1
|
Gao Y, Huang D, Liu Y, Qiu Y, Lu S. Diet-derived circulating antioxidants, periodontitis and dental caries: A Mendelian randomization study. J Periodontal Res 2024; 59:951-958. [PMID: 38566359 DOI: 10.1111/jre.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Given the potential association between oxidative stress, periodontitis and dental caries, whether dietary supplementation with antioxidants is beneficial for periodontitis and dental caries has been widely reported, but remains controversial. This study aims to clarify these relationships through two-sample Mendelian randomization (MR) analysis. METHODS Circulating antioxidants (copper, selenium, zinc, ascorbate, β-carotene, lycopene, retinol and vitamin E) were derived from absolute circulating antioxidants and circulating antioxidant metabolites. Summary data of periodontitis and dental caries were obtained from two separate databases, respectively. We performed inverse-variance weighted (IVW) analysis separately in different databases, followed by meta-analysis. The robustness of results was examined by sensitivity analyses, including three complementary MR methods, heterogeneity and pleiotropy tests, and PhenoScanner query. RESULTS IVW analysis showed that elevated levels of absolute circulating retinol reduced the risk of periodontitis (GLIDE: OR = 0.41, 95% CI = 0.18-0.95, p = .038, power = 100%; FinnGen: OR = 0.15, 95% CI = 0.04-0.54, p = .004, power = 100%). The pooled OR for periodontitis risk per unit increase of retinol is 0.30 (95% CI = 0.15-0.61, p = .001, I2 = 40.3%, power = 100%). No significant associations were noted for genetically predicted circulating antioxidants and dental caries risk. The sensitivity analyses yielded similar estimates. CONCLUSION This study demonstrates that a negative causality between circulating retinol and periodontitis risk, and null linkage between circulating antioxidants and dental caries risk, suggesting potential strategies for the prevention and control of periodontitis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Donghai Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Shanhong Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| |
Collapse
|
2
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
3
|
Zhang H, Sun M, Xu H, Huang H. Th-Cell Subsets of Submandibular Lymph Nodes in Peri-Implantitis. J Craniofac Surg 2024; 35:692-698. [PMID: 38299822 DOI: 10.1097/scs.0000000000009927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Implant surgery is a popular operation in craniomaxillofacial surgery, but the occurrence of peri-implantitis affects the success and survival rate of the implant. Research has found that Th-cell-related cytokines are associated with peri-implantitis. However, the distribution and proportions of Th-cell subsets in submandibular lymph nodes' immune environments during the progression of peri-implantitis remain unclear. METHODS Forty-eight rats were randomly divided into 4 groups: the control group, the 1-week ligation peri-implantitis induction (Lig 1w) group, the Lig 2w group, and the Lig 4w group (n=12). Ligation was maintained for different times to induce peri-implantitis 4 weeks after implantation. Inflammation and bone resorption were examined by clinical probing and micro-CT. The submandibular lymph nodes were harvested for quantitative real-time polymerase chain reaction and flow cytometry to obtain the Th-cell profiles. RESULTS With increasing ligation time, more redness and swelling in the gingiva and more bone resorption around the implant were observed ( P <0.05). The proportions of Th1 and Th17 cells increased, the proportion of Th2 cells decreased, and the proportion of Treg cells first increased and then decreased in the lymph nodes ( P <0.05). CONCLUSIONS This study provided a preliminary characterization of the temporal distribution of Th cells in lymph nodes of peri-implantitis. Persistent elevation of Th1 and Th17 proportions and decrease of Treg proportion may be the cause of bone resorption in peri-implantitis. Lymphatic drainage may be a bridge between craniomaxillofacial diseases and systemic diseases. Early immune support against T cells may be a potential therapeutic idea for the prevention of implant failure and the potential risk of systemic disease.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials
| | - Mengzhe Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haisong Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University
| |
Collapse
|
4
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
5
|
Takeuchi Y, Aoki A, Hiratsuka K, Chui C, Ichinose A, Aung N, Kitanaka Y, Hayashi S, Toyoshima K, Iwata T, Arakawa S. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics (Basel) 2023; 12:1676. [PMID: 38136710 PMCID: PMC10740818 DOI: 10.3390/antibiotics12121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.
Collapse
Affiliation(s)
- Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
| | | | - Akiko Ichinose
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Nay Aung
- Laser Light Dental Clinic Periodontal and Implant Center, Yangon 11241, Myanmar;
| | - Yutaro Kitanaka
- Department of Oral Diagnosis and General Dentistry, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Sakura Hayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Shinich Arakawa
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| |
Collapse
|
6
|
Pacheco-Yanes J, Reynolds E, Li J, Mariño E. Microbiome-targeted interventions for the control of oral-gut dysbiosis and chronic systemic inflammation. Trends Mol Med 2023; 29:912-925. [PMID: 37730461 DOI: 10.1016/j.molmed.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Recent research has confirmed the strong connection between imbalances in the oral and gut microbiome (oral-gut dysbiosis), periodontitis, and inflammatory conditions such as diabetes, Alzheimer's disease, and cardiovascular diseases. Microbiome modulation is crucial for preventing and treating several autoimmune and inflammatory diseases, including periodontitis. However, the causal relationships between the microbiome and its derived metabolites that mediate periodontitis and chronic inflammation constitute a notable knowledge gap. Here we review the mechanisms involved in the microbiome-host crosstalk, and describe novel precision medicine for the control of systemic inflammation. As microbiome-targeted therapies begin to enter clinical trials, the success of these approaches relies upon understanding these reciprocal microbiome-host interactions, and it may provide new therapeutic avenues to reduce the risk of periodontitis-associated diseases.
Collapse
Affiliation(s)
- Juan Pacheco-Yanes
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; ImmunoBiota Therapeutics Pty Ltd, Melbourne, Australia.
| |
Collapse
|
7
|
Liao Y, Yan Q, Cheng T, Yao H, Zhao Y, Fu D, Ji Y, Shi B. Sulforaphene Inhibits Periodontitis through Regulating Macrophage Polarization via Upregulating Dendritic Cell Immunoreceptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15538-15552. [PMID: 37823224 DOI: 10.1021/acs.jafc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases that may eventually lead to the loss of teeth. Macrophage polarization plays an important role in the development of periodontitis, and several naturally occurring food compounds have recently been reported to regulate macrophage polarization. In this study, we aimed to investigate the therapeutic potential of sulforaphene (SFE) in macrophage polarization and its impact on periodontitis. Through in vitro and in vivo experiments, our study demonstrated that SFE effectively inhibits M1 polarization while promoting M2 polarization, ultimately leading to the suppression of periodontitis. Transcriptome sequencing showed that SFE significantly upregulated the expression of dendritic cell immunoreceptor (DCIR, also known as CLEC4A2). We further validated the crucial role of DCIR in macrophage polarization through knockdown and overexpression experiments and demonstrated that SFE regulates macrophage polarization by upregulating DCIR expression. In summary, the results of this study suggest that SFE can regulate macrophage polarization and inhