An In Vivo Investigation of Non-Metallic vs. Metallic Hand Scalers on Zirconia Implant-Supported Crowns: A Year-Long Analysis of Peri-Implant Maintenance. J Funct Biomater 2023; 15:9. [PMID: 38248676 PMCID: PMC10817302 DOI: 10.3390/jfb15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
This study examined whether the degree of abutment surface modification that may occur with regular periodontal instrumentation has a clinical impact in terms of increased plaque accumulation and increased peri-implant tissue inflammation on zirconia implant abutments. Thirteen patients who had zirconia implant crowns were recruited in this randomized clinical trial. Each patient acted as their control and had either the buccal or lingual surface of their screw-retained implant restoration scaled with a metallic scaler and the other surface with a non-metallic scaler at 3, 6, 9, and 12 months. Cytokine testing of the peri-implant crevicular fluid was completed at 0, 3, and 12 months for IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, or IFNγ. Implant crowns were removed at 12 months and evaluated under an atomic force microscope for the average roughness (Ra). The implant crowns were polished and re-inserted. The results were analyzed using the Kruskal-Wallis test, and post hoc tests were conducted with a significance level of α = 0.05. Significant differences in surface roughness (Ra) were observed between the metallic and non-metallic scalers. The median Ra values were 274.0 nm for metallic scalers and 147.1 nm for non-metallic scalers. However, there were no significant differences between the type of scaler used and the amount of clinical inflammation or cytokine production. Metallic scalers produced deeper, more aggressive surface alterations to the abutment/crown zirconia surface, but there was no statistically significant difference between the degree of surface alterations, amount of BOP, and the amplitude of cytokine inflammation produced.
Collapse
Affiliation(s)
- Dayna L. Roemermann
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Reem Atout
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Igor Pesun
- Department of Restorative Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Anastasia Kelekis-Cholakis
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Chrysi Stavropoulou
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Stefan N. Renvert
- Oral Health Sciences, Kristianstad University, 291 88 Kristianstad, Sweden;
| | - Rodrigo França
- Department of Restorative Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
4
|
Bi J, Khoshkam V, Hunter M, Cho C, Kar K. Effect of Air Polishing on the Treatment of Peri-Implant Diseases: A Systematic Review and Meta-Analysis. J ORAL IMPLANTOL 2023; 49:616-628. [PMID: 38258587 DOI: 10.1563/aaid-joi-d-23-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Peri-implant diseases have become one of the notable biological complications of postrehabilitation with implant-supported restorations. Effective modalities for decontamination of biofilm deposits around implant surfaces are critical for resolution of the inflammation. Air polishing is one of the recommended clinical methods for treating peri-implant diseases. This systematic review assessed clinical evidence on efficacy of using air polishing technology for the management of peri-implant diseases, including peri-implant mucositis and peri-implantitis. Four electronic databases from January 1990 to December 2022 were searched to identify the relative human randomized clinical trials that applied air polishing for nonsurgical and surgical treatment of peri-implant mucositis and peri-implantitis. Twelve articles were selected. For treating peri-implant mucositis, air polishing showed a comparable effect to ultrasonic scaling in the reduction of bleeding on probing (BOP) and probing pocket depth (PPD). The nonsurgical approach of air polishing in treating peri-implantitis varied in the reduction of BOP, PPD, and clinical attachment level (CAL) in evaluated studies. Air polishing in the surgical treatment of peri-implantitis was comparable to mechanical cleaning, implantoplasty, and the use of Ti-brush, in regards to the significant reduction of BOP, PPD, and CAL, as well as the improvement of the bone level between baseline and follow-ups. The standardized mean difference with a 95% confidence interval of the studied parameters was estimated using the random effect model; however, statistical differences were not detected between air polishing and comparative modalities in the treatment of peri-implantitis. Within the limitations of this review, the application of air polishing did not result in more favorable outcomes in the treatment of peri-implant diseases compared to other modalities.
Collapse
Affiliation(s)
- Jiarui Bi
- Department of Endodontics and Periodontics; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Vahid Khoshkam
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Private practice, El Paso, TX, USA
| | - Mylea Hunter
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Private practice, Fullerton, CA, USA
| | - Christopher Cho
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Kian Kar
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Eun SM, Son K, Hwang SM, Son YT, Kim YG, Suh JY, Hwang JH, Kwon SM, Lee JH, Kim HD, Lee KB, Lee JM. The Impact of Mechanical Debridement Techniques on Titanium Implant Surfaces: A Comparison of Sandblasted, Acid-Etched, and Femtosecond Laser-Treated Surfaces. J Funct Biomater 2023; 14:502. [PMID: 37888167 PMCID: PMC10607329 DOI: 10.3390/jfb14100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This study evaluated the effects of various mechanical debridement methods on the surface roughness (Ra) of dental implants, comparing femtosecond laser-treated surfaces with conventionally machined and sandblasted with large-grit sand and acid-etched (SLA) implant surfaces. The fabrication of grade 4 titanium (Ti) disks (10 mm in diameter and 1 mm thick) and the SLA process were carried out by a dental implant manufacturer (DENTIS; Daegu, Republic of Korea). Subsequently, disk surfaces were treated with various methods: machined, SLA, and femtosecond laser. Disks of each surface-treated group were post-treated with mechanical debridement methods: Ti curettes, ultrasonic scaler, and Ti brushes. Scanning electron microscopy, Ra, and wettability were evaluated. Statistical analysis was performed using the Kruskal-Wallis H test, with post-hoc analyses conducted using the Bonferroni correction (α = 0.05). In the control group, no significant difference in Ra was observed between the machined and SLA groups. However, femtosecond laser-treated surfaces exhibited higher Ra than SLA surfaces (p < 0.05). The application of Ti curette or brushing further accentuated the roughness of the femtosecond laser-treated surfaces, whereas scaling reduced the Ra in SLA surfaces. Femtosecond laser-treated implant surfaces, with their unique roughness and compositional attributes, are promising alternatives in dental implant surface treatments.
Collapse
Affiliation(s)
- Seung-Mo Eun
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Keunbada Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea; (K.S.); (Y.-T.S.)
| | - Sung-Min Hwang
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Young-Tak Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea; (K.S.); (Y.-T.S.)
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Jun Ho Hwang
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea; (J.H.H.); (S.-M.K.); (J.H.L.)
| | - Sung-Min Kwon
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea; (J.H.H.); (S.-M.K.); (J.H.L.)
| | - Jong Hoon Lee
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea; (J.H.H.); (S.-M.K.); (J.H.L.)
| | - Hyun Deok Kim
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Kyu-Bok Lee
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| |
Collapse
|
6
|
Tran C, Khan A, Meredith N, Walsh LJ. Influence of eight debridement techniques on three different titanium surfaces: A laboratory study. Int J Dent Hyg 2023; 21:238-250. [PMID: 35943293 PMCID: PMC10087144 DOI: 10.1111/idh.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/11/2022] [Accepted: 08/06/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Debridement methods may damage implant surfaces. This in vitro study investigated eight debridement protocols across three implant surfaces to assess both biofilm removal and surface alterations. MATERIAL AND METHODS One hundred sixty commercially pure titanium discs were treated to simulate commercially available titanium implant surfaces-smooth, abraded and abraded and etched. Following inoculation with whole human saliva to create a mixed species biofilm, the surfaces were treated with eight debridement methods currently used for clinical peri-implantitis (n = 10). This included air abrasion using powders of glycine, sodium bicarbonate and calcium carbonate; conventional mechanical methods-piezoelectric scaler, carbon and stainless steel scalers; and a chemical protocol using 40% citric acid. Following treatment, remaining biofilm was analysed using scanning electron microscopy and crystal violet assays. For statistical analysis, ANOVA was applied (p < 0.05). RESULTS All debridement techniques resulted in greater than 80% reduction in biofilm compared with baseline, irrespective of the surface type. Glycine powder delivered through an air polishing system eliminated the most biofilm. Mechanical instruments were the least effective at eliminating biofilm across all surfaces and caused the greatest surface alterations. Citric acid was comparable with mechanical debridement instruments in terms of biofilm removal efficacy. Titanium surfaces were least affected by air abrasion protocols and most affected by mechanical methods. CONCLUSIONS Mechanical protocols for non-surgical debridement should be approached with caution. Glycine powder in an air polisher and 40% citric acid application both gave minimal alterations across all implant surfaces, with glycine the superior method in terms of biofilm removal.
Collapse
Affiliation(s)
- Carol Tran
- The University of Queensland School of Dentistry, Herston, Queensland, Australia
| | - Ambereen Khan
- The University of Queensland School of Dentistry, Herston, Queensland, Australia
| | | | - Laurence J Walsh
- The University of Queensland School of Dentistry, Herston, Queensland, Australia
| |
Collapse
|
7
|
Muacevic A, Adler JR. Effects on the Titanium Implant Surface by Different Hygiene Instrumentations: A Narrative Review. Cureus 2022; 14:e30884. [PMID: 36465763 PMCID: PMC9708459 DOI: 10.7759/cureus.30884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 01/25/2023] Open
Abstract
Peri-implant disease is usually caused by the accumulation of dental biofilm around the implant, and this biofilm can irradiate the gingiva tissue, which leads to inflammation and, more severely, to a deterioration of the bone structure. There is a concern regarding the removal of biofilm from the implant surface by using different hygiene instruments. Some hygiene instruments may have some effect on the dental implant surface, resulting in roughening or damage to the implant surfaces. This study reviewed the effects of titanium implant surfaces on different hygiene instruments. A literature search was conducted from PubMed, ScienceDirect, and Scopus databases for articles published from 1992 to 2021. A total of 19 full-text papers with keywords of interest that met all the eligibility criteria were selected. Surface roughness was evaluated with a scanning electron microscope and also using a profilometer, laser scanning, scanning probe, and atomic force microscopes. A metal curette produced a roughened surface on the titanium implant, but a plastic curette did not alter the surface. Instrumentation with rubber cups left the surface unchanged and appeared to smoothen the surface, whereas the air-powder abrasive instrumentation altered the surface with the presence of micro pits and pores. A conventional metal ultrasonic scaler showed significant surface topographical changes and scratches on both titanium surfaces, as a diode laser, light-emitting diode (LED), and laser treatment did not show any alteration on the rough and smooth titanium surfaces. Thus, a non-metallic instrument such as a plastic curette, rubber cups, and novel technology including diode laser, LED, and laser treatment is appropriate and can be used for debridement on smooth and machined titanium implant surfaces as well as sandblasted and acid-etched (SLA), titanium plasma-sprayed (TPS), and resorbable blasted media (RBM) surfaces. The use of metallic instruments should be avoided, and it is not recommended.
