1
|
Seoane-Viaño I, Seoane-Gigirey M, Bendicho-Lavilla C, Gigirey LM, Otero-Espinar FJ, Seoane-Trigo S. The Integration of Advanced Drug Delivery Systems into Conventional Adjuvant Therapies for Peri-Implantitis Treatment. Pharmaceutics 2024; 16:769. [PMID: 38931890 PMCID: PMC11207621 DOI: 10.3390/pharmaceutics16060769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the high success rates of dental implants, peri-implantitis is currently the most common complication in dental implantology. Peri-implantitis has an inflammatory nature, it is associated with the accumulation of plaque in the peri-implant tissues, and its evolution can be progressive depending on various factors, comorbidities, and poor oral health. Prophylaxis and different treatment methods have been widely discussed in recent decades, and surgical and non-surgical techniques present both advantages and disadvantages. In this work, a literature review of different studies on the application of adjuvant treatments, such as local and systemic antibiotics and antiseptic treatments, was conducted. Positive outcomes have been found in the short (up to one year after treatment) and long term (up to ten years after treatment) with combined therapies. However, there is still a need to explore new therapies based on the use of advanced drug delivery systems for the effective treatment of peri-implantitis in the long term and without relapses. Hence, micro- and nanoparticles, implants, and injectable hydrogels, among others, should be considered in future peri-implantitis treatment with the aim of enhancing overall therapy outcomes.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.S.-G.); (C.B.-L.); (F.J.O.-E.)
- Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Mariola Seoane-Gigirey
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.S.-G.); (C.B.-L.); (F.J.O.-E.)
| | - Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.S.-G.); (C.B.-L.); (F.J.O.-E.)
- Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Luz M. Gigirey
- Department of Applied Physics, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.S.-G.); (C.B.-L.); (F.J.O.-E.)
- Paraquasil Group (GI-2109), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Santiago Seoane-Trigo
- Ph. Dr. Adult Comprehensive Dentistry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Manzano-Moreno FJ, Gónzalez-Acedo A, de Luna-Bertos E, García-Recio E, Ruiz C, Reyes-Botella C. Effect of amoxicillin and clindamycin on the gene expression of markers involved in osteoblast physiology. J Dent Sci 2024; 19:990-997. [PMID: 38618075 PMCID: PMC11010622 DOI: 10.1016/j.jds.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Amoxicillin and clindamycin are the most effective decontaminants for intraoral bone grafts before their application in bone regeneration without cytotoxic effects on osteoblasts, but their effects on the gene expression of markers involved in osteoblast growth and differentiation remain unclear. The study objective was to determine the effects of amoxicillin and clindamycin on the gene expression of markers involved in osteoblast growth and differentiation. Materials and methods Real-time polymerase chain reaction (RT-PCR) was performed to explore the effect of 150 μg/mL clindamycin or 400 μg/mL amoxicillin on the gene expression by primary human osteoblasts (HOBs) of runt-related transcription factor 2 (Runx-2), osterix (OSX), alkaline phosphatase (ALP), osteocalcin (OSC), osteoprotegerin (OPG), receptor activator for nuclear factor κ B ligand (RANKL), type I collagen (Col-I), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), TGF-β1 and TGF-β receptors (TGF-βR1, TGF-βR2, and TGF-βR3), and vascular endothelial growth factor (VEGF). Results Treatment with 150 μg/mL clindamycin significantly increased the gene expression of TFG-β1, TGF-βR1, TGF-βR2, TGF-βR3, RUNX-2, Col-1, OSX, OSC, BMP-2, BMP-7, ALP, VEGF, and RANKL by HOBs. Treatment with 400 μg/mL amoxicillin significantly increased the gene expression of TGF-β R1, Col-I, OSC, RANKL, and OPG alone. Conclusion These findings suggest that 150 μg/mL clindamycin is the decontaminant of choice to treat intraoral bone grafts before their application in bone regeneration. The osteogenic and antibacterial properties of clindamycin can favor and accelerate the integration of bone grafts in the oral cavity.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
| | - Anabel Gónzalez-Acedo
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Melilla, Spain
| | - Elvira de Luna-Bertos
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Granada, Spain
| | - Enrique García-Recio
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Melilla, Spain
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Granada, Spain
- Institute of Neuroscience, University of Granada, Granada, Spain
| | - Candela Reyes-Botella
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
| |
Collapse
|
3
|
Aimetti M, Baima G, Aliyeva N, Lorenzetti V, Citterio F, Franco F, Di Scipio F, Berta GN, Romano F. Influence of locally delivered doxycycline on the clinical and molecular inflammatory status of intrabony defects prior to periodontal regeneration: A double-blind randomized controlled trial. J Periodontal Res 2023; 58:1096-1104. [PMID: 37553767 DOI: 10.1111/jre.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES To test the effect of locally delivered doxycycline (DOX) administered 2 weeks prior to minimally invasive periodontal regeneration in terms of presurgical inflammatory status and cytokine expression profile in the gingival crevicular fluid (GCF). Secondary aim was to assess the early wound healing index (EHI) at 2 weeks after surgery. BACKGROUND It is hypothesized that healing after periodontal regeneration is dependent on preoperative soft tissue condition, and that local antibiotics may improve the site-specific inflammatory status at short time. METHODS Sites associated with periodontal intrabony defects requiring regenerative surgery and showing bleeding on probing (BoP) were included. At T0, experimental sites were randomly treated with subgingival instrumentation with or without topic DOX application. After 2 weeks (T1), defects were approached by means of minimally invasive surgical technique. GCF was sampled at both T0 and T1 for inflammatory biomarker analysis. Two weeks after surgery, the EHI was evaluated (T2). RESULTS Forty-four patients were included. At T1, the number of BoP+ sites was statistically significantly less in the test group (27.3% vs. 72.7%; p < .01). The total amount of interleukin (IL)-1β (p < .001), matrix-metalloproteinases (MMP)-8 (p < .001), and MMP-9 (p = .010) in the GCF significantly decreased in the test group at T1, with relevant differences compared to controls. At T2, the EHI had an average value of 1.45 ± 0.86 in the test group while in the control, it was 2.31 ± 1.43 (p = .027). A statistically significantly positive correlation was observed between the amount of IL-1β and MMP-9 and EHI scores. CONCLUSIONS Within the limitations of this study, sites treated with DOX showed improved clinical and molecular inflammatory parameters before surgery, as well as soft tissue healing 2 weeks after surgery.
Collapse
Affiliation(s)
- Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Nargiz Aliyeva
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Virginia Lorenzetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Martin V, Bettencourt AF, Santos C, Fernandes MH, Gomes PS. Unveiling the Osteogenic Potential of Tetracyclines: A Comparative Study in Human Mesenchymal Stem Cells. Cells 2023; 12:2244. [PMID: 37759467 PMCID: PMC10526833 DOI: 10.3390/cells12182244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibiotics with diverse pharmacotherapeutic properties due to their various functional groups being attached to a common core structure. Beyond their antibacterial activity, TCs trigger pleiotropic effects on eukaryotic cells, including anti-inflammatory and potentially osteogenic capabilities. Consequently, TCs hold promise for repurposing in various clinical applications, including bone-related conditions. This study presents the first comprehensive comparison of the in vitro osteogenic potential of four TCs-tetracycline, doxycycline, minocycline, and sarecycline, within human mesenchymal stem cells. Cultures were characterized for metabolic activity, cell morphology and cytoskeleton organization, osteogenic gene expression, alkaline phosphatase (ALP) activity, and the activation of relevant signaling pathways. TCs stimulated actin remodeling processes, inducing morphological shifts consistent with osteogenic differentiation. Osteogenic gene expression and ALP activity supported the osteoinduction by TCs, demonstrating significant increases in ALP levels and the upregulation of RUNX2, SP7, and SPARC genes. Minocycline and sarecycline exhibited the most potent osteogenic induction, comparable to conventional osteogenic inducers. Signaling pathway analysis revealed that tetracycline and doxycycline activate the Wnt pathway, while minocycline and sarecycline upregulated Hedgehog signaling. Overall, the present findings suggest that TCs promote osteogenic differentiation through distinct pathways, making them promising candidates for targeted therapy in specific bone-related disorders.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| |
Collapse
|
5
|
Martin V, Grenho L, Fernandes MH, Gomes PS. Repurposing sarecycline for osteoinductive therapies: an in vitro and ex vivo assessment. J Bone Miner Metab 2023:10.1007/s00774-023-01428-9. [PMID: 37036531 DOI: 10.1007/s00774-023-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/06/2022] [Indexed: 04/11/2023]
Abstract
INTRODUCTION Tetracyclines (TCs) embrace a class of broad-spectrum antibiotics with unrelated effects at sub-antimicrobial levels, including an effective anti-inflammatory activity and stimulation of osteogenesis, allowing their repurposing for different clinical applications. Recently, sarecycline (SA)-a new-generation molecule with a narrower antimicrobial spectrum-was clinically approved due to its anti-inflammatory profile and reduced adverse effects verified with prolonged use. Notwithstanding, little is known about its osteogenic potential, previously verified for early generation TCs. MATERIALS AND METHODS Accordingly, the present study is focused on the assessment of the response of human bone marrow-derived mesenchymal stromal cells (hBMSCs) to a concentration range of SA, addressing the metabolic activity, morphology and osteoblastic differentiation capability, further detailing the modulation of Wnt, Hedgehog, and Notch signaling pathways. In addition, an ex vivo organotypic bone development system was established in the presence of SA and characterized by microtomographic and histochemical analysis. RESULTS hBMSCs cultured with SA presented a significantly increased metabolic activity compared to control, with an indistinguishable cell morphology. Moreover, RUNX2 expression was upregulated 2.5-fold, and ALP expression was increased around sevenfold in the presence of SA. Further, GLI2 expression was significantly upregulated, while HEY1 and HNF1A were downregulated, substantiating Hedgehog and Notch signaling pathways' modulation. The ex vivo model developed in the presence of SA presented a significantly enhanced collagen deposition, extended migration areas of osteogenesis, and an increased bone mineral content, substantiating an increased osteogenic development. CONCLUSION Summarizing, SA is a promising candidate for drug repurposing within therapies envisaging the enhancement of bone healing/regeneration.