Collapse
|
8
|
Citterio F, Zanotto E, Pellegrini G, Annaratore L, Barbui AM, Dellavia C, Baima G, Romano F, Aimetti M. Comparison of Different Chemical and Mechanical Modalities for Implant Surface Decontamination: Activity against Biofilm and Influence on Cellular Regrowth—An In Vitro Study. Front Surg 2022; 9:886559. [PMID: 36248376 PMCID: PMC9562851 DOI: 10.3389/fsurg.2022.886559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives The aim of this in vitro study was to compare the efficacy of chemical and mechanical methods for decontamination of titanium dental implant surfaces previously infected with polymicrobial biofilms in a model simulating a peri-implant defect. Furthermore, the effect of each decontamination protocol on MG-63 osteoblast-like cells morphology and adhesion to the treated implants was assessed. Background Peri-implantitis is a growing issue in dentistry, and evidence about implant surface decontamination procedures is lacking and inconclusive. Methods A total of 40 previously biofilm-contaminated implants were placed into a custom-made model simulating a peri-implant defect and randomly assigned to five treatment groups: (C) control (no treatment); (AW) air abrasion without any powder; (ESC) air abrasion with powder of erythritol, amorphous silica, and 0.3% chlorhexidine; (HBX) decontamination with a sulfonic/sulfuric acid solution in gel; and (HBX + ESC) a combination of HBX and ESC. Microbiological analysis was performed on five implants per treatment group, and the residual viable bacterial load measured in log 10 CFU/mL was counted for each bacterial strain and for the total number of colonies. The remaining three implants per group and three noncontaminated (NC) implants were used to assess surface biocompatibility using a scanning electron microscope and a backscattered electron microscope after seeding with MG-63 cells. Results A significant decontaminant effect was achieved using HBX or HBX + ESC, while no differences were observed among other groups. The percentage of implant surface covered by adherent MG-63 cells was influenced by the treatment method. Progressive increases in covered surfaces were observed in groups C, AW, ESC, HBX, HBX + ESC, and NC. Conclusions A combination of mechanical and chemical decontamination may provide more predictable results than mechanical cleaning alone.
Collapse
Affiliation(s)
- Filippo Citterio
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
- Correspondence: Filippo Citterio
| | - Elisa Zanotto
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, Turin, Italy
| | - Gaia Pellegrini
- Department of Biomedical Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Annaratore
- Department of Medical Sciences, Pathology Unit, Università degli Studi di Torino, Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
| | - Anna Maria Barbui
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, Turin, Italy
| | - Claudia Dellavia
- Department of Biomedical Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
| |
Collapse
|
9
|
Karimi MR, Farkhondemehr B, Ghaeni Najafi M, Etemadi A, Chiniforush N. Efficacy of titanium brush, 915 nm diode laser, citric acid for eradication of Staphylococcus aureus from implant surfaces. BMC Oral Health 2021; 21:631. [PMID: 34876098 PMCID: PMC8650515 DOI: 10.1186/s12903-021-01997-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to assess the efficacy of titanium brush, 915 nm diode laser, citric acid and the combination of latter two with titanium brush for decontamination of SLA surface mini-implants. METHODS Seventy-five mini-implants contaminated with Staphylococcus aureus (S. aureus) were randomly divided into five experimental groups (n = 12) of titanium brush (TiB), laser, citric acid (CA), brush-laser, and brush-acid, positive [n = 12; chlorhexidine mouthwash (CHX)] and negative [n = 2; phosphate buffered saline (PBS)] control groups and one no-treatment group (n = 1). After counting the colony forming units (CFUs), data were analyzed using the Kruskal-Wallis and Dunn post-hoc tests. RESULTS Regardless of the no-treatment and negative control groups, maximum and minimum CFUs were noted in the titanium brush and positive control groups. After CHX, minimum CFUs were noted in brush-acid group followed by brush-laser, laser, and acid groups. Generally, the Kruskal-Wallis test revealed a significant difference between the groups regarding the colony count (P < 0.001). Dunn post-hoc test showed that the difference between the titanium brush and acid-brush group was significant (P < 0.001) while the differences between the brush and laser groups with the brush-laser group were not significant (P > 0.077). CONCLUSIONS Combined use of titanium brush and citric acid yielded superior results compared to other groups in reduction of S. aureus on implant surface.
Collapse
Affiliation(s)
- Mohammad Reza Karimi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behshad Farkhondemehr
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Sato H, Ishihata H, Kameyama Y, Shimpo R, Komasa S. Professional Mechanical Tooth Cleaning Method for Dental Implant Surface by Agar Particle Blasting. MATERIALS 2021; 14:ma14226805. [PMID: 34832206 PMCID: PMC8622555 DOI: 10.3390/ma14226805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022]
Abstract
Oral dysfunction due to peri-implantitis and shortened life of implants has become a major concern. Self-care and removal of oral biofilms by professional mechanical tooth cleaning (PMTC) are indispensable for its prevention. However, if the surface roughness of the implant is increased, it may result in the adhesion of biofilm in the oral cavity. Therefore, the PMTC method can serve for long-term implant management. Calcium carbonate (CaCO3) has been used as a cleaning method for implant surfaces; however, there is concern that the implant surface roughness could increase due to particle collision. Therefore, in this study, to establish a blasting cleaning method that does not adversely affect the implant surface, a new blasting cleaning method using agar particles was devised and its practical application examined. When the simulated stains were blasted with white alumina (WA) abrasive grains and CaCO3 particles, the simulated stains were almost removed, the surface roughness changed to a satin-finished surface—which was thought to be due to fine scratches—and the surface roughness increased. Most of the simulated stains were removed on the surface of the sample blasted with glycine particles and agar particles. Conversely, the gloss of the sample surface was maintained after cleaning, and the increase in surface roughness was slight.
Collapse
Affiliation(s)
- Hideaki Sato
- Department of Mechanical Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamadutsumi, Setagaya-ku, Tokyo 158-8557, Japan; (H.S.); (Y.K.); (R.S.)
| | - Hiroshi Ishihata
- Department of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yutaka Kameyama
- Department of Mechanical Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamadutsumi, Setagaya-ku, Tokyo 158-8557, Japan; (H.S.); (Y.K.); (R.S.)
| | - Ryokichi Shimpo
- Department of Mechanical Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamadutsumi, Setagaya-ku, Tokyo 158-8557, Japan; (H.S.); (Y.K.); (R.S.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata-shi, Osaka 573-1121, Japan
- Correspondence: ; Tel.: +81-72-864-3084; Fax: +81-72-864-3184
| |
Collapse
|
11
|
Thermal effect of a 445 nm diode laser on five dental implant systems: an in vitro study. Sci Rep 2021; 11:20174. [PMID: 34635754 PMCID: PMC8505640 DOI: 10.1038/s41598-021-99709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this in vitro study was to assess the thermal effect of the 445 nm diode laser on five dental implant systems. In an ailing implant protocol, five commercial dental implant systems were subjected to 445 nm diode laser energy at different wattages [W], exposure times, and modes (continuous wave [CW] vs. pulsed and contact vs. non-contact) of laser beam delivery. Scanning electron microscopy (SEM) allowed the evaluation of irradiated implant surfaces. A total of 2880 temperature response curves were recorded. The 445 nm wavelength caused temperature increases of more than 10 °C at or above the 0.8 W power level working in CW mode for 5 s and in pulsed mode at 3 W for 20 s with 10% duty cycle. Highest rises in temperature were seen in the Straumann Pure ceramic implant, lowest in the Ankylos system. SEM analysis revealed no surface alteration in all systems in non-contact mode. The applied laser is not inherently safe for the decontamination of ailing implants. From the results of this study it was concluded that different dental implant materials and geometries show different temperature response curves when subjected to 445 nm diode laser energy. Clinicians ought to be aware of this. Therefore, manufacturers of laser devices should provide implant-specific laser parameters for the decontamination process. However, both laser irradiation systems can prevent harmful rises in temperature and surface alteration when used at moderate laser parameters.
Collapse
|
12
|
Stuani VDT, Kim DM, Nagai M, Chen CY, Sant'Ana ACP. The In Vitro Evaluation of Preosteoblast Migration From 3-D-printed Scaffolds to Decontaminated Smooth and Minimally Rough Titanium Surfaces: A Pilot Study. Altern Lab Anim 2021; 49:83-92. [PMID: 34218686 DOI: 10.1177/02611929211022165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro evaluations are essential to gaining a better understanding of re-osseointegration, while reducing animal use and the overall costs of peri-implantitis studies. This pilot study evaluated preosteoblast migration from 3-D-printed scaffolds to decontaminated titanium microimplants, creating a system that tries to mimic the bone-implant interface. Smooth (S) and minimally rough (R) titanium microimplants were incubated in Escherichia coli cultures and divided into six groups according to the decontamination protocol applied: EDTA gel (EDTA); chlorhexidine (CHL); chlorhexidine-soaked gauze (GCHL); scaling (SC); titanium brush (TiB); and implantoplasty (IP). Pristine S and R microimplants were used as the controls (C). After the decontamination procedures, the microimplants were inserted in 3-D-printed polyurethane-based scaffolds previously inoculated with preosteoblast cell cultures. Cellular migration was assessed after 24, 72 and 120 hours by ATP quantification. At the 120-hour time point, there was no statistically significant difference between S-C, S-EDTA, S-CHL, S-GCHL and S-SC (p > 0.05), and between R-C, R-EDTA and R-GCHL (p > 0.05). The in vitro model developed in this pilot study successfully demonstrated cell migration on the different decontaminated surfaces. This methodology suggests that on smooth microimplants, EDTA, GCHL, SC and TiB decontamination may have a reduced impact on preosteoblast migration, while on minimally rough microimplants, EDTA and GCHL decontamination affected cell migration the least. However, when selecting a decontamination protocol, the effectiveness of the decontamination per se must also be considered.