Collapse
Affiliation(s)
- Victor Martin
- LAQV/REQUIMTE, U. Porto, 4160-007, Porto, Portugal
- BoneLab - Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Liliana Grenho
- LAQV/REQUIMTE, U. Porto, 4160-007, Porto, Portugal
- BoneLab - Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Maria H Fernandes
- LAQV/REQUIMTE, U. Porto, 4160-007, Porto, Portugal
- BoneLab - Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Pedro S Gomes
- LAQV/REQUIMTE, U. Porto, 4160-007, Porto, Portugal.
- BoneLab - Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal.
| |
Collapse
|
6
|
Micu IC, Muntean A, Roman A, Stratul ȘI, Pall E, Ciurea A, Soancă A, Negucioiu M, Barbu Tudoran L, Delean AG. A Local Desiccant Antimicrobial Agent as an Alternative to Adjunctive Antibiotics in the Treatment of Periodontitis: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030456. [PMID: 36978324 PMCID: PMC10044681 DOI: 10.3390/antibiotics12030456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Periodontitis is one of the most common oral polymicrobial infectious diseases induced by the complex interplay between the altered subgingival microbiota and the host’s dysregulated immune-inflammatory response, leading to the initiation of progressive and irreversible destruction of the periodontal tissues and eventually to tooth loss. The main goal of cause-related periodontal therapy is to eliminate the dysbiotic subgingival biofilm in order to arrest local inflammation and further periodontal tissue breakdown. Because, in some cases, subgingival mechanical instrumentation has limited efficiency in achieving those goals, various adjunctive therapies, mainly systemic and locally delivered antimicrobials, have been proposed to augment its effectiveness. However, most adjunctive antimicrobials carry side effects; therefore, their administration should be precociously considered. HybenX® (HY) is a commercial therapeutical agent with decontamination properties, which has been studied for its effects in treating various oral pathological conditions, including periodontitis. This review covers the current evidence regarding the treatment outcomes and limitations of conventional periodontal therapies and provides information based on the available experimental and clinical studies related to the HY mechanism of action and effects following its use associated with subgingival instrumentation and other types of dental treatments.
Collapse
Affiliation(s)
- Iulia C. Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Pedodontics, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Avram Iancu St., No. 31, 400117 Cluj-Napoca, Romania
- Correspondence: (A.M.); (A.S.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Ștefan I. Stratul
- Department of Periodontology, Anton Sculean Research Center of Periodontal and Peri-Implant Diseases, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy Timișoara, Bulevardul Revoluției din 1989, No.9, 300230 Timișoara, Romania
| | - Emöke Pall
- Department of Infectious Disease, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur St., No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
- Correspondence: (A.M.); (A.S.)
| | - Marius Negucioiu
- Department of Prosthodontics, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 32, 400006 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Center, Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeş-Bolyai University, Clinicilor St., No. 5-7, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory (LIME), National Institute for Research and Development of Isotopic and Molecular Technologies, Institutul Național de Cercetare-Dezvoltare pentru Tehnologii Izotopice și Moleculare, 67-103 Donath St., 400293 Cluj-Napoca, Romania
| | - Ada G. Delean
- Department of Cariology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Moților St., No. 33, 400001 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Gavrailov T, Chenchev I, Gevezova M, Draganova M, Sarafian V. Effect on Cellular Vitality In Vitro of Novel APRF-Chlorhexidine Treated Membranes. J Funct Biomater 2022; 13:jfb13040226. [PMID: 36412868 PMCID: PMC9680238 DOI: 10.3390/jfb13040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Chlorhexidine (CHX) has been used for some time in clinical practice as a local antiseptic agent with excellent efficacy. The combination of CHX with APRF (Advanced-platelet rich fibrin) membrane has the potential to stimulate tissue regeneration and to provide a bactericidal effect. We hypothesize that this may reduce the rate of infections development and protect cell viability. AIM The aim of this study was two-fold-to create a stable APRF membrane treated with different concentrations of CHX (0.01% and 0.02%) and to monitor its effect on the viability of PDL cells in vitro. This benefits the introduction of a new protocol for APRF membrane production -CHX-PRF and enriches the available evidence on the effect of this antiseptic agent on PDL (Periodontal ligament) cells. MATERIALS AND METHODS APRF membranes were prepared by the addition of two concentrations (0.01% and 0.02%) of CHX. Membranes without the antiseptic were also prepared and used as control samples. PDL cells were cultivated on the membranes for 72 h. Cell number and vitality were examined by fluorescent cell viability assays. RESULTS Our results demonstrated that a concentration of 0.01% CHX allowed the production of a stable APRF membrane. This concentration slightly reduced the viability of PDL cells to 96.7%, but significantly decreased the average number of cells attached to the membrane-149 ± 16.5 cells/field compared to controls -336 ± 26.9 cells/field. APRF-CHX 0.02% membranes were unstable, indicating a dose-dependent cytotoxic effect of CHX. CONCLUSIONS The introduced novel protocol leads to the production of a new type of APRF membrane-CHX-PRF. The incorporation of an antiseptic into the APRF membrane can improve its bactericidal activity and might serve as an important step for the prevention of postoperative infections.
Collapse
Affiliation(s)
- Tasho Gavrailov
- Department of Oral Surgery, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Ivan Chenchev
- Department of Oral Surgery, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Research Institute at MU-Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Medical Biology, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| | - Milena Draganova
- Research Institute at MU-Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Medical Biology, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Research Institute at MU-Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Medical Biology, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Toledano M, Vallecillo C, Gutierrez-Corrales A, Torres-Lagares D, Toledano-Osorio M, Serrera-Figallo MA. Histomorphometric Analysis of Differential Regional Bone Regeneration Induced by Distinct Doped Membranes. Polymers (Basel) 2022; 14:polym14102078. [PMID: 35631960 PMCID: PMC9147672 DOI: 10.3390/polym14102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Our objective is to evaluate the regional regenerative potential of calvarial bone in critical-sized defects in a rabbit model using novel nanostructured silica-loaded membranes doped with zinc or doxycycline. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5 wt% of SiO2 nanoparticles (HOOC-Si-Membranes) were doped with zinc (Zn-HOOC-Si-Membrane) or doxycycline (Dox-HOOC-Si-Membrane). Critical bone defects were created on six New-Zealand-breed rabbit skulls and covered with the membranes. A sham defect without a membrane was used as the control. After six weeks, a histological analysis (toluidine blue technique) was employed to determine the area percentages of newly formed bone, osteoid bone, and soft tissue. The measurements were performed by dividing the total defect area into top (close to the membrane) and bottom (close to the dura mater) regions, or peripheral (adjacent to the old bone) and central (the sum of the remaining zones) regions. The peripheral regions of the defects showed higher osteogenic capacity than the central areas when the membranes were present. The proportion of new bone adjacent to the dura was similar to that adjacent to the membrane only when the HOOC-Si-Membranes and Zn-HOOC-Si-Membranes were used, indicating a direct osteoinductive effect of the membranes.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.); (C.V.)
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.); (C.V.)
| | - Aida Gutierrez-Corrales
- Faculty of Dentistry, Oral Surgery Section, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (A.G.-C.); (D.T.-L.); (M.-A.S.-F.)
| | - Daniel Torres-Lagares
- Faculty of Dentistry, Oral Surgery Section, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (A.G.-C.); (D.T.-L.); (M.-A.S.-F.)
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.); (C.V.)