Collapse
Affiliation(s)
- Vitor de Toledo Stuani
- Department of Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David Minjoon Kim
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Masazumi Nagai
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | |
Collapse
|
13
|
Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics 2021; 5:321-332. [PMID: 33732603 PMCID: PMC7961127 DOI: 10.7150/ntno.56401] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Titanium is considered to be a metal material with the best biological safety. Studies have proved that the titanium implanted in the bone continuously releases titanium particles (Ti particles), significantly increasing the total titanium content in human body. Generally, Ti particles are released slowly without causing a systemic immune response. However, the continuous increased local concentration may result in damage to the intraepithelial homeostasis, aggravation of inflammatory reaction in the surrounding tissues, bone resorption and implant detachment. They also migrate with blood flow and aggregate in the distal organ. The release of Ti particles is affected by the score of the implant surface structure, microenvironment wear and corrosion, medical operation wear, and so on, but the specific mechanism is not clear. Thus, it difficult to prevent the release completely. This paper reviews the causes of the Ti particles formation, the damage to the surrounding tissue, and its mechanism, in particular, methods for reducing the release and toxicity of the Ti particles.
Collapse
Affiliation(s)
- Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Quan Shi
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
14
|
Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium Wear of Dental Implants from Placement, under Loading and Maintenance Protocols. Int J Mol Sci 2021; 22:1067. [PMID: 33494539 PMCID: PMC7865642 DOI: 10.3390/ijms22031067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this review was to analyze the process of wear of implants leading to the shedding of titanium particles into the peri-implant hard and soft tissues. Titanium is considered highly biocompatible with low corrosion and toxicity, but recent studies indicate that this understanding may be misleading as the properties of the material change drastically when titanium nanoparticles (NPs) are shed from implant surfaces. These NPs are immunogenic and are associated with a macrophage-mediated inflammatory response by the host. The literature discussed in this review indicates that titanium NPs may be shed from implant surfaces at the time of implant placement, under loading conditions, and during implant maintenance procedures. We also discuss the significance of the micro-gap at the implant-abutment interface and the effect of size of the titanium particles on their toxicology. These findings are significant as the titanium particles can have adverse effects on local soft and hard tissues surrounding implants, implant health and prognosis, and even the health of systemic tissues and organs.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Gerard A. Fischer
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8700, USA;
| |
Collapse
|
15
|
Vyas N, Wang QX, Walmsley AD. Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water. ULTRASONICS SONOCHEMISTRY 2021; 70:105338. [PMID: 32979637 PMCID: PMC7786568 DOI: 10.1016/j.ultsonch.2020.105338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The use of cavitation for improving biofilm cleaning is of great interest. There is no system at present that removes the biofilm from medical implants effectively and specifically from dental implants. Cavitation generated by a vibrating dental ultrasonic scaler tip can clean biomaterials such as dental implants. However, the cleaning process must be significantly accelerated for clinical applications. In this study we investigated whether the cavitation could be increased, by operating the scaler in carbonated water with different CO2 concentrations. The cavitation around an ultrasonic scaler tip was recorded with high speed imaging. Image analysis was used to calculate the area of cavitation. Bacterial biofilm was grown on surfaces and its removal was imaged with a high speed camera using the ultrasonic scaler in still and carbonated water. Cavitation increases significantly with increasing carbonation. Cavitation also started earlier around the tips when they were in carbonated water compared to non-carbonated water. Significantly more biofilm was removed when the scaler was operated in carbonated water. Our results suggest that using carbonated water could significantly increase and accelerate cavitation around ultrasonic scalers in a clinical situation and thus improve biofilm removal from dental implants and other biomaterials.
Collapse
Affiliation(s)
- N Vyas
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham B5 7EG, UK
| | - Q X Wang
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - A D Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham B5 7EG, UK.
| |
Collapse
|
16
|
Park SH, Kim OJ, Chung HJ, Kim OS. Effect of a Er, Cr:YSGG laser and a Er:YAG laser treatment on oral biofilm-contaminated titanium. J Appl Oral Sci 2020; 28:e20200528. [PMID: 33263649 PMCID: PMC7714262 DOI: 10.1590/1678-7757-2020-0528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Implant surface decontamination is a challenging procedure for therapy of peri-implant disease. This study aimed to compare the effectiveness of decontamination on oral biofilm-contaminated titanium surfaces in Er:YAG laser, Er, Cr:YSGG laser, and plastic curette. METHODOLOGY For oral biofilms formation, six participants wore an acrylic splint with eight titanium discs in the maxillary arch for 72 hours. A total of 48 contaminated discs were distributed among four groups: untreated control; decontamination with plastic curettes; Er, Cr:YSGG laser; and Er:YAG laser irradiation. Complete plaque removal was estimated using naked-eye and the time taken was recorded; the residual plaque area was measured and the morphological alteration of the specimen surface was observed by scanning electron microscopy. The total bacterial load and the viability of adherent bacteria were quantified by live or dead cell labeling with fluorescence microscopy. RESULTS The mean treatment time significantly decreased based on the treatment used in the following order: Er:YAG, Er, Cr:YSGG laser, and plastic curettes (234.9±25.4 sec, 156.1±12.7 sec, and 126.4±18.6 sec, P=0.000). The mean RPA in the Er, Cr:YSGG laser group (7.0±2.5%) was lower than Er:YAG and plastic curettes groups (10.3±2.4%, 12.3±3.6%, p=0.023). The viable bacteria on the titanium surface after Er, Cr:YSGG laser irradiation was significantly lower compared to the decontamination with plastic curette (P=0.05) but it was not significantly different from the Er:YAG laser irradiation. CONCLUSION We found that Er:YAG laser and Er, Cr:YSGG laser irradiation were effective methods for decontaminations without surface alterations.
Collapse
Affiliation(s)
- So-Hyun Park
- Chonnam National University, School of Dentistry, Dental Science Research Institute, Department of Periodontology, Gwangju, Republic of Korea
| | - Ok-Joon Kim
- Department of Oral Pathology, National University, School of Dentistry Chonnam, Gwangju, Republic of Korea
| | - Hyun-Ju Chung
- Chonnam National University, School of Dentistry, Dental Science Research Institute, Department of Periodontology, Gwangju, Republic of Korea
| | - Ok-Su Kim
- Chonnam National University, School of Dentistry, Hard-tissue Biointerface Research Center, Department of Periodontology, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Stuani VT, Kim DM, Nagai M, Chen CY, Sant'Ana ACP. Effectiveness and surface changes of different decontamination protocols at smooth and minimally rough titanium surfaces. J Periodontol 2020; 92:704-715. [PMID: 32946119 DOI: 10.1002/jper.20-0324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The objective of this study is to evaluate titanium decontamination after different protocols while assessing changes in surface roughness, chemical composition, and wettability. METHODS Ninety-six smooth (S) and 96 minimally rough (R) titanium microimplants were used. Pristine microimplants were reserved for negative control (S-nC/R-nC, n = 9), while the remaining microimplants were incubated in Escherichia coli culture. Non-decontaminated microimplants were used as positive control (S-pC/R-pC, n = 3). The other microimplants were divided into seven different decontamination protocols (12 S/R per group): 24% EDTA, 2% chlorhexidine (CHL), gauze soaked in 2% chlorhexidine (GCHL), gauze soaked in ultrapure water (GMQ), scaling (SC), titanium brush (TiB), and implantoplasty (IP). Contaminated areas were assessed by scanning electron microscope images, chemical composition by energy dispersive X-ray spectroscopy, wettability by meniscus technique, and roughness by an optical profiler. RESULTS Higher residual bacteria were observed in R-pC compared with S-pC (P <0.0001). When comparing S and R with their respective pC groups, the best results were obtained with GCHL, SC, TiB, and IP, with no difference between these protocols (P >0.05). Changes in surface roughness were observed after all treatments, with S/R-IP presenting the smoother and a less hydrophilic surface (P <0.05). Apart from IP protocol, all the other groups presented a more hydrophilic surface in R than in S microimplants (P <0.003). All decontamination protocols resulted in a lower percentage of superficial Ti when compared with S/R-nC (P <0.002). CONCLUSIONS All decontamination protocols resulted in changes in roughness, wettability, and chemical composition, but GCHL, SC, TiB, an IP presented the best decontamination outcomes.
Collapse
Affiliation(s)
- Vitor T Stuani
- Department of Periodontology, Bauru School of Dentistry-University of Sao Paulo, Bauru, SP, Brazil.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David M Kim
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Masazumi Nagai
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Adriana C P Sant'Ana
- Department of Periodontology, Bauru School of Dentistry-University of Sao Paulo, Bauru, SP, Brazil
| |
Collapse
|
18
|
Hu J, Atsuta I, Ayukawa Y, Zhou X, Dwi Rakhmatia Y, Koyano K. The impact of surface alteration on epithelial tissue attachment after the mechanical cleaning of titanium or zirconia surface. J Oral Rehabil 2020; 47:1065-1076. [PMID: 31820464 DOI: 10.1111/joor.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Mechanical plaque removal may alter the surface morphology of the gingival penetration part of the implant. We applied an air-powered abrasive system (AP), titanium curette (TC), stainless curette (SC), ultrasound scaler (US), and titanium brush (TB) which are commonly used to remove plaque, to titanium or zirconia and the changes in surface morphology and the epithelial attach against substrata. MATERIALS AND METHODS (a) The morphological changes of titanium and zirconia after mechanical cleaning were assessed by scanning electron microscopy and a roughness analyser. (b) Oral epithelial cells of rats were inoculated on the surface of the materials after mechanical cleaning, and the adherence of epithelial cells was observed. (c) The maxillary first molars were extracted from the rats and replaced by experimental titanium or zirconia implants. The length of the immunoreactive laminin-332 band was observed at the implant-peri-implant epithelium interface. RESULTS (a) The surface roughness increased in experimental groups except the AP group. (b) Among the experimental groups, the AP group showed the highest number of attached cells. (c) The length of the immunoreactive laminin-332 band was longer in the control group than those in all five experimental groups. Among the experimental groups, the AP group showed the longest band. CONCLUSION All mechanical cleaning methods increased the surface roughness of the materials except AP. AP did not cause distinct implant surface alterations. Surface alteration caused by mechanical cleaning may evoke inferior for epithelial attachment and reduce resistance against foreign infiltration.
Collapse
Affiliation(s)
- Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xudiyang Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yunia Dwi Rakhmatia
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Hu J, Atsuta I, Ayukawa Y, Zhou T, Narimatsu I, Koyano K. Effect of titanium or zirconia implant abutments on epithelial attachments after ultrasonic cleaning. J Oral Sci 2020; 62:331-334. [PMID: 32581180 DOI: 10.2334/josnusd.19-0332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Zirconia is widely employed as a material during dental implant work because of its superior esthetics. This study sought to evaluate the impact of titanium or zirconia implant abutments on epithelial attachments after ultrasonic cleaning. These implants were inserted into the extraction socket of rat maxillary first molars. Then, the length of the horseradish peroxidase (HRP) reaction was measured. In addition, titanium and zirconia disks were cleaned using an ultrasonic scaler, surface morphology changes were observed, and the number of epithelial cell attachments to the surface was measured. Ultimately, the surfaces of the titanium disks were easier to damage than those of the zirconia ones. There was no difference in the number of epithelial cell attachments between the two materials with the ultrasonic cleaning. The length of the HRP reaction was shorter on the zirconia implant abutment surface than on the titanium one after mechanical cleaning. In conclusion, zirconia is harder than titanium and a better choice for use in the epithelial tissue attachment. Zirconia is more suitable as a material for implant abutments than titanium.
Collapse
Affiliation(s)
- Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Tianren Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| |
Collapse
|
20
|
Ultrastructural changes of smooth and rough titanium implant surfaces induced by metal and plastic periodontal probes. Clin Oral Investig 2020; 25:105-114. [PMID: 32564141 PMCID: PMC8590678 DOI: 10.1007/s00784-020-03341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
Objectives To determine the ultrastructural changes of titanium surfaces of dental implants induced by the tip of periodontal probes. Materials and methods A total of 40 samples of smooth and rough surfaces of titanium implants were randomly assigned for the treatment with metal or plastic periodontal probes under application angles of 20° and 60°. Titanium surfaces have been evaluated with CLSM prior and following to experimental probing determining various standardized 2D and 3D roughness parameters. Results The average profile and surface roughness (Ra and Sa) showed no significant difference between treated and untreated samples on smooth and rough surface areas irrespective of the probe material. On smooth surfaces several amplitude roughness parameters were increased with metal probes but reached significance only for Rp (p = 0.007). Rough surface parts showed a slight but not significant reduction of roughness following to the contact with metal probes. The surface roughness remained almost unchanged on smooth and rough implant surfaces using plastic probes. The surface roughness on implant surfaces was not dependent on the application angle irrespective of the probe material. Conclusion Probing of titanium implants with metal probes and even less with plastic probes causes only minor changes of the surface roughness. The clinical significance of these changes remains to be elucidated. Clinical relevance Using plastic probes for the clinical evaluation of the peri-implant sulcus might avoid ultrastructural changes to titanium implant surfaces.
Collapse
|
21
|
Arnett MC, Reibel YG, Evans MD, Stull CL. Preliminary evaluation of dental hygiene curriculum: Assessment and management of peri-implant conditions and diseases. J Dent Educ 2020; 84:642-651. [DOI: 10.1002/jdd.12141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Michelle C. Arnett
- Department of Primary Dental Care, Division of Dental Hygiene; University of Minnesota School of Dentistry; Minneapolis Minnesota USA
| | - Yvette G. Reibel
- Department of Primary Dental Care, Division of Dental Hygiene; University of Minnesota School of Dentistry; Minneapolis Minnesota USA
| | - Michael D. Evans
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute; University of Minnesota; Minneapolis Minnesota USA
| | - Cynthia L. Stull
- Department of Primary Dental Care, Division of Dental Hygiene; University of Minnesota School of Dentistry; Minneapolis Minnesota USA
| |
Collapse
|
22
|
Otsuki M, Wada M, Yamaguchi M, Kawabata S, Maeda Y, Ikebe K. Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study. Int J Implant Dent 2020; 6:18. [PMID: 32318868 PMCID: PMC7174533 DOI: 10.1186/s40729-020-00212-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background To evaluate the effect of several representative decontamination methods of oral biofilms on different implant surfaces. Material and methods Eleven participants wore a hard resin splint carrying 6 rough (GC Aadva® implant; 3.3-mm diameter, 8-mm length) or machined (not commercially available) surface implants for 4 days to accumulate dental plaque naturally on the titanium surfaces of the implants. Apart from surface roughness, the morphology of all implants was identical. After detaching the implants from the splints, the ability of the following decontamination methods—gauze soaked in saline (G), ultrasonic scaler (US), air abrasive (Air), rotary stainless steel instrument (Rot), and Er:YAG laser (Las)—to cleanse the contaminated implant surface for 1 min extra-orally was tested. The control (Cont) group did not receive any decontamination. Scanning electron microscopic (SEM) investigation of one participant’s samples was employed to examine the post-instrumented implant surface for qualitative analysis, and bacterial culture of the remaining 10 participants’ samples was performed to count the number of colony-forming units (CFU) for quantitative analysis. The experimental sequence was initially performed for the rough surface implants and then similarly repeated for the machined surface implants. Bacterial CFU counts among the six groups were analyzed using the Steel-Dwass test, and differences between rough and machined surface implants were determined using the Mann-Whitney U test. Results G and Rot eliminated most biofilms on machined surface implants according to SEM analysis. G, Air, and Rot removed significantly more of the biofilms on rough and machined surface implants compared with US according to CFU counts. Moreover, G significantly reduced more biofilms than Las on machined surface implants. The analysis between rough and machined surface implants showed that Cont, G, and US were better able to cleanse biofilms on machined surface implants compared with rough surface implants. Conclusions Gauze soaked in saline and rotary stainless steel instruments may be advantageous for cleansing contaminated implant surfaces based on the qualitative and quantitative analyses. In contrast, air abrasives were not shown to be preferable in the qualitative analyses. Additionally, apart from the Er:YAG laser, the reduction of biofilms assessed in both qualitative and quantitative analyses demonstrated that all decontamination methods were better at cleansing machined surface implants compared with rough surface implants.
Collapse
Affiliation(s)
- Motohiro Otsuki
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Wada
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Matys J, Romeo U, Mroczka K, Grzech-Leśniak K, Dominiak M. Temperature Changes and SEM Effects of Three Different Implants-Abutment Connection during Debridement with Er:YAG Laser: An Ex Vivo Study. MATERIALS 2019; 12:ma12223748. [PMID: 31739427 PMCID: PMC6888067 DOI: 10.3390/ma12223748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
The study aimed to evaluate a temperature increase in, and damage to, titanium implants during flapless laser debridement. The study analyzed 15 implants with various implant–abutment connections: a two-piece implant (n = 4) with a screw abutment (IA—Implant–Abutment) and a one-piece implant with a ball type fixture (BTF, n = 4) or fix type fixture (FTF, n = 4). The implants were placed in porcine mandibles 2 mm over a bone crest to imitate a peri-implantitis. The implants were debrided in contact mode for 60 s with a Er:YAG laser at fluence of 9.95 J/cm2 (G1 group: 50 mJ/30 Hz); 19.89 J/cm2 (G2 group: 100 mJ/30 Hz); 39.79 J/cm2 (G3 group: 200 mJ/30 Hz), or a scaler with a ceramic tip (G4 control group: 4 W/20 Hz). The temperature was measured with thermocouples at implant and abutment levels. The damage in the titanium surface (n = 3, non-irradiated implants from each type) was assessed using SEM (Scanning Electron Microscopy). The temperature increase at the implant level for the laser was higher at IA in contrast with FTF and BTF. (p < 0.05) The temperature change at the abutment level was lower for the scaler in contrast to Er:YAG laser at FTF. (p < 0.0002) Er:YAG laser didn’t increase the temperature by 10 °C at 100 mJ/30 Hz and 50 mJ/30 Hz. Based on SEM analysis, cracks occurred on the surface of two-piece implants and were more pronounced. Cracks and the melting of the titanium surface of two-piece implants cleaned with Er:YAG laser at 100 or 200 mJ were observed. The specimens treated with the ultrasonic scaler with a plastic curette showed the remaining dark debris on the titanium surface. We recommend using Er:YAG laser at 50 mJ/30 Hz during flapless implants debridement.
Collapse
Affiliation(s)
- Jacek Matys
- Dental Surgery Department, Medical University, 50-425 Wroclaw, Poland; (K.G.-L.); (M.D.)
- Private Dental Practice, Lipowa 18, 67-400 Wschowa, Poland
- Correspondence: ; Tel.: +48-791511789; Fax: +48-717840253
| | - Umberto Romeo
- Department of Oral Sciences and Maxillofacial Surgery, 00161 Rome, Italy;
| | - Krzysztof Mroczka
- Institute of Technology, Pedagogical University, 30-084 Krakow, Poland;
| | - Kinga Grzech-Leśniak
- Dental Surgery Department, Medical University, 50-425 Wroclaw, Poland; (K.G.-L.); (M.D.)