- Correspondence: ; Tel.: +34-958-243-789
| | - María-Angeles Serrera-Figallo
- Faculty of Dentistry, Oral Surgery Section, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (A.G.-C.); (D.T.-L.); (M.-A.S.-F.)
| |
Collapse
|
9
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
10
|
Zhang T, Qiu Y, Song J, Zhou P, Liao H, Cheng Y, Wu X. Electrosprayed minocycline hydrochloride-loaded microsphere/SAIB hybrid depot for periodontitis treatment. Drug Deliv 2021; 28:620-633. [PMID: 33779441 PMCID: PMC8008938 DOI: 10.1080/10717544.2021.1902020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Minocycline hydrochloride (MINO) has been one of the most frequently used antibiotics in the treatment of periodontitis due to its antibacterial activity and osteogenesis effects; however, high levels of MINO administered during the treatment halt the formation of new bone. Therefore, the purpose of the present study was to prepare a MINO-microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot to reduce the burst release of MINO and ensure antibacterial and osteogenesis effects of MINO in the treatment of periodontitis. Uniform microspheres, approximately 5 µm size, with a slightly rough surface and different MINO loading (10, 12, and 14%) were prepared, and the microspheres were added into SAIB, after which the burst release significantly decreased from 66.18 to 2.92%, from 71.82 to 3.82%, and from 73.35 to 4.45%, respectively, and the release from all the MINO-microspheres/SAIB hybrid depots lasted for 77 days. In addition, cytotoxicity test showed that the MINO-microsphere with 12% drug loading promoted the proliferation of osteoblasts the most and was subsequently used in vivo experiments. Moreover, in the model of ligatured-induced periodontitis in SD rats, the MINO-microsphere/SAIB hybrid depot not only significantly increased the alveolar bone height and bone volume but also reduced the inflammation of the periodontal tissue. Additionally, it also inhibited the expression of the receptor activator of nuclear factor-kappa B ligand (RANKL) and promoted the expression of osteoprotegerin (OPG).. These results indicated that the MINO-microsphere/SAIB hybrid depot might be promising in the treatment of periodontitis.
Collapse
Affiliation(s)
- Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yingqian Qiu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pengfei Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hang Liao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Cheng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
11
|
Ma Y, Song J, Almassri HNS, Zhang D, Zhang T, Cheng Y, Wu X. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis. Drug Deliv 2020; 27:151-160. [PMID: 31913739 PMCID: PMC6968699 DOI: 10.1080/10717544.2019.1709921] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Minocycline (MINO) is a tetracycline antibiotic effective against most of the bacteria microorganisms related to periodontal disease. Additionally, MINO promotes bone in vitro and in vivo. The objective of the present study was to establish the protocol for the preparation of MINO-loaded poly (lactic-co-glycolic acid) (MINO-PLGA) electrospun membranes and to evaluate their effect on osteogenesis in vitro and in a rat model of periodontitis. The characterization of MINO-PLGA electrospun membranes was assessed by scanning electron microscopy, laser scanning confocal microscopy, and contact angle measurement. The drug release study showed a sustained diffusion of MINO from electrospun membranes over a period of 40 d. The MINO-PLGA membranes containing 2% of the drug exhibited better support of osteoblast proliferation and adhesion and was subsequently used in vivo in an experimental periodontitis model. Its therapeutic potential was evaluated by the measurement of alveolar bone loss (ABL), bone volume analysis, histological analysis, and immunohistochemistry. MINO-PLGA membrane increased alveolar crest height in the periodontitis model, inhibited the expression of the ligand of the receptor activator for nuclear factor-κB (RANKL), and promoted the expression of its inhibitor, osteoprotegerin. The study demonstrated that MINO-PLGA electrospun membranes may be applied to stimulate bone regeneration in periodontitis.
Collapse
Affiliation(s)
- Yihui Ma
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huthayfa N S Almassri
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dan Zhang
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Cheng
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
12
|
Massarelli E, Silva D, Pimenta AFR, Fernandes AI, Mata JLG, Armês H, Salema-Oom M, Saramago B, Serro AP. Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. Int J Pharm 2020; 593:120110. [PMID: 33246052 DOI: 10.1016/j.ijpharm.2020.120110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Wound care remains a challenge in healthcare. This work aimed to develop a new polyvinyl alcohol (PVA)/chitosan (Ch) based wound dressing able to ensure protection, hydration and a controlled release of antiseptics, as alternative to actual treatments. Two distinct formulations (1:1 and 3:1, w/w) were prepared, sterilized by autoclaving and characterized concerning surface morphology, degradation over the time, mechanical properties and hydrophilicity. Both dressings revealed adequate properties for the intended purpose. The dressings were loaded with chlorhexidine (CHX) and polyhexanide (PHMB) and the drug release profiles were determined using Franz diffusion cells. The release of PHMB was more sustained than CHX, lasting for 2 days. As the amounts of drugs released by PVA/Ch 1:1 were greater, the biological tests were done only with this formulation. The drug loaded dressings revealed antibacterial activity against S. aureus and S. epidermidis, but only the ones loaded with PHMB showed adequate properties in terms of cytotoxicity and irritability. The application of this elastic dressing in the treatment of wounds in a dog led to faster recovery than conventional treatment, suggesting that the material can be a promising alternative in wound care.
Collapse
Affiliation(s)
- E Massarelli
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - D Silva
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - A F R Pimenta
- Bioceramed, Rua José Gomes Ferreira n° 1 - Armazém D, 2660-360 São Julião do Tojal, Loures, Portugal.
| | - A I Fernandes
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - J L G Mata
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - H Armês
- Hospital Veterinário de S. Bento, Rua de S. Bento, 358-A, 1200-822 Lisboa, Portugal
| | - M Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - B Saramago
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - A P Serro
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
13
|
Carvalho ÉBS, Veronesi GF, Manfredi GGP, Damante CA, Sant'Ana ACP, Greghi SLA, Zangrando MSR, Consolaro A, Rezende MLR. Bone demineralization improves onlay graft consolidation: A histological study in rat calvaria. J Periodontol 2020; 92:1-10. [PMID: 32997353 DOI: 10.1002/jper.20-0390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous data suggest that bone demineralization may promote bone graft consolidation as well as proliferation and differentiation of pre-osteoblasts, but the biological mechanisms involved in this process need to be clarified. This study investigated the effects of bone demineralization with citric acid (CA) and tetracycline (TCN) on the repair of onlay bone grafts. METHODS Onlay bone grafts were performed on the calvaria of 126 Wistar rats. The contacting surfaces between bone graft and receptor bone bed were demineralized for 15, 30, and 60 seconds with TCN (50 mg/mL), or 10% CA, (pH 1), constituting the following test groups (n = 18): TCN15, TCN30, TCN60, CA15, CA30, and CA60. Control grafts (C) were performed without demineralization (n = 18). After 7, 30, and 60 days, biopsies were obtained for quantitative and qualitative histological analysis (a = 6). RESULTS Demineralization accelerated the bone repair early from 7 days of healing. Higher percentage area of newly formed bone was observed in CA15 and TCN60 groups when compared to C in all evaluation periods (P = 0.02). At 30 days, C specimens had lower percentage of consolidated surfaces than TCN60, TCN30 and CA15 (P = 0.0015). At 60 days, CA15, CA60, and TCN60 presented bone surfaces almost completely filled by newly formed bone, against about 75% in C specimens (P = 0.0015). CONCLUSIONS Both CA and TCN were effective in accelerating osteogenesis at the interface between bone grafts and receptor bone beds, especially when applied for 15 seconds and 60 seconds, respectively.
Collapse
Affiliation(s)
- Érika B S Carvalho
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Giovana F Veronesi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Gustavo G P Manfredi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Carla A Damante
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Adriana C P Sant'Ana
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Sebastião L A Greghi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana S R Zangrando
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Alberto Consolaro
- Department of Stomatology, Division of Pathology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria L R Rezende
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
14
|
Rojas-Paulús JE, Manfredi GGP, Salmeron S, Consolaro A, Sant'Ana ACP, Zangrando MSR, Damante CA, Greghi SLA, Rezende MLR. Citric acid, but not tetracycline, improves the microscopic pattern of healing of particulate autogenous bone grafts in critical-size defects. J Periodontol 2020; 92:678-688. [PMID: 32902871 DOI: 10.1002/jper.20-0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bone demineralization has shown to be advantageous in autogenous onlay bone grafts and in pre-osteoblasts cultures, but such procedure has never been evaluated in particulate bone grafts. This study aimed to investigate the role of two demineralizing agents in the repair of the 8-mm critical-size defects in rats' calvaria. METHODS Eighty adult male Wistar rats were randomly assigned to one of eight groups as follows: particulate autogenous bone demineralized with citric acid for 15 seconds (CA15), 30 seconds (CA30), or 60 seconds (CA60); particulate autogenous bone demineralized with tetracycline hydrochloride for 15 seconds (TCN15), 30 seconds (TCN30), or 60 seconds (TCN60); blood clot (NC), and non-demineralized autogenous bone (PC). The calvariae were harvested at 30 and 60 postoperative days (n = 5) for blinded histological and histometric analysis of the percentage area of newly formed bone within the defects. RESULTS In the NC and TCN groups, bone formation was limited to the margins of the defects at 30 postoperative days, whereas complete closure was present in all the specimens from CA15 group. Both at 30 and 60 postoperative days, histomorphometry showed significant higher area of newly formed bone in specimens demineralized with CA than in those demineralized with TCN or non-demineralized (P < 0.05). TCN appeared to impair bone neoformation, as its use produced similar or inferior results compared to blood clot. CONCLUSIONS Demineralization of particulate bone grafts with CA during 15s enhanced the regeneration of critical-size defects and may be a promising adjuvant in regenerative procedures. TCN seems to be improper for this purpose.