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Marzena Dominiak
- Dental Surgery Department, Medical University, 50-425 Wroclaw, Poland; (K.G.-L.); (M.D.)
| |
Collapse
|
24
|
Effect of Different Laser Wavelengths on Periodontopathogens in Peri-Implantitis: A Review of In Vivo Studies. Microorganisms 2019; 7:microorganisms7070189. [PMID: 31261945 PMCID: PMC6680872 DOI: 10.3390/microorganisms7070189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/24/2022] Open
Abstract
Nowadays, many studies are examining the effectiveness of dental lasers in the treatment of peri-implantitis; however, most of them only report periodontal parameter changes. The authors of this review tried to address the question: “What is the effect of different laser wavelengths on oral bacteria that cause peri-implantitis?” An electronic search of PubMed and Cochrane Central Register of Controlled Trials was performed. The following search terms were used: (peri-implantitis OR periimplantitis) OR/AND (microbial OR microbiologic) AND (laser OR Er:YAG OR erbium OR diode OR Nd:YAG OR neodymium-doped OR Er,Cr:YSGG OR chromium-doped). Initially, 212 studies were identified. After screening the titles and abstracts and excluding studies according to predefined inclusion criteria, seven publications were included in the review. Three studies about the effect of aPDT (antimicrobial photodynamic therapy) reported a decrease in the different bacterial strains associated with peri-implantitis, e.g., A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. denticola, T. forsythia, F. nucleatum, and C. rectus. Two studies showed that the high-power diode laser may have some effect on peri-implant pathogens. Two articles about the Er:YAG laser reported a lowering in the count of oral pathogens; however, it was hard to determine if this was due to the use of the laser. aPDT has the ability to decrease the count of peri-implant pathogens, whereas Er:YAG laser application shows no significant effect on oral bacteria in the long term.
Collapse
|
25
|
Jin SH, Lee EM, Park JB, Kim KK, Ko Y. Decontamination methods to restore the biocompatibility of contaminated titanium surfaces. J Periodontal Implant Sci 2019; 49:193-204. [PMID: 31285943 PMCID: PMC6599751 DOI: 10.5051/jpis.2019.49.3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose The reaction of cells to a titanium implant depends on the surface characteristics of the implant which are affected by decontamination. The aim of this study was to evaluate the cytocompatibility of titanium disks treated with various decontamination methods, using salivary bacterial contamination with dental pellicle formation as an in vitro model. Methods Sand-blasted and acid-etched (SA) titanium disks were used. Three control groups (pristine SA disks [SA group]; salivary pellicle-coated SA disks [pellicle group]; and biofilm-coated, untreated SA disks [NT group]) were not subjected to any decontamination treatments. Decontamination of the biofilm-coated disks was performed by 14 methods, including ultrasonic instruments, rotating instruments, an air-powder abrasive system, a laser, and chemical agents. MG63 cells were cultured in the presence of the treated disks. Cell proliferation assays were performed on days 2 and 5 of cell culture, and cell morphology was analyzed by immunofluorescence and scanning electron microscopy (SEM). A vascular endothelial growth factor (VEGF) assay was performed on day 5 of culture. Results The cell proliferation assay revealed that all decontaminated disks, except for the 2 groups treated using a plastic tip, showed significantly less cell proliferation than the SA group. The immunofluorescence and SEM analyses revealed that most groups showed comparable cell density, with the exception of the NT group, in which the cell density was lower and bacterial residue was observed. Furthermore, the cells grown with tetracycline-treated titanium disks showed significantly lower VEGF production than those in the SA group. Conclusions None of the decontamination methods resulted in cytocompatibility similar to that of pristine SA titanium. However, many methods caused improvement in the biocompatibility of the titanium disks in comparison with the biofilm-coated, untreated titanium disks. This suggests that decontamination is indispensable for the treatment of peri-implantitis, even if the original biocompatibility cannot be restored.
Collapse
Affiliation(s)
- Seong-Ho Jin
- Department of Dentistry, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Eun-Mi Lee
- Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun-Beom Park
- Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kack-Kyun Kim
- Department of Oral Microbiology and Immunology, Seoul National University School of Dentistry, Seoul, Korea.,Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Youngkyung Ko
- Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Moharrami M, Perrotti V, Iaculli F, Love RM, Quaranta A. Effects of air abrasive decontamination on titanium surfaces: A systematic review of in vitro studies. Clin Implant Dent Relat Res 2019; 21:398-421. [PMID: 30838790 DOI: 10.1111/cid.12747] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Air abrasion (AA) is one of the decontamination methods that have demonstrated promising results in treating peri-implant diseases. PURPOSE This systematic review aimed at evaluating the in vitro effect of AA on surface change, cleaning efficacy, and biocompatibility of titanium surfaces and at comparing it with other decontamination methods. MATERIALS AND METHODS A comprehensive search was conducted up to April 2018 using PubMed, Scopus, and Google Scholar databases to identify studies on the decontamination effect of AA. All types of titanium surfaces, abrasive powders, contaminated surfaces, and measuring methods were included. RESULTS Overall, 1502 articles were identified. After screening the titles and abstracts, and carefully reading the full-texts, 48 articles published between 1989 and 2018 were selected. AA was considered almost safe, particularly for the nonmodified surfaces. Nevertheless, harder powders such as sodium bicarbonate tended to damage the surface more than glycine. AA resulted in surface change similar to plastic curettes and Er: YAG lasers. Regarding the cleaning efficacy, there was no significant difference between glycine and sodium bicarbonate, but different mixtures of calcium phosphate, hydroxyapatite, and erythritol were superior to glycine. AA was superior or equal to all other decontamination methods in cleaning. Regarding biocompatibility, AA was more successful in preserving biocompatibility for noncontaminated surfaces compared with contaminated surfaces and when used with erythritol and osteoinductive powders. CONCLUSIONS AA can efficiently remove contamination without serious damage to the surface. The main drawback of the AA method seems to be its limitation in restoring the biocompatibility of the surface.
Collapse
Affiliation(s)
| | - Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Flavia Iaculli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Robert M Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Alessandro Quaranta
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
27
|
In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. MATERIALS 2018; 11:ma11122484. [PMID: 30563297 PMCID: PMC6316998 DOI: 10.3390/ma11122484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
Objective: To compare the efficacy of four commonly used clinical procedures in removing Streptococcus gordonii biofilms from titanium disks, and the recolonization of the treated surfaces. Background: Successful peri-implantitis treatment depends on the removal of the dental biofilm. Biofilm that forms after implant debridement may threaten the success of the treatment and the long-term stability of the implants. Methods:S. gordonii biofilms were grown on titanium disks for 48 h and removed using a plastic curette, air-abrasive device (Perio-Flow®), titanium brush (TiBrush®), or implantoplasty. The remaining biofilm and the recolonization of the treated disks were observed using scanning electron microscopy and quantified after staining with crystal violet. Surface roughness (Ra and Rz) was measured using a profilometer. Results:S. gordonii biofilm biomass was reduced after treatment with Perio-Flow®, TiBrush®, and implantoplasty (all p < 0.05), but not plastic curette (p > 0.05), compared to the control group. Recolonization of S. gordonii after treatment was lowest after Perio-Flow®, TiBrush®, and implantoplasty (all p < 0.05 vs. control), but there was no difference between the plastic curette and the control group (p > 0.05). Ra and Rz values ranged from 1–6 µm to 1–2 µm and did not differ statistically between the control, plastic curette, Perio-Flow, and TiBrush groups. However, the implantoplasty group showed a Ra value below 1 µm (p < 0.01, ANOVA, Tukey). Conclusions: Perio-Flow®, TiBrush®, and implantoplasty were more effective than the plastic curette at removing the S. gordonii biofilm and preventing recolonization. These results should influence the surgical management of peri-implantitis.
Collapse
|
28
|
Sinjari B, D'Addazio G, Bozzi M, Celletti R, Traini T, Mavriqi L, Caputi S. Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface. MATERIALS 2018; 11:ma11122345. [PMID: 30469472 PMCID: PMC6316870 DOI: 10.3390/ma11122345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023]
Abstract
The aim of this in vitro study was to evaluate the alterations of a titanium surface after treatment with two different types of ultrasonic tips: conventional steel versus an innovative copper alloy silver-plated one. Twenty smooth-surface, grade IV unalloyed titanium discs were divided into two groups. The discs were ultrasonically instrumented and the scaler was connected with a loading machine. The surface morphology was examined using scanning electron microscopy (SEM) and fractal analysis of lacunarity was calculated to highlight the alteration of the surface using the two different tips. The SEM analysis showed different degrees of surface roughness between the two types of scaler tips. Moreover, these observations demonstrated that the new tip showed fewer irregularities on the disc’s surface than the conventional steel tip. The statistical and fractal analysis showed a statistically significant difference between the two groups. Surface alterations of titanium induced by the conventional ultrasonic tips were much greater than those made by copper alloy silver plated tips. The presented results suggest that the use of this new ultrasonic tip may reduce the alterations on the implant surface during its use in dental practice.
Collapse
Affiliation(s)
- Bruna Sinjari
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| | - Gianmaria D'Addazio
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| | - Martina Bozzi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| | - Renato Celletti
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| | - Tonino Traini
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| | - Luan Mavriqi
- Department of Periodontology, Albanian University, Str. Durres, 1001 Tirana, Albanian.
| | - Sergio Caputi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| |
Collapse
|
29
|
Delgado-Ruiz R, Romanos G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int J Mol Sci 2018; 19:E3585. [PMID: 30428596 PMCID: PMC6274707 DOI: 10.3390/ijms19113585] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/03/2023] Open
Abstract
Implant surface characteristics, as well as physical and mechanical properties, are responsible for the positive interaction between the dental implant, the bone and the surrounding soft tissues. Unfortunately, the dental implant surface does not remain unaltered and changes over time during the life of the implant. If changes occur at the implant surface, mucositis and peri-implantitis processes could be initiated; implant osseointegration might be disrupted and bone resorption phenomena (osteolysis) may lead to implant loss. This systematic review compiled the information related to the potential sources of titanium particle and ions in implant dentistry. Research questions were structured in the Population, Intervention, Comparison, Outcome (PICO) framework. PICO questionnaires were developed and an exhaustive search was performed for all the relevant studies published between 1980 and 2018 involving titanium particles and ions related to implant dentistry procedures. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for the selection and inclusion of the manuscripts in this review. Titanium particle and ions are released during the implant bed preparation, during the implant insertion and during the implant decontamination. In addition, the implant surfaces and restorations are exposed to the saliva, bacteria and chemicals that can potentially dissolve the titanium oxide layer and, therefore, corrosion cycles can be initiated. Mechanical factors, the micro-gap and fluorides can also influence the proportion of metal particles and ions released from implants and restorations.
Collapse
Affiliation(s)
- Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
| | - Georgios Romanos
- Department of Periodontics, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
- Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe University, 60323 Frankfurt, Germany.
| |
Collapse
|
30
|
Al-Kadhim K, Pritchard M, Farnell D, Thomas D, Adams R, Claydon N. Surgical therapy for peri-implantitis management: a systematic review and meta-analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.1111/ors.12344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - D.W. Thomas
- School of Dentistry; Cardiff University; Cardiff UK
| | - R. Adams
- School of Dentistry; Cardiff University; Cardiff UK
| | - N. Claydon
- School of Dentistry; Cardiff University; Cardiff UK
| |
Collapse
|
31
|
Tastepe CS, Lin X, Werner A, Donnet M, Wismeijer D, Liu Y. Cleaning effect of osteoconductive powder abrasive treatment on explanted human implants and biofilm-coated titanium discs. Clin Exp Dent Res 2018; 4:25-34. [PMID: 29744212 PMCID: PMC5813889 DOI: 10.1002/cre2.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/02/2017] [Accepted: 11/30/2017] [Indexed: 11/10/2022] Open
Abstract
The aim of this study is to test the cleaning effect and surface modification of a new implant surface treatment on explanted dental implants and titanium discs. It is a modified air powder abrasive (APA) treatment applied using osteoconductive powders. Twenty-eight in vitro Ca-precipitated organic film-coated titanium discs and 13 explanted dental implants were treated. In a 2-step approach, 3 powders were used: hydroxylapatite (HA) and biomimetic calcium phosphate (BioCaP), which are osteoconductive, and erythritol, which is not. APA treatment was applied. (Air pressure: 2.4 bar; water flow for cleaning: 41.5 ml/min, for Coating 1: 2.1 ml/min, and for Coating 2: 15.2 ml/min.) The test groups were as follows: Group 1: HA cleaning + BioCaP Coating 1; Group 2: HA cleaning + BioCaP Coating 2; Group 3: erythritol cleaning + BioCaP Coating 1; Group 4: erythritol cleaning + BioCaP Coating 2; Group 5: HA cleaning; Group 6: erythritol cleaning; and control: no powder. Cleaned areas were calculated by point counting method. Surface changes and chemical content were evaluated using light microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Cleaning effect between groups was compared by a pairwise Student's t test. The significance level was fixed at p < .05. Cleaning effect on the discs was 100% in all test groups and 5% in the control. Powder particles in varying size and shape were embedded on the surface. All HA- or CaP-treated surfaces showed Ca and P content but no surface damage. Calcified biofilm remnants were removed from the implant surface by the test groups, whereas in control groups, they remained. APA treatment with CaP and HA powders under clinically applicable pressure settings gives positive results in vitro; therefore, they could be promising when used in vivo.
Collapse
Affiliation(s)
- Ceylin S. Tastepe
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit Amsterdam
| | - Xingnan Lin
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit Amsterdam
- Affiliated Stomatological Hospital of Medical SchoolNanjing University, Department of OrthodonticsNanjingChina
| | - Arie Werner
- Department of Dental Material Sciences, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit Amsterdam
| | - Marcel Donnet
- Research Group, DentalE.M.S. Electro Medical Systems S.A.Switzerland
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit Amsterdam
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit Amsterdam
| |
Collapse
|
32
|
Tastepe CS, Lin X, Donnet M, Doulabi BZ, Wismeijer D, Liu Y. Re-establishment of Biocompatibility of the In Vitro Contaminated Titanium Surface Using Osteoconductive Powders With Air-Abrasive Treatment. J ORAL IMPLANTOL 2018; 44:94-101. [PMID: 29303415 DOI: 10.1563/aaid-joi-d-17-00128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To achieve re-osseointegration on implant surfaces exposed to peri-implant infections, treatment should re-establish biocompatibility. The aim of this study was to test whether air powder abrasive treatment (APA) using osteoconductive powders can, in addition to cleaning, increase the biocompatibility of the contaminated implant surface. Ninety-six in vitro Ca-precipitated, organic film layer-coated sandblasted and acid-etched titanium discs were treated by APA using erythritol, hydroxylapatite (HA), and biocalcium phosphate (BioCaP) powders (n = 16 per group). Six treatment modalities were created (HA or erythritol cleaning with/without BioCaP coating). MC3T3-E1cells were seeded on discs, and cell attachment, viability, proliferation, and differentiation were evaluated. Pristine discs were used as control (control 1). Contaminated and nontreated discs were used as control (control 2). The cells were stretched and attached in all test groups. The cell viability and proliferation (DNA amount) in all test groups were significantly higher than in the pristine and contaminated disc groups. There was no significant difference between the test groups. The differentiation (alkaline phosphatase activity) of the cells on treated discs was significantly higher than on the contaminated discs but lower than in the pristine group. The cell viability in control 2 was significantly lower than the control 1. The APA with osteoconductive powder on contaminated titanium surfaces promoted the cell viability, proliferation, and differentiation of the MC3T3-E1 cells. The biocompatibility of the surface was higher than that of the contaminated discs. The tested aspects of cell response, with the exception of differentiation, reached to the level of the pristine surface. The in vitro results showed that APA with osteoconductive powders could be a promising method for implant surface treatment.
Collapse
Affiliation(s)
- Ceylin S Tastepe
- 1 Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Xingnan Lin
- 1 Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,2 Affiliated Stomatological Hospital of Medical School, Nanjing University, Department of Orthodontics, Nanjing, China
| | - Marcel Donnet
- 3 E.M.S. Electro Medical Systems S.A., Research Group Dental, Nyon, Switzerland
| | - Behrouz Zandieh Doulabi
- 4 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel Wismeijer
- 1 Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yuelian Liu
- 1 Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Wei MC, Tran C, Meredith N, Walsh LJ. Effectiveness of implant surface debridement using particle beams at differing air pressures. Clin Exp Dent Res 2017; 3:148-153. [PMID: 29744193 PMCID: PMC5839204 DOI: 10.1002/cre2.74] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022] Open
Abstract
Because implant surface decontamination is challenging, air powder abrasive systems have been suggested as an alternative debridement method. This in vitro study investigated the effectiveness of different powder formulations and air pressures in cleaning implant surfaces and the extent of surface damage. A validated ink model of implant biofilm was used. Sterile 4.1 × 10 mm Grade 4 titanium implants were coated in a blue indelible ink to form a uniform, visually detectable biofilm-like layer over the implant threads and mounted into a bone replica material with bony defects to approximate peri-implantitis. Air powder abrasive treatments were undertaken using glycine, sodium bicarbonate, or calcium carbonate powder at air pressures of 25, 35, 45, and 55 psi. Digital macro photographs of the threads were stitched to give composite images of the threads, so the amount of ink remaining could be quantified as the residual area and expressed as a percentage. Implant surfaces were also examined with scanning electron microscopy to grade the surface changes. No treatment cleaned all the surface of the threads. The powders were ranked in order of decreasing effectiveness and decreasing surface change into the same sequence of calcium carbonate followed by sodium bicarbonate followed by glycine. Higher air pressure improved cleaning and increased surface change, with a plateau effect evident. All powders caused some level of surface alteration, with rounding of surface projections most evident. With air powder abrasive systems, there is a trade-off between cleaning efficacy and surface damage. Using this laboratory model, sodium bicarbonate and calcium carbonate powders were the most effective for surface cleaning when used at air pressures as low as 25 psi.
Collapse
Affiliation(s)
- Max C.T. Wei
- School of DentistryThe University of QueenslandQueenslandAustralia
| | - Carol Tran
- School of DentistryThe University of QueenslandQueenslandAustralia
| | - Neil Meredith
- College of Medicine and DentistryJames Cook UniversityQueenslandAustralia
| | | |
Collapse
|
34
|
Evaluation of the Removal Bacteria on Failed Titanium Implants After Irradiation With Erbium-Doped Yttrium Aluminium Garnet Laser. J Craniofac Surg 2017; 27:1202-4. [PMID: 27391491 DOI: 10.1097/scs.0000000000002735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peri-implantitis may occur because of biologic or mechanical factors. It can be treated by a variety of methods. The aim of the present study is to evaluate implant surface of failed oral titanium implants after being irradiated with erbium laser.
Collapse
|
35
|
Hakki SS, Tatar G, Dundar N, Demiralp B. The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study. Lasers Med Sci 2017; 32:563-571. [DOI: 10.1007/s10103-017-2149-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022]
|
36
|
Batsukh N, Feng SW, Lee WF, Leu SJ, Tsai PY, Ho KN, Lin CT, Su CH, Chang WJ. Effects of Porphyromonas gingivalis on Titanium Surface by Different Clinical Treatment. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0194-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Lasserre JF, Toma S, Bourgeois T, El Khatmaoui H, Marichal E, Brecx MC. Influence of low direct electric currents and chlorhexidine upon human dental biofilms. Clin Exp Dent Res 2016; 2:146-154. [PMID: 29744161 PMCID: PMC5839210 DOI: 10.1002/cre2.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/03/2022] Open
Abstract
Dental biofilms have been widely associated with biological complications of oral implants. Currently, no consensus exists regarding the most reliable anti-infective approach to treat peri-implantitis. This study aimed to investigate whether low direct electric currents (DC) could influence chlorhexidine (CHX) 0.2% antimicrobial efficacy against human dental biofilms. To support biofilm accumulation, discs made with machined titanium (Ti) or hydroxyapatite (HA) were used. Five volunteers wore during 24 h an intraoral thermoformed splint on which ten specimens were bonded. Biofilms were then collected and treated ex vivo. During each antimicrobial experiment (N = 20 replicates), two modalities of treatment (CHX/PBS = control groups and CHX/PBS+5mA = test groups) were tested (n = 5 discs each) and the number of viable bacteria evaluated in LogCFU/mL at baseline, 0.5, 1, 2 and 5 min. The proportion of killed bacteria was also estimated and compared statistically at each time point between control and test groups. CHX+/-5mA induced a mean viability reduction around 90-95% after 5 min of treatment whatever the surface considered (Ti/HA). A significant difference regarding the bactericidal effect was noted on Ti surfaces after 0.5, 1 and 2 min in favor of the CHX+5mA modality when compared to CHX alone (p < 0.05). PBS+5mA also had a certain antimicrobial effect (58%) after 5 min on Ti surfaces. This effect was significantly higher than that observed with PBS (25%) (p < 0.05). This study showed that low DC (5mA) can have an antibiofilm effect and are also able to enhance chlorhexidine 0.2% efficacy against human dental biofilms grown on titanium surfaces.