Collapse
Affiliation(s)
- Jefrey E Rojas-Paulús
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Gustavo G P Manfredi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Samira Salmeron
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Alberto Consolaro
- Department of Stomatology, Division of Pathology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Adriana C P Sant'Ana
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana S R Zangrando
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Carla A Damante
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Sebastião L A Greghi
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria L R Rezende
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
15
|
State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers (Basel) 2020; 12:polym12081845. [PMID: 32824577 PMCID: PMC7465038 DOI: 10.3390/polym12081845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the polymers used as biomaterials for scaffolds are naturally occurring, synthetic biodegradable, and synthetic non-biodegradable polymers. Since synthetic polymers can be adapted for obtaining singular desired characteristics by applying various fabrication techniques, their use has increased in the biomedical field, in dentistry in particular. The manufacturing methods of these new structures include many processes, such as electrospinning, 3D printing, or the use of computer-aided design/computer-aided manufacturing (CAD/CAM). Synthetic polymers show several drawbacks that can limit their use in clinical applications, such as the lack of cellular recognition, biodegradability, and biocompatibility. Moreover, concerning biodegradable polymers, the time for matrix resorption is not predictable, and non-resorbable matrices are preferred for soft tissue augmentation in the oral cavity. This review aimed to determine a new biomaterial to offset the present shortcomings in the oral environment. Researchers have recently proposed a novel non-resorbable composite membrane manufactured via electrospinning that has allowed obtaining remarkable in vivo outcomes concerning angiogenesis and immunomodulation throughout the polarization of macrophages. A prototype of the protocol for in vitro and in vivo experimentation with hydrogels is explained in order to encourage innovation into the development of promising biomaterials for soft tissue augmentation in the near future.
Collapse
|
16
|
Toledano M, Toledano-Osorio M, Osorio R, Carrasco-Carmona Á, Gutiérrez-Pérez JL, Gutiérrez-Corrales A, Serrera-Figallo MA, Lynch CD, Torres-Lagares D. Doxycycline and Zinc Loaded Silica-Nanofibrous Polymers as Biomaterials for Bone Regeneration. Polymers (Basel) 2020; 12:polym12051201. [PMID: 32466191 PMCID: PMC7285172 DOI: 10.3390/polym12051201] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The main target of bone tissue engineering is to design biomaterials that support bone regeneration and vascularization. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt of SiO2-nanoparticles (HOOC-Si-Membrane) were doped with zinc (Zn-HOOC-Si-Membrane) or doxycycline (Dox-HOOC-Si-Membrane). Critical bone defects were effectuated on six New Zealand-bred rabbit skulls and covered with the membranes. After six weeks, the bone architecture was evaluated with micro computed tomography. Three histological analyses were utilized to analyse bone regeneration, including von Kossa silver nitrate, toluidine blue and fluorescence. All membrane-treated defects exhibited higher number of osteocytes and bone perimeter than the control group without the membrane. Zn-HOOC-Si-Membranes induced higher new bone and osteoid area than those treated with HOOC-Si-Membranes, and control group, respectively. Zn-HOOC-Si-Membranes and Dox-HOOC-Si-Membranes attained the lowest ratio M1 macrophages/M2 macrophages. Dox-HOOC-Si-Membranes caused the lowest number of osteoclasts, and bone density. At the trabecular new bone, Zn-HOOC-Si-Membranes produced the highest angiogenesis, bone thickness, connectivity, junctions and branches. Zn-HOOC-Si-Membranes enhanced biological activity, attained a balanced remodeling, and achieved the greatest regenerative efficiency after osteogenesis and angiogenesis assessments. The bone-integrated Zn-HOOC-Si-Membranes can be considered as bioactive modulators provoking a M2 macrophages (pro-healing cells) increase, being a potential biomaterial for promoting bone repair.
Collapse
Affiliation(s)
- Manuel Toledano
- Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.); (M.T.-O.); (Á.C.-C.)
| | - Manuel Toledano-Osorio
- Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.); (M.T.-O.); (Á.C.-C.)
| | - Raquel Osorio
- Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.); (M.T.-O.); (Á.C.-C.)
- Correspondence: ; Tel.: +34-958243789
| | - Álvaro Carrasco-Carmona
- Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.); (M.T.-O.); (Á.C.-C.)
| | - José-Luis Gutiérrez-Pérez
- Oral Surgery Section, Faculty of Dentistry, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (J.-L.G.-P.); (A.G.-C.); (M.-A.S.-F.); (D.T.-L.)
| | - Aida Gutiérrez-Corrales
- Oral Surgery Section, Faculty of Dentistry, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (J.-L.G.-P.); (A.G.-C.); (M.-A.S.-F.); (D.T.-L.)
| | - María-Angeles Serrera-Figallo
- Oral Surgery Section, Faculty of Dentistry, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (J.-L.G.-P.); (A.G.-C.); (M.-A.S.-F.); (D.T.-L.)
| | - Christopher D. Lynch
- University Dental School & Hospital/University College Cork, Wilton, T12 E8YV Cork, Ireland;
| | - Daniel Torres-Lagares
- Oral Surgery Section, Faculty of Dentistry, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (J.-L.G.-P.); (A.G.-C.); (M.-A.S.-F.); (D.T.-L.)
| |
Collapse
|
17
|
Wang J, Toebes BJ, Plachokova AS, Liu Q, Deng D, Jansen JA, Yang F, Wilson DA. Self-Propelled PLGA Micromotor with Chemotactic Response to Inflammation. Adv Healthc Mater 2020; 9:e1901710. [PMID: 32142216 DOI: 10.1002/adhm.201901710] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Indexed: 02/01/2023]
Abstract
Local drug delivery systems have recently been developed for multiple diseases that have the requirements of site-specific actions, prolonged delivery periods, and decreased drug dosage to reduce undesirable side effects. The challenge for such systems is to achieve directional and precise delivery in inaccessible narrow lesions, such as periodontal pockets or root canals in deeper portions of the dentinal tubules. The primary strategy to tackle this challenge is fabricating a smart tracking delivery system. Here, drug-loaded biodegradable micromotors showing self-propelled directional movement along a hydrogen peroxide concentration gradient produced by phorbol esters-stimulated macrophages are reported. The drug-loaded poly(lactic-co-glycolic acid) micromotors with asymmetric coverage of enzyme (patch-like enzyme distribution) are prepared by electrospraying and postfunctionalized with catalase via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide coupling. Doxycycline, a common drug for the treatment of periodontal disease, is selected as a model drug, and the release study by high-performance liquid chromatography is shown that both the postfunctionalization step and the presence of hydrogen peroxide have no negative influence on drug release profiles. The movement behavior in the presence of hydrogen peroxide is confirmed by nanoparticle tracking analysis. An in vitro model is designed and confirmed the response efficiency and directional control of the micromotors toward phorbol esters-stimulated macrophages.
Collapse
Affiliation(s)
- Jiamian Wang
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - B. Jelle Toebes
- Institute for Molecules and Materials Radboud University 6525 AJ Nijmegen The Netherlands
| | - Adelina S. Plachokova
- Department of Dentistry – Implantology and PeriodontologyRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Qian Liu
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Dongmei Deng
- Department of Preventive DentistryAcademic Center for Dentistry Amsterdam (ACTA)University of Amsterdam and VUUniversity Amsterdam 1081 LA Amsterdam The Netherlands
| | - John A. Jansen
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Fang Yang
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials Radboud University 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
18
|
Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment. Int J Pharm 2019; 572:118821. [DOI: 10.1016/j.ijpharm.2019.118821] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
|
19
|
Soriano-Souza C, Valiense H, Mavropoulos E, Martinez-Zelaya V, Costa AM, Alves AT, Longuinho M, Resende R, Mourão C, Granjeiro J, Rocha-Leao MH, Rossi A, Calasans-Maia M. Doxycycline containing hydroxyapatite ceramic microspheres as a bone-targeting drug delivery system. J Biomed Mater Res B Appl Biomater 2019; 108:1351-1362. [PMID: 31496111 DOI: 10.1002/jbm.b.34484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/26/2019] [Accepted: 08/17/2019] [Indexed: 01/24/2023]
Abstract
Drug delivery technology is a promising way to enhance the therapeutic efficacy of drugs. The purpose of this study is to evaluate the physical and chemical properties of hydroxyapatite ceramic microspheres loaded with doxycycline (HADOX), their effects on in vitro osteoblast viability, and their antimicrobial activity, and to determine the effects of DOX on the healing of rat sockets after tooth extraction. The internal microsphere porosity was sensitive to the treatment used to adsorb DOX onto microsphere surface; HA microspheres without DOX presented 26% of pores, whereas HADOX0.15 microspheres presented 52.0%. An initial drug release of 49.15 μg/ml was observed in the first 24 hr. The minimal inhibitory concentration (MIC) tested against Enterococcus faecalis demonstrated that bacterial growth was inhibited for up to 7 days. Results of cell viability and cell proliferation did not indicate statistical differences in the metabolic activity of HADOX samples relative to HA without DOX microspheres (p > .05). After 1 week, a discreet inflammation reaction was observed in the control group, and after 6 weeks, newly-formed bone was observed in the HADOX0.15 (p < .05). The HADOX did not interfere in the bone repair and controlled the early inflammatory response. HADOX could be a promising biomaterial to promote bone repair in infected sites.