Collapse
Affiliation(s)
- Jérôme F. Lasserre
- Department of Periodontology, School of DentistrySaint‐Luc University Hospital, Université catholique de LouvainBrusselsBelgium
| | - Selena Toma
- Department of Periodontology, School of DentistrySaint‐Luc University Hospital, Université catholique de LouvainBrusselsBelgium
- Institut de Recherche Expérimentale et Clinique, Pôle de MorphologieUniversité catholique de LouvainBrusselsBelgium
| | - Thomas Bourgeois
- Department of Periodontology, School of DentistrySaint‐Luc University Hospital, Université catholique de LouvainBrusselsBelgium
| | - Hajar El Khatmaoui
- Department of Periodontology, School of DentistrySaint‐Luc University Hospital, Université catholique de LouvainBrusselsBelgium
| | - Estelle Marichal
- Department of Periodontology, School of DentistrySaint‐Luc University Hospital, Université catholique de LouvainBrusselsBelgium
| | - Michel C. Brecx
- Department of Periodontology, School of DentistrySaint‐Luc University Hospital, Université catholique de LouvainBrusselsBelgium
- Institut de Recherche Expérimentale et Clinique, Pôle de MorphologieUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
38
|
Al-Hashedi AA, Laurenti M, Abdallah MN, Albuquerque RF, Tamimi F. Electrochemical Treatment of Contaminated Titanium Surfaces in Vitro: An Approach for Implant Surface Decontamination. ACS Biomater Sci Eng 2016; 2:1504-1518. [DOI: 10.1021/acsbiomaterials.6b00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ashwaq Ali Al-Hashedi
- Faculty
of Dentistry, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
- Department
of Prosthodontics, Faculty of Dentistry, Sana’a University, Wadi Dhaher Road, Sana’a, Yemen
| | - Marco Laurenti
- Department
of Physical Chemistry, Complutense University of Madrid, Avenida Séneca,
2, 28040 Madrid, Spain
| | - Mohamed-Nur Abdallah
- Faculty
of Dentistry, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Rubens F. Albuquerque
- Faculty
of Dentistry of Ribeirão Preto, University of São Paulo, 253 Avenida Prof. Dr. Zeferino Vaz, 109 Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Faleh Tamimi
- Faculty
of Dentistry, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
39
|
Chen CJ, Ding SJ, Chen CC. Effects of Surface Conditions of Titanium Dental Implants on Bacterial Adhesion. Photomed Laser Surg 2016; 34:379-88. [PMID: 27454339 DOI: 10.1089/pho.2016.4103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The study is to evaluate the effect of surface roughness of titanium implants on bacterial adhesion and then to investigate the efficacy of the three cleaning treatments for bacterial removal in titanium surfaces. BACKGROUND DATA Although surface debridement is the basic element for treatment of peri-implantitis to reduce bacterial adhesion, adjunctive therapies such as antiseptics and laser debridement have been proposed to improve the nonsurgical treatment options of the peri-implant infection. METHODS Titanium specimens were divided into five groups: No. 1200 grit sandpaper polishing (Grit), 50 μm (SB50), 100 μm (SB100), and 250 μm Al2O3 sandblasting (SB250), and sandblasting, large-grit, and acid-etching (SLA). Surface roughness (Ra), contact angle, and surface morphology were examined. The subsequent adhesion of Escherichia coli on the different substrates was assayed. After 8 h of bacterial culture, three different cleaning treatments, including plastic curettage, air-powder abrasive system, and Er:YAG laser debridement, were applied on the specimens. RESULTS The Ra value changed from the lower value of 0.2 μm for the Grit group to the significantly higher value of 2.7 μm for the SB250 group, indicating a significant difference from the SLA group (2.0 μm). The average contact angle of SLA (101°) was significantly higher than the other groups. No significant difference in E. coli bacterial adhesion was found among the all roughened groups, except the SB50 and SB250 groups at 12 h of culture. The use of three cleaning treatments did not induce significant surface alterations. However, the E. coli adhesion was significantly reduced in the air-powder abrasive system and laser debridement in comparison with that treated with the plastic curettage. CONCLUSIONS Laser debridement could be a useful cleaning method for peri-implantitis therapy.
Collapse
Affiliation(s)
- Chun-Ju Chen
- 1 Institute of Oral Science, Chung Shan Medical University , Taichung City, Taiwan
| | - Shinn-Jyh Ding
- 1 Institute of Oral Science, Chung Shan Medical University , Taichung City, Taiwan .,2 School of Dentistry, Chung Shan Medical University , Taichung City, Taiwan
| | - Chun-Cheng Chen
- 2 School of Dentistry, Chung Shan Medical University , Taichung City, Taiwan .,3 Department of Dentistry, Chung Shan Medical University Hospital , Taichung City, Taiwan
| |
Collapse
|
40
|
Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F. Decontamination of titanium implants using physical methods. Clin Oral Implants Res 2016; 28:1013-1021. [PMID: 27392811 DOI: 10.1111/clr.12914] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Current decontamination methods of titanium (Ti) implant present limited success in achieving predictable re-osseointegration. We hypothesized that even though these techniques could be useful in elimination of bacteria, they might be unsuccessful in removing organic contaminants and restoring the original surface composition. The aim of this study was to assess the effect of four decontamination methods on the surface chemistry and bacterial load of biofilm-contaminated implant surfaces in order to improve implant surface decontamination. MATERIAL AND METHODS The ability of clinically available methods such as metal and plastic curettes, Ti brushes and Er: YAG laser to decontaminate Ti implant surfaces was assessed. Surface morphology, chemical composition and properties of machined Ti discs (Ø 5.0 and 1.0 mm thick) were analysed before and after oral biofilm contamination using scanning electron microscope and X-ray photoelectron spectroscopy. The presence and viability of bacteria were evaluated with live-dead assays. RESULTS Biofilm contamination created an organic layer rich in hydrocarbons and bacteria that covered entirely the Ti surfaces. This organic layer has tightly adhered to Ti surfaces and could not be completely removed with any of the methods assessed. Ti brushes achieved greater elimination of organic contaminants and bacteria than curettes and Er: YAG laser; however, none of them was able to restore the original surface chemistry. Alternatively, Er: YAG laser-treated surfaces showed the lowest live-to-dead bacterial ratio. CONCLUSIONS Ti brushes were more effective than curettes (metal or plastic) and Er: YAG laser in decontaminating Ti implant surfaces, although none of these techniques was able to completely eliminate surface contamination. Er: YAG laser was more effective than curettes and Ti brushes in killing the biofilm bacteria.
Collapse
Affiliation(s)
- Ashwaq A Al-Hashedi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Prosthodontics, Faculty of Dentistry, Sana'a University, Sana'a, Yemen
| | - Marco Laurenti
- Department of Physical Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
Kotsakis GA, Lan C, Barbosa J, Lill K, Chen R, Rudney J, Aparicio C. Antimicrobial Agents Used in the Treatment of Peri‐Implantitis Alter the Physicochemistry and Cytocompatibility of Titanium Surfaces. J Periodontol 2016; 87:809-19. [DOI: 10.1902/jop.2016.150684] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Caixia Lan
- Department of Restorative Sciences, University of Minnesota, Minneapolis, MN
| | - Joao Barbosa
- Department of Restorative Sciences, University of Minnesota, Minneapolis, MN
| | - Krista Lill
- Department of Restorative Sciences, University of Minnesota, Minneapolis, MN
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, University of Minnesota
| | - Joel Rudney
- Department of Diagnostic and Biological Sciences, University of Minnesota
| | - Conrado Aparicio
- Department of Restorative Sciences, University of Minnesota, Minneapolis, MN
| |
Collapse
|
42
|
Armitage GC, Xenoudi P. Post-treatment supportive care for the natural dentition and dental implants. Periodontol 2000 2016; 71:164-84. [DOI: 10.1111/prd.12122] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
|
43
|
Schmidt KE, Auschill TM, Heumann C, Frankenberger R, Eick S, Sculean A, Arweiler NB. Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clin Oral Implants Res 2016; 28:483-490. [PMID: 27000771 DOI: 10.1111/clr.12823] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate surface characteristics of implants after using different instruments and biofilm formation following instrumentation. MATERIAL AND METHODS Thirty-five commercially available dental implants were embedded into seven plastic models, attached to a phantom head and randomly assigned to seven instrumentation groups: (1) stainless steel (SSC) or (2) titanium curettes (TC); air-polisher using glycine-based (3) perio (PP) or (4) soft (SP) powders or (5) erythritol powder (EP); and an ultrasonic device using (6) stainless steel (PS) or (7) plastic-coated instruments (PI). Half of each implant neck in each group (n = 5) was treated once (30 s), while the other half was left uninstrumented (control). An eighth (8) treatment group used a bur/polisher to smooth two implants (SM). Following instrumentation implants were rinsed (5 ml Ringer's solution), analysed under a scanning electron microscope (SEM) and subjected twice (separately) to bacterial colonization with Streptococcus gordonii (2 h) and a mixed culture (S. gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, Porphyromonas gingivalis and Tannerella forsythia; 24 h). RESULTS Visual assessment of SEM pictures revealed surface modifications (smoothening to roughening) following instrumentation. These alterations differed between the instrument groups and from the control. Quantitative scoring of the photographs revealed that SSC caused a significantly rougher surface compared to other instruments (P < 0.05), except for SP (P = 0.057) and PP (P = 0.108). After bacterial colonization no significant differences (P > 0.05) were evident between instrumented or control surfaces in either culture. CONCLUSIONS Overall, no significant differences were observed in the surface characteristics (except for SSC) or bacterial colonization based on one-time instrumentation.