Collapse
Affiliation(s)
- Carlos Soriano-Souza
- Department of Applied Physics, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | - Helder Valiense
- Dentistry School, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Elena Mavropoulos
- LABIOMAT, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | | | | | - Adriana T Alves
- Department of Oral Pathology, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Mariana Longuinho
- Department of Applied Physics, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | - Rodrigo Resende
- Oral Surgery Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Carlos Mourão
- Unidade de Pesquisa Clínica, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Jose Granjeiro
- Department of Bioengineering, National Institute of Metrology, Standardization and Industrial Quality, Rio de Janeiro, Brazil
| | - Maria H Rocha-Leao
- Chemistry School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Rossi
- Department of Applied Physics, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | - Mônica Calasans-Maia
- Oral Surgery Department, Dentistry School, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Song IS, Lee JE, Park JB. The Effects of Various Mouthwashes on Osteoblast Precursor Cells. Open Life Sci 2019; 14:376-383. [PMID: 33817172 PMCID: PMC7874790 DOI: 10.1515/biol-2019-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
This study examined whether or not various mouthwashes have significant effects on the viability or morphology of mouse osteoblast-like cells. Mouse calvarial preosteoblast cells were cultured and prepared, then treated with a 0.12% chlorhexidine digluconate solution containing essential oils with or without alcohol, and a cetylpyridinium chloride solution, and sodium fluoride, respectively. Each well was treated with one of six mouthwashes for either 30 sec, 1.5 min, or 4.5 min. The viability of the treated cells was quantitatively analyzed by a Cell Counting Kit-8. The viability of osteogenic progenitor cells decreased significantly irrespectively of the types of mouthwashes. The changes of cell morphology were seen in all groups of mouthwashes; however, they were more noticeable on the chlorhexidine digluconate-treated group. A progressive increase in treatment time over 30 sec did not seem to deteriorate cellular viability. There was no significant difference in viability or morphological change between different formulations of the same brand. Although various mouthwashes without alcohol as an ingredient are available, nonalcoholic mouthwashes were not likely to be less harmful to the cells. Collectively, commercially available mouthwashes could inhibit cell viability and alter the morphology of osteoblastic precursor cells irrespectively of brands, treatment time, or alcohol content.
Collapse
Affiliation(s)
- In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Ji Eun Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
21
|
Semyari H, Salehi M, Taleghani F, Ehterami A, Bastami F, Jalayer T, Semyari H, Hamed Nabavi M, Semyari H. Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl 2018; 33:501-513. [DOI: 10.1177/0885328218805229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.
Collapse
Affiliation(s)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ferial Taleghani
- Department of Periodontology, Dental School, Shahed University, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Bastami
- Dental research center, research institute of dental Science, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Oral and maxillofacial surgery department, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hadis Semyari
- Dental student, faculty of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
22
|
Liu JX, Werner J, Kirsch T, Zuckerman JD, Virk MS. Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts. J Bone Jt Infect 2018; 3:165-172. [PMID: 30155401 PMCID: PMC6098817 DOI: 10.7150/jbji.26355] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction: Chlorhexidine gluconate (CHX) is widely used as a preoperative surgical skin-preparation solution and intra-wound irrigation agent, with excellent efficacy against wide variety of bacteria. The cytotoxic effect of CHX on local proliferating cells following orthopaedic procedures is largely undescribed. Our aim was to investigate the in vitro effects of CHX on primary fibroblasts, myoblasts, and osteoblasts. Methods: Cells were exposed to CHX dilutions (0%, 0.002%, 0.02%, 0.2%, and 2%) for either a 1, 2, or 3-minute duration. Cell survival was measured using a cytotoxicity assay (Cell Counting Kit-8). Cell migration was measured using a scratch assay: a "scratch" was made in a cell monolayer following CHX exposure, and time to closure of the scratch was measured. Results: All cells exposed to CHX dilutions of ≥ 0.02% for any exposure duration had cell survival rates of less than 6% relative to untreated controls (p < 0.001). Cells exposed to CHX dilution of 0.002% all had significantly lower survival rates relative to control (p < 0.01) with the exception of 1-minute exposure to fibroblasts, which showed 96.4% cell survival (p = 0.78). Scratch defect closure was seen in < 24 hours in all control conditions. However, cells exposed to CHX dilutions ≥ 0.02% had scratch defects that remained open indefinitely. Conclusions: The clinically used concentration of CHX (2%) permanently halts cell migration and significantly reduces survival of in vitro fibroblasts, myoblasts, and osteoblasts. Further in vivo studies are required to examine and optimize CHX safety and efficacy when applied near open incisions or intra-wound application.
Collapse
Affiliation(s)
- James X Liu
- NYU Langone Medical Center, Hospital for Joint Diseases, 301 E. 17th St., New York, NY 10003
| | - Jordan Werner
- NYU Langone Medical Center, Hospital for Joint Diseases, 301 E. 17th St., New York, NY 10003
| | - Thorsten Kirsch
- NYU Langone Medical Center, Hospital for Joint Diseases, 301 E. 17th St., New York, NY 10003
| | - Joseph D Zuckerman
- NYU Langone Medical Center, Hospital for Joint Diseases, 301 E. 17th St., New York, NY 10003
| | - Mandeep S Virk
- NYU Langone Medical Center, Hospital for Joint Diseases, 301 E. 17th St., New York, NY 10003
| |
Collapse
|
23
|
Gomes KDN, Alves APNN, Dutra PGP, Viana GSDB. Doxycycline induces bone repair and changes in Wnt signalling. Int J Oral Sci 2018; 9:158-166. [PMID: 28960195 PMCID: PMC5709545 DOI: 10.1038/ijos.2017.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 12/31/2022] Open
Abstract
Doxycycline (DOX) exhibits anti-inflammatory and MMP inhibitory properties. The objectives of this study were to evaluate the effects of DOX on alveolar bone repair. Controls (CTL) and DOX-treated (10 and 25 mg·kg-1) molars were extracted, and rats were killed 7 or 14 days later. The maxillae were processed and subjected to histological and immunohistochemical assays. Hematoxylin-eosin staining (7th day) revealed inflammation in the CTL group that was partly reversed after DOX treatment. On the 14th day, the CTL group exhibited bone neoformation, conjunctive tissue, re-epithelization and the absence of inflammatory infiltrate. DOX-treated groups exhibited complete re-epithelization, tissue remodelling and almost no inflammation. Picrosirius red staining in the DOX10 group (7th and 14th days) revealed an increased percentage of type I and III collagen fibres compared with the CTL and DOX25 groups. The DOX10 and DOX25 groups exhibited increases in osteoblasts on the 7th and 14th days. However, there were fewer osteoclasts in the DOX10 and DOX25 groups on the 7th and 14th days. Wnt-10b-immunopositive cells increased by 130% and 150% on the 7th and 14th days, respectively, in DOX-treated groups compared with the CTL group. On the 7th day, Dickkopf (Dkk)-1 immunostaining was decreased by 63% and 46% in the DOX10 and DOX25 groups, respectively. On the 14th day, 69% and 42% decreases in immunopositive cells were observed in the DOX10 and DOX25 groups, respectively, compared with the CTL group. By increasing osteoblasts, decreasing osteoclasts, activating Wnt 10b and neutralising Dkk, DOX is a potential candidate for bone repair in periodontal diseases.
Collapse
|
24
|
Lee H, Son J, Na CB, Yi G, Koo H, Park JB. The effects of doxorubicin-loaded liposomes on viability, stem cell surface marker expression and secretion of vascular endothelial growth factor of three-dimensional stem cell spheroids. Exp Ther Med 2018; 15:4950-4960. [PMID: 29805519 PMCID: PMC5958669 DOI: 10.3892/etm.2018.6064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/20/2018] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to evaluate the effects of anionic, cationic and neutral liposomes containing doxorubicin on the cellular viability and osteogenic differentiation of three-dimensional stem cell spheroids. Doxorubicin-loaded liposomes were prepared using the traditional thin-lipid-film-hydration method and were characterized using transmission electron microscopy and a zeta potential analyzer. The doxorubicin release profile from these liposomes was also analyzed in vitro. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were observed using a confocal microscope and quantitative cellular viability was evaluated using a Cell-Counting Kit-8 (CCK-8) assay. Furthermore, the secretion of vascular endothelial growth factor was evaluated. Western blot analysis was performed to assess the expression of collagen I and glyceraldehyde 3-phosphate. Results indicated that the spheroids were well formed in silicon elastomer-based concave microwells on day 1. In general, the shapes of the cells in the in the doxorubicin-loaded anionic, cationic and neutral liposome groups were similar to the control group except for the 10 µg/ml groups on days 3, 5, and 7. No significant changes in cellular viability were noted with the addition of doxorubicin at day 1 but significant decreases in cellular viability were noted with application of doxorubicin at day 5. Notably, higher concentrations of doxorubicin reduced the secretion of vascular endothelial growth factor and stem cell marker expression. To conclude, the present study indicated that doxorubicin-loaded anionic liposomes produced the most sustained release profile and cationic liposomes produced the highest uptake of the stem cell spheroids. These findings suggested that higher concentrations of doxorubicin-loaded liposomes affected cellular viability, the secretion of vascular endothelial growth factor and stem cell marker expression.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jihwan Son
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chae-Bin Na
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gawon Yi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
25
|
Schmidt K, Estes C, McLaren A, Spangehl MJ. Chlorhexidine Antiseptic Irrigation Eradicates Staphylococcus epidermidis From Biofilm: An In Vitro Study. Clin Orthop Relat Res 2018; 476:648-653. [PMID: 29443852 PMCID: PMC6260035 DOI: 10.1007/s11999.0000000000000052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Antiseptic and antibacterial solutions used for intraoperative irrigation are intended to kill bacteria and thereby decrease the incidence of surgical site infections. It is unknown if the concentrations and exposure times of irrigation solutions commonly used for prophylaxis in clean cases (povidone-iodine 0.35% for 3 minutes) are effective against bacteria in biofilm that are present in implant infections. Currently, povidone-iodine (0.35%), chlorhexidine (0.05%), sodium hypochlorite (0.125%), and triple antibacterial solution are all being used off-label for wound irrigation after surgical débridement for orthopaedic infections. QUESTIONS/PURPOSES Do commonly used antibacterials and antiseptics kill bacteria in established biofilm at clinically relevant concentrations and exposure times? METHODS Staphylococcus epidermidis (ATCC#35984) biofilms were exposed to chlorhexidine (0.025%, 0.05%, and 0.1%), povidone-iodine (0.35%, 1.0%, 3.5%, and 10%), sodium hypochlorite (0.125%, 0.25%, and 0.5%,), and triple antibacterial solution (bacitracin 50,000 U/L, gentamicin 80 mg/L, and polymyxin 500,000 U/L) for 1, 5, and 10 minutes in triplicate. Surviving bacteria were detected by 21-day subculture. Failure to eradicate all bacteria in any of the three replicates was considered to be "not effective" for that respective solution, concentration, and exposure time. RESULTS Chlorhexidine 0.05% and 0.1% at all three exposure times, povidone-iodine 10% at all three exposure times, and povidone-iodine 3.5% at 10 minutes only were effective at eradicating S epidermidis from biofilm. All concentrations and all exposure times of sodium hypochlorite and triple antibacterial solution were not effective. CONCLUSIONS Chlorhexidine is capable of eradicating S epidermidis from biofilm in vitro in clinically relevant concentrations and exposure times. Povidone-iodine at commonly used concentrations and exposure times, sodium hypochlorite, and triple antibacterial solutions are not. CLINICAL RELEVANCE This in vitro study suggests that chlorhexidine may be a more effective irrigation solution for S epidermidis in biofilm than other commonly used solutions, such as povidone-iodine, Dakin's solution, and triple antibiotic solution. Clinical outcomes should be studied to determine the most effective antiseptic agent, concentration, and exposure time when intraoperative irrigation is used in the presence of biofilm.
Collapse
Affiliation(s)
- Kenneth Schmidt
- K. Schmidt OrthoArizona, Phoenix, AZ, USA C. Estes Portland Adventist Medical Center, Portland, OR, USA A. McLaren University of Arizona, College of Medicine, Phoenix Department of Orthopaedic Surgery, Phoenix, AZ, USA M. J. Spangehl Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | | | | |
Collapse
|
26
|
Patianna G, Valente NA, D'Addona A, Andreana S. In vitro evaluation of controlled-release 14% doxycycline gel for decontamination of machined and sandblasted acid-etched implants. J Periodontol 2018. [DOI: 10.1002/jper.17-0325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Giuseppe Patianna
- Department of Oral Surgery and Implantology; Catholic University of the Sacred Heart; Rome Italy
| | - Nicola Alberto Valente
- Department of Surgery; Geneva University Hospitals, University of Geneva, Unit of Oral Surgery and Implantology, Service of Maxillofacial and Buccal Surgery; Geneva Switzerland
- Department of Periodontics and Endodontics; State University of New York at Buffalo; Buffalo NY
| | - Antonio D'Addona
- Department of Oral Surgery and Implantology; Catholic University of the Sacred Heart; Rome Italy
| | - Sebastiano Andreana
- Department of Restorative Dentistry; State University of New York at Buffalo; Buffalo NY
| |
Collapse
|
27
|
ÜN E, ÖZEÇ İ, TAŞDEMİR U, KIRTAY M, ESEN HH, AVUNDUK MC. EFFECT OF LOCAL RIFAMYCIN APPLICATION ON EXPRESSION OF BMP-2 AND BONE REGENERATION. CUMHURIYET DENTAL JOURNAL 2017. [DOI: 10.7126/cumudj.345934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Song W, Seta J, Chen L, Bergum C, Zhou Z, Kanneganti P, Kast RE, Auner GW, Shen M, Markel DC, Ren W, Yu X. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. ACTA ACUST UNITED AC 2017; 12:045008. [PMID: 28357996 DOI: 10.1088/1748-605x/aa6a26] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (μCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (<5%, p < 0.05). Finally, we demonstrated that a Doxy-doped NF coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p < 0.05), which was further confirmed by quantitative histological analysis and μCT. These findings indicate that coaxial PCL/PVA NF coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.
Collapse
Affiliation(s)
- Wei Song
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects. Int J Mol Sci 2016; 17:334. [PMID: 26950123 PMCID: PMC4813196 DOI: 10.3390/ijms17030334] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.
Collapse
Affiliation(s)
- Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam 1081LA, The Netherlands.
| | - Jing Guo
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huiling Wu
- The First Affiliated Hospital, Medical School, Zhejiang University, Hangzhou 310003, China.
| | - Jingxiao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam 1081LA, The Netherlands.
| |
Collapse
|
30
|
Patianna G, Valente N, Andreana S, D’Addona A. Terapia antibiotica e antimicrobica locale nella terapia parodontale. Revisione della letteratura. DENTAL CADMOS 2016. [DOI: 10.1016/s0011-8524(16)30019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Silva AC, Oliveira MR, Amaral LFA, Ferreira S, Garcia IR, Mariano RC. Effect of Doxycycline in Gel Form on Bone Regeneration: Histomorphometric and Tomographic Study in Rat Calvaria. J Periodontol 2016; 87:74-82. [DOI: 10.1902/jop.2015.150343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Lee SI, Yeo SI, Kim BB, Ko Y, Park JB. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: Morphology and viability tests. Biomed Rep 2015; 4:97-101. [PMID: 26870343 DOI: 10.3892/br.2015.539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/18/2015] [Indexed: 01/19/2023] Open
Abstract
Human mesenchymal stem cells have previously been isolated and characterized from the gingiva, and gingiva-derived stem cells have been applied for tissue engineering purposes. The present study was performed to generate size-controllable stem cell spheroids using concave microwells. Gingiva-derived stem cells were isolated, and the stem cells of 1×105 (group A) or 2×105 (group B) cells were seeded in polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres was viewed under an inverted microscope, and the changes in the diameter and cell viability were analyzed. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A compared to group B. No significant changes in shape or diameter were noted with increases in incubation time. Cell viability was higher in group B at each time point when compared with group A. Within the limits of the study, the size-controllable stem cell spheroids could be generated from gingival cells using microwells. The shape of the spheroids and their viability were clearly maintained during the experimental periods.
Collapse
Affiliation(s)
- Sung-Il Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | | | - Bo-Bae Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
33
|
Frough Reyhani M, Rahimi S, Fathi Z, Shakouie S, Salem Milani A, Soroush Barhaghi MH, Shokri J. Evaluation of Antimicrobial Effects of Different Concentrations of Triple Antibiotic Paste on Mature Biofilm of Enterococcus faecalis. J Dent Res Dent Clin Dent Prospects 2015; 9:138-43. [PMID: 26697145 PMCID: PMC4682009 DOI: 10.15171/joddd.2015.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/18/2015] [Indexed: 11/09/2022] Open
Abstract
Background and aims. Triple antibiotic paste (TAP) is widely used in endodontics for root canal disinfection, particularly in regenerative procedures. The aim of this in vitro study was to evaluate the antimicrobial effects of different concentrations of TAP at 1-, 2-, 3-, and 4-week intervals on mature Enterococcus faecalis biofilm. Materials and methods. A total of 287 extracted one-rooted human central incisors were infected with E. faecalis ATCC 29212 after removing the crown and preparation. The root canal space was filled with one of the 0.01-, 0.1-, 1-, 10-, 100-, and 1000-mg/mL concentrations of TAP or normal saline (control). The root canal dentin was sampled after 1, 2, 3, and 4 weeks. The dentinal shavings were cultured on Mueller-Hinton agar plates after serial dilutions. The classic colony-forming unit (CFU) counting technique was used to determine remaining bacterial counts. Data were analyzed by using the two-way ANOVA, post hoc Tukey tests and one-way ANOVA (P<0.05). Results. TAP completely eliminated E. faecalis biofilms at all the intervals at concentrations of 1000, 100, and 10 mg/mL, whereas 1-, 0.1-, and 0.01-mg/mL TAP resulted in significant reduction of CFU means compared with the control group. There were no statistically significant differences between the four time intervals. Conclusion. Use of lower concentrations of TAP at short term could eradicate E. faecalis biofilm and decrease high-concentration side effects.