Collapse
Affiliation(s)
| | | | - Christian Heumann
- Department of Statistics, Ludwig-Maximilian University, Munich, Germany
| | - Roland Frankenberger
- Department of Operative Dentistry and Endodontology, Philipps-University, Marburg, Germany
| | - Sigrun Eick
- Department of Periodontology, University of Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, University of Bern, Switzerland
| | | |
Collapse
|
44
|
Vigolo P, Buzzo O, Buzzo M, Mutinelli S. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments. J Prosthodont 2015; 26:129-135. [PMID: 26683122 DOI: 10.1111/jopr.12424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Plaque control is crucial for the prevention of inflammatory periodontal disease. Hand scaling instruments have been shown to be efficient for the removal of plaque; however, routine periodontal prophylactic procedures may modify the surface profile of restorative materials. The purpose of this study was to assess in vitro the changes in roughness of alumina, zirconia, and lithium disilicate surfaces treated by two hand scaling instruments. MATERIALS AND METHODS Forty-eight alumina specimens, 48 zirconia specimens, and 48 lithium disilicate specimens, were selected. All specimens were divided into three groups of 16 each; one group for each material was considered the control group and no scaling procedures were performed; the second group of each material was exposed to scaling with steel curettes simulating standard clinical conditions; the third group of each material was exposed to scaling with titanium curettes. After scaling, the surface roughness of the specimens was evaluated with a profilometer. First, a statistical test was carried out to evaluate the difference in surface roughness before the scaling procedure of the three materials was effected (Kruskal-Wallis test). Subsequently, the effect of curette material (steel and titanium) on roughness difference and roughness ratio was analyzed throughout the entire sample and within each material group, and a nonparametric test for dependent values was conducted (Wilcoxon signed-rank test). Finally, the roughness ratios of the three material groups were compared by means of a Kruskal-Wallis test and a Wilcoxon signed-rank test. Upon completion of profilometric evaluation, representative specimens from each group were prepared for SEM evaluation to evaluate the effects of the two scaling systems on the different surfaces qualitatively. RESULTS After scaling procedure, the roughness profile value increased in all disks. Classifying the full sample according to curette used, the roughness of the disks treated with a steel curette reached a higher median value than that of the titanium group. Zirconia demonstrated the least significant increase in surface roughness. The result was 3.9 times of the initial value as compared to 4.3 times for alumina and 4.6 times for lithium disilicate. CONCLUSIONS Comparison of profilometer readings before and after instrumentation, carried out with different hand scaling instruments, highlighted both a statistically and clinically relevant increase in material roughness.
Collapse
Affiliation(s)
- Paolo Vigolo
- Department of Clinical Odontostomatology, University of Padova, Institute of Clinical Odontostomatology, Padova, Italy
| | | | | | | |
Collapse
|
45
|
Sawai MA, Bhardwaj A, Jafri Z, Sultan N, Daing A. Tooth polishing: The current status. J Indian Soc Periodontol 2015; 19:375-80. [PMID: 26392683 PMCID: PMC4555792 DOI: 10.4103/0972-124x.154170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 02/14/2015] [Indexed: 11/24/2022] Open
Abstract
Healthy teeth and gums make a person feel confident and fit. As people go about their daily routines and with different eating and drinking habits, the tooth enamel turns yellowish or gets stained. Polishing traditionally has been associated with the prophylaxis procedure in most dental practices, which patients know and expect. However, with overzealous use of polishing procedure, there is wearing of the superficial tooth structure. This would lead to more accumulation of local deposits. Also, it takes a long time for the formation of the fluoride-rich layer of the tooth again. Hence, now-a-days, polishing is not advised as a part of routine oral prophylaxis procedure but is done selectively based on the patients’ need. The article here, gives an insight on the different aspects of the polishing process along with the different methods and agents used for the same.
Collapse
Affiliation(s)
- Madhuri Alankar Sawai
- Department of Periodontology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Ashu Bhardwaj
- Department of Periodontology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Zeba Jafri
- Department of Periodontology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Nishat Sultan
- Department of Periodontology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Anika Daing
- Department of Periodontology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
46
|
Toma S, Lasserre J, Brecx MC, Nyssen-Behets C. In vitroevaluation of peri-implantitis treatment modalities on Saos-2osteoblasts. Clin Oral Implants Res 2015; 27:1085-92. [DOI: 10.1111/clr.12686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Selena Toma
- Department of Periodontology; Université Catholique de Louvain; Brussels Belgium
| | - Jerome Lasserre
- Department of Periodontology; Université Catholique de Louvain; Brussels Belgium
| | - Michel C. Brecx
- Department of Periodontology; Université Catholique de Louvain; Brussels Belgium
| | | |
Collapse
|
47
|
John G, Becker J, Schwarz F. Effectivity of air-abrasive powder based on glycine and tricalcium phosphate in removal of initial biofilm on titanium and zirconium oxide surfaces in an ex vivo model. Clin Oral Investig 2015; 20:711-9. [PMID: 26319979 DOI: 10.1007/s00784-015-1571-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/16/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The purpose of the present study was the evaluation of effectiveness and efficiency of a powder consisting of glycine and tricalcium phosphate in comparison to two established powders based on glycine or sodium bicarbonate in biofilm removal on titanium and zirconium implant surfaces. MATERIALS AND METHODS Biofilm was collected for 48 h by five volunteers. A total of 69 titanium and 69 zirconium samples were randomly assigned to test and control groups. Residual plaque areas (RPA) and treatment time were taken as parameters. RESULTS Within the titanium groups, mean RPA was determined in the following descending order: sodium bicarbonate > glycine > glycine + tricalcium phosphate. Differences between the groups were significant, p < 0.05. Mean treatment time in the titanium groups was determined in the following descending order without significant differences, p > 0.05: glycine + tricalcium phosphate > sodium bicarbonate > glycine. Regarding the zirconium groups, mean RPA was detected in the following descending order, without significant differences, p > 0.05: glycine > sodium bicarbonate > glycine + tricalcium phosphate. Mean treatment time of the glycine + tricalcium phosphate group was significantly lower than in the control groups, p < 0.05. CONCLUSIONS It can be concluded that glycine + tricalcium phosphate seemed to be more effective than the control groups for biofilm removal on titanium and zirconium implant surfaces. Especially on zirconium surfaces, decontamination with glycine + tricalcium phosphate seemed to be more efficient than treatment with glycine or sodium bicarbonate. CLINICAL RELEVANCE The combination of glycine and tricalcium phosphate could improve the clinical outcomes of air-abrasive device in nonsurgical peri-implantitis therapy.
Collapse
Affiliation(s)
- Gordon John
- Department of Oral Surgery, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Jürgen Becker
- Department of Oral Surgery, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Frank Schwarz
- Department of Oral Surgery, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
48
|
Wang Y, Zhang Y, Miron RJ. Health, Maintenance, and Recovery of Soft Tissues around Implants. Clin Implant Dent Relat Res 2015; 18:618-34. [PMID: 25873299 DOI: 10.1111/cid.12343] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The health of peri-implant soft tissues is one of the most important aspects of osseointegration necessary for the long-term survival of dental implants. PURPOSE To review the process of soft tissue healing around osseointegrated implants and discuss the maintenance requirements as well as the possible short-comings of peri-implant soft tissue integration. MATERIALS AND METHODS Literature search on the process involved in osseointegration, soft tissue healing and currently available treatment modalities was performed and a brief description of each process was provided. RESULTS The peri-implant interface has been shown to be less effective than natural teeth in resisting bacterial invasion because gingival fiber alignment and reduced vascular supply make it more vulnerable to subsequent peri-implant disease and future bone loss around implants. And we summarized common procedures which have been shown to be effective in preventing peri-implantitis disease progression as well as clinical techniques utilized to regenerate soft tissues with bone loss in advanced cases of peri-implantitis. CONCLUSION Due to the difference between peri-implant interface and natural teeth, clinicians and patients should pay more attention in the maintenance and recovery of soft tissues around implants.
Collapse
Affiliation(s)
- Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Morphological and Chemical Characteristics of Different Titanium Surfaces Treated by Bicarbonate and Glycine Powder Air Abrasive Systems. IMPLANT DENT 2015; 24:47-56. [DOI: 10.1097/id.0000000000000176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Blasi A, Iorio-Siciliano V, Pacenza C, Pomingi F, Matarasso S, Rasperini G. Biofilm removal from implants supported restoration using different instruments: a 6-month comparative multicenter clinical study. Clin Oral Implants Res 2014; 27:e68-73. [PMID: 25496020 DOI: 10.1111/clr.12530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to compare the efficacy of different instruments on biofilm removal from implant supported restorations. MATERIALS AND METHODS The study was designed as comparative multicenter clinical study including patients proceeding from the Milan, Naples, and Buenos Aires, with a peri-implant mucositis. Implants enrolled for the study were allocated in 4 groups and treated with ultrasonic scalers with plastic tips, with titanium curettes, with airflow with glycine powder, and with rubber cup and polishing paste, respectively. mPI was assessed at baseline, immediately after therapy, at 1, 3, and 6 months. mBI, PD, and REC were assessed at baseline, 1, 3, and 6 months. All parameters were recorded on six sites per implant. Kruskal-Wallis and Mann-Whitney tests were used to compare groups and centers. A generalized linear model for repeated measures was chosen for inter-group comparison. An intra-group comparison was performed with repeated measure ANOVA test to assess differences between baseline and recalls. RESULTS A total of 89 patients (39 males, 50 females) were enrolled in the study, and 141 implants were available for the analysis. 55 implants were enrolled in University of Buenos Aires, 32 in University of Milan, and 54 in University of Naples. There were no significant differences between the four groups in inflammatory status reduction of peri-implant mucosa. CONCLUSIONS Non-surgical therapy is effective in reducing peri-implant mucositis. Sonic scaler with plastic tip and rubber cup with polishing paste showed higher efficacy when compared with titanium curettes or airflow with glycine powder.
Collapse
Affiliation(s)
- Andrea Blasi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, Italy
| | - Vincenzo Iorio-Siciliano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, Italy
| | - Carina Pacenza
- Department of Periodontology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Sergio Matarasso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, Italy
| | - Giulio Rasperini
- Department of Surgical Reconstructive and Diagnostic Science, Unit of Periodontology, University of Milan, Milan, Italy
| |
Collapse
|