Collapse
Affiliation(s)
- Mohammad Frough Reyhani
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Associate Professor, Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Rahimi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Professor, Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fathi
- Postgraduate Student, Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Shakouie
- Assistant Professor, Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Salem Milani
- Assistant Professor, Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Shokri
- Associate Professor, Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Moura LA, Ribeiro FV, Aiello TB, Duek EADR, Sallum EA, Nociti Junior FH, Casati MZ, Sallum AW. Characterization of the release profile of doxycycline by PLGA microspheres adjunct to non-surgical periodontal therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:573-84. [PMID: 25917501 DOI: 10.1080/09205063.2015.1045249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this pilot study was to assess the release of locally delivered doxycycline by poly (l-lactide-co-glycolide) (PLGA) microspheres in the periodontal pocket of patients with chronic periodontitis, treated by non-surgical periodontal therapy. Nineteen sites of non-adjacent teeth of four different patients were evaluated. Five milligram of PLGA microspheres loaded with 16 doxycycline hyclate (DOX) was administered per periodontal site. To quantify DOX released into the periodontal pocket, gingival crevicular fluid (GCF) was collected from the sites on days 2, 5, 7, 10, 15, and 20 after DOX application, and high-performance liquid chromatography was performed. Data were statistically assessed by ANOVA/Tukey test. At days 2, 5, and 7, the DOX concentration was stably sustained (23.33 ± 1.38, 23.4 ± 1.82, and 22.75 ± 1.33 μg/mL, respectively), with no significant differences over these assessment times (p > 0.05). At days 10 and 15, a tendency was observed toward a decrease in DOX concentration (21.74 ± 0.91 and 20.53 ± 4.88 μg/mL, respectively), but a significant decrease in GCF drug concentration (19.69 ± 4.70 μg/mL) was observed only on day 20. The DOX delivery system developed demonstrated a successful sustained release after local administration, as an adjunct to non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Lucas Alves Moura
- a Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School , State University of Campinas (UNICAMP) , Av. Limeira 901, Caixa Postal: 052, CEP: 13414-903 Piracicaba , São Paulo , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The influence of rifamycin decontamination on incorporation of autologous onlay bone grafts in rats: A histometric and immunohistochemical evaluation. Arch Oral Biol 2015; 60:724-9. [DOI: 10.1016/j.archoralbio.2014.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 11/20/2022]
|
36
|
Fernández Ayora A, Herion F, Rompen E, Reginster JY, Magremanne M, Lambert F. Dramatic osteonecrosis of the jaw associated with oral bisphosphonates, periodontitis, and dental implant removal. J Clin Periodontol 2015; 42:190-5. [PMID: 25327450 DOI: 10.1111/jcpe.12322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Osteoporosis affects millions of elderly patients, and anti-resorptive drugs (ARD) such as bisphosphonates (BP) represent the first-line therapy. Despite the benefits related to the use of these medications, osteonecrosis of the jaw is a significant complication in a subset of patients receiving these drugs. CASE PRESENTATION This report documents a case of dramatic bisphosphonate-related osteonecrosis associated with periodontitis and dental implant removal in an osteoporotic patient treated with per os bisphosphonates for an uninterrupted period of 15 years. CONCLUSION The aim of this report was to discuss the administration period of BP in the treatment of osteoporosis, the decision-making and clinical management of severe MRONJ and the indications for dental implant placement in these specific patients.
Collapse
Affiliation(s)
- Alberto Fernández Ayora
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liege, Liege, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Jeong SH, Lee JE, Jin SH, Ko Y, Park JB. Effects of Asiasari radix on the morphology and viability of mesenchymal stem cells derived from the gingiva. Mol Med Rep 2014; 10:3315-9. [PMID: 25310251 DOI: 10.3892/mmr.2014.2607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 06/17/2014] [Indexed: 11/06/2022] Open
Abstract
Medicinal herbs used in traditional Oriental medicine, which have been in use clinically for thousands of years, are attractive sources of novel therapeutics or preventatives. Asiasari radix (A. radix) has been suggested for use in the treatment of dental diseases, including toothache and aphthous stomatitis. The aim of this study was to evaluate the effects of A. radix extracts on the morphology and viability of human stem cells derived from the gingiva. An Asiasarum heterotropoides extract was centrifuged and freeze-dried in a lyophilizer. Stem cells derived from the gingiva were grown in the presence of A. radix at concentrations ranging between 0.1 µg/ml and 1 mg/ml (0, 0.1, 1, 10, 100 and 1,000 µg/ml). Cell morphology was evaluated with an optical microscope and the viability of the cells was quantitatively analyzed with a cell counting kit-8 (CCK-8) assay for up to seven days. The untreated control group exhibited normal fibroblast morphology. The shapes of the cells following 0.1, 1, 10 and 100 µg/ml A. radix treatments were similar to those of the control group. However, a significant change was noted in the 1,000 µg/ml group on day 1, when compared with the untreated group. Furthermore, on day 7, the shapes of the cells following 100 and 1,000 µg/ml A. radix treatments were rounder and fewer cells were present, when compared with those of the control group. The cultures that grew in the presence of A. radix did not exhibit any changes in the CCK‑8 assay on day 2; however, significant reductions in cell viability were noticed following 100 and 1,000 µg/ml A. radix treatment on days 5 and 7. Within the limits of this study, A. radix influenced the viability of the stem cells derived from the gingiva. Thus, the direct application of A. radix to oral tissues may produce adverse effects at high doses. Therefore, the concentration and application time of A. radix requires meticulous control to obtain optimal results. These effects require consideration, if the use of A. radix is planned for the treatment of dental diseases.
Collapse
Affiliation(s)
- Su-Hyeon Jeong
- Department of Rehabilitation Medicine of Korean Medicine, Chungju Hospital of Korean Medicine, College of Korean Medicine, Semyung University, Jecheon 390‑711, Republic of Korea
| | - Ji-Eun Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Seong-Ho Jin
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
38
|
PARK JUNBEOM, LEE GIL, YUN BYEONGGON, KIM CHANGHYEN, KO YOUNGKYUNG. Comparative effects of chlorhexidine and essential oils containing mouth rinse on stem cells cultured on a titanium surface. Mol Med Rep 2014; 9:1249-53. [DOI: 10.3892/mmr.2014.1971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/06/2014] [Indexed: 11/06/2022] Open
|
39
|
Schönfeld P, Siemen D, Kreutzmann P, Franz C, Wojtczak L. Interaction of the antibiotic minocycline with liver mitochondria - role of membrane permeabilization in the impairment of respiration. FEBS J 2013; 280:6589-99. [DOI: 10.1111/febs.12563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology; Otto-von-Guericke-University; Magdeburg Germany
| | - Detlef Siemen
- Department of Neurology; Otto-von-Guericke-University; Magdeburg Germany
| | - Peter Kreutzmann
- Institute of Biochemistry and Cell Biology; Otto-von-Guericke-University; Magdeburg Germany
| | - Claudia Franz
- Institute of Biochemistry and Cell Biology; Otto-von-Guericke-University; Magdeburg Germany
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology; Warsaw Poland
| |
Collapse
|
40
|
Arabaci T, Türkez H, Çanakçi CF, Özgöz M. Assessment of cytogenetic and cytotoxic effects of chlorhexidine digluconate on cultured human lymphocytes. Acta Odontol Scand 2013; 71:1255-60. [PMID: 23565703 DOI: 10.3109/00016357.2012.757646] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to assess the genetic and cellular toxicity of Chlorhexidine digluconate (CHX) on peripheral human lymphocytes in vitro. MATERIALS AND METHODS Micronucleus assay was used to investigate the genotoxicity, while the cell viability and proliferation were evaluated by Trypan blue exclusion test and Nuclear Division Index in control and CHX-treated (0.05, 0.1, 0.2, 0.4, 0.5 mg/ml) human blood cultures. RESULTS A dose-dependent toxic effect was found depending on CHX incubation on the genetic and cell viability of the lymphocytes. Micronucleus frequency was found to be statistically higher at 0.5 mg/ml concentration compared to lower doses and the control group (p < 0.05). A significant reduction was shown in the cell viability and cell proliferation of the exposed lymphocytes at the concentrations of 0.4 and 0.5 mg/ml (p < 0.05), while no significant toxicity was found at lower concentrations compared to control (p > 0.05). CONCLUSION This study showed dose-dependent genotoxic and cytotoxic effects of CHX on human lymphocytes in vitro. It should be considered during periodontal irrigation or novel CHX products at lower concentrations should be manufactured for clinical usage.
Collapse
Affiliation(s)
- Taner Arabaci
- Faculty of Dentistry, Department of Periodontology, Atatürk University, Erzurum, Turkey.
| | | | | | | |
Collapse
|
41
|
Pinkernelle J, Fansa H, Ebmeyer U, Keilhoff G. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One 2013; 8:e73422. [PMID: 23967343 PMCID: PMC3742532 DOI: 10.1371/journal.pone.0073422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/21/2013] [Indexed: 11/28/2022] Open
Abstract
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|
42
|
Chuensombat S, Khemaleelakul S, Chattipakorn S, Srisuwan T. Cytotoxic Effects and Antibacterial Efficacy of a 3-Antibiotic Combination: An In Vitro Study. J Endod 2013; 39:813-9. [DOI: 10.1016/j.joen.2012.11.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 01/26/2023]
|
43
|
Park JB. Low dose of doxycyline promotes early differentiation of preosteoblasts by partially regulating the expression of estrogen receptors. J Surg Res 2012; 178:737-42. [DOI: 10.1016/j.jss.2012.03.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/02/2023]
|
44
|
Park JB. The effects of fulvestrant, an estrogen receptor antagonist, on the proliferation, differentiation and mineralization of osteoprecursor cells. Mol Med Rep 2012. [PMID: 23179494 DOI: 10.3892/mmr.2012.1200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fulvestrant is a novel type of endocrine treatment and is considered to be a potent inhibitor of breast cancer cell proliferation. Fulvestrant is reported to work by downregulating as well as degrading the estrogen receptor, leading to an inhibition of estrogen signaling through the estrogen receptor. The effects of various doses of fulvestrant for bone cells have not yet been fully investigated. In the present study, the effects of fulvestrant on osteoprecursor cells were evaluated. The effect on cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein measurement. Differentiation and mineralization were examined using an alkaline phosphatase activity (ALP) test and Alizarin red S staining. The protein expression of osteocalcin was evaluated using western blot analysis. Cultures grown in the presence of fulvestrant at concentrations of 0.1-10 µM did not show any significant change in cell proliferation. Cultures grown in the presence of fulvestrant showed a dose-dependent reduction in ALP activity, however, statistically significant differences were not achieved. Cultures grown in the presence of fulvestrant presented with a dose-dependent reduction in mineralization with a statistically significant difference at the 10 µM concentration. The use of fulvestrant may produce negative effects on the mineralization of osteoprecursor cells, while long-term use of fulvestrant may have detrimental effects on osteoblastic activity.
Collapse
Affiliation(s)
- Jun-Beom Park
- Department of Periodontics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
45
|
Uskoković V, Desai TA. Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. II. Antibacterial and osteoblastic response. J Biomed Mater Res A 2012; 101:1427-36. [PMID: 23115128 DOI: 10.1002/jbm.a.34437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 12/24/2022]
Abstract
Osteomyelitis has been traditionally treated by the combination of long-term antibiotic therapies and surgical removal of diseased tissue. The multifunctional material was developed in this study with the aim to improve this therapeutic approach by: (a) enabling locally delivered and sustained release of antibiotics at a tunable rate, so as to eliminate the need for repetitive administration of systemically distributed antibiotics; and (b) controllably dissolving itself, so as to promote natural remineralization of the portion of bone lost to disease. We report hereby on the effect of previously synthesized calcium phosphates (CAPs) with tunable solubilities and drug release timescales on bacterial and osteoblastic cell cultures. All CAP powders exhibited satisfying antibacterial performance against Staphylococcus aureus, the main causative agent of osteomyelitis. Still, owing to its highest drug adsorption efficiency, the most bacteriostatically effective phase was amorphous CAP with the minimal inhibitory concentration of less than 1 mg/mL. At the same time, the positive cell response and osteogenic effect of the antibiotic-loaded CAP particles was confirmed in vitro for all the sparsely soluble CAP phases. Adsorption of the antibiotic onto CAP particles reversed the deleterious effect that the pure antibiotic exerted on the osteogenic activity of the osteoblastic cells. The simultaneous osteogenic and antimicrobial performance of the material developed in this study, altogether with its ability to exhibit sustained drug release, may favor its consideration as a material base for alternative therapeutic approaches to prolonged antibiotic administration and surgical debridement typically prescribed in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158-2330, USA.
| | | |
Collapse
|
46
|
Rao SK, Setty S, Acharya AB, Thakur SL. Efficacy of locally-delivered doxycycline microspheres in chronic localized periodontitis and on Porphyromonas gingivalis. ACTA ACUST UNITED AC 2011; 3:128-34. [PMID: 22180217 DOI: 10.1111/j.2041-1626.2011.00110.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to assess the efficacy and effect of locally-delivered doxycycline microspheres with scaling and root planing in periodontal pocket therapy and on Porphyromonas gingivalis, respectively. METHODS Twenty sites with a probing pocket depth of 4-6 mm were divided into two groups: a control group consisting of scaling and root planing, with one application of doxycycline microspheres only at baseline, and a test group consisting of scaling and root planing, with an application of doxycycline microspheres at baseline and 1 and 3 months. Clinical readings included the plaque index, gingival index, probing pocket depth, and relative attachment level. Rapid polymerase chain reaction method was used for the detection of P. gingivalis. RESULTS A statistically-significant reduction in probing pocket depth and attachment gain was found in both groups; the test group showed a significant reduction in probing pocket depth and attachment gain compared with the control at 3 and 6 months. P. gingivalis cell count in the test group was significantly reduced at all the time periods, except from 1 to 3 months. CONCLUSION Local drug delivery of doxycycline microspheres significantly improved the treatment outcomes in periodontal pocket therapy and reduced P. gingivalis in the periodontal pocket.
Collapse
Affiliation(s)
- Sampath K Rao
- Department of Periodontics, Saraswati Dhanvantri Dental College and Hospital, Parbhani, Maharashtra, India.
| | | | | | | |
Collapse
|
47
|
Effects of Doxycycline, Minocycline, and Tetracycline on Cell Proliferation, Differentiation, and Protein Expression in Osteoprecursor Cells. J Craniofac Surg 2011; 22:1839-42. [DOI: 10.1097/scs.0b013e31822e8216] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Lambert F, Lecloux G, Léonard A, Sourice S, Layrolle P, Rompen E. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits. Clin Implant Dent Relat Res 2011; 15:412-26. [PMID: 21815992 DOI: 10.1111/j.1708-8208.2011.00374.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The first objective of this study was to qualitatively and quantitatively assess the bone formation process, particularly the long-term behavior and three-dimensional volume stability of subsinusal bone regeneration, using titanium (Ti) or bovine hydroxyapatite (BHA) granules, in a rabbit model. The second objective was to evaluate the effect of the hydration of the BHA particles with a therapeutic concentration of doxycycline solution on the osteogenesis and biomaterial resorption. MATERIALS AND METHODS Rabbits underwent a double sinus lift procedure using one of three materials: grade 1 porous Ti particles, BHA, or BHA hydrated with doxycycline solution (0.1mg/ml) (BHATTC). Animals were sacrificed after 1 week, 5 weeks, or 6 months. Samples were analyzed using µCT and nondecalcified histology. RESULTS The materials used in each of the three groups allowed an optimal bone formation; bone quantities and densities were not statistically different between the three groups. At 6 months, more stable three-dimensional volume stability was found with Ti and BHATTC (p=.0033). At 5 weeks and 6 months, bone to material contact corroborating osteoconduction was significantly higher with BHA and BHATTC than with Ti (p<.0001). CONCLUSIONS AND CLINICAL IMPLICATIONS Even though the studied biomaterials displayed different architectures, they are relevant candidates for sinus lift bone augmentation prior to dental implants because they allow adequate three-dimensional stability and osteogenesis. However, to recommend the clinical use of Ti, both an observation on the drilling effects of Ti particles and clinical trials are needed.
Collapse
Affiliation(s)
- France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, 4000 Liège Belgium.
| | | | | | | | | | | |
Collapse
|
49
|
Hayami T, Kapila YL, Kapila S. Divergent upstream osteogenic events contribute to the differential modulation of MG63 cell osteoblast differentiation by MMP-1 (collagenase-1) and MMP-13 (collagenase-3). Matrix Biol 2011; 30:281-9. [PMID: 21539914 DOI: 10.1016/j.matbio.2011.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 12/12/2022]
Abstract
Previously we showed that MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate the expression of osteoblastic markers in a heterogenous population of primary human periodontal ligament cells. The mechanisms for these differential responses are not known, but may result from divergence in regulation of early osteogenic transcription factors. The purpose of this study was to elucidate where in the hierarchy of osteoblast-specific transcription factors and markers the differences in MMP-1- and -13-mediated regulation of osteoblastic differentiation arise. We found that the overexpression of MMP-1 resulted in significant decreases in BMP-2, Dlx5, AP, OP and BSP and increases in TGF-β1 and MSX2. In contrast, MMP-13 overexpression resulted in significant decreases in Runx2, OP and BSP, and increases in TGF-β1, MSX2 and OC. The knockdown of MMP-1 caused significant increases in all osteoblastic markers. MMP-13 knockdown produced significant increases only in TGF-β1, MSX2 and Osx, but decreases in Runx2 and OC. Suppression of both MMPs together resulted in significant increases of all osteoblastic markers except Runx2. MMP-1 had a more robust and generalized effect in regulating osteoblast transcription factors and markers than MMP-13. Finally, of the markers and transcription factors assayed, Runx2 is the most early stage transcription factor induced by suppression of MMP-1, while Osx and MSX2 are the most early stage transcription factors regulated by MMP-13. These data show that MMP-1's and -13's differential regulation of osteoblastic markers in MG63 cells likely results from their modulation of divergent signaling pathways involved in osteoblastic differentiation.
Collapse
Affiliation(s)
- Takayuki Hayami
- The University of Michigan, Ann Arbor, Michigan 48109, United States.
| | | | | |
Collapse
|
50
|
Fujita H, Sakamoto N, Ishimatsu Y, Kakugawa T, Hara S, Hara A, Amenomori M, Ishimoto H, Nagata T, Mukae H, Kohno S. Effects of Doxycycline on Production of Growth Factors and Matrix Metalloproteinases in Pulmonary Fibrosis. Respiration 2011; 81:420-30. [DOI: 10.1159/000324080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 01/05/2011] [Indexed: 01/20/2023] Open
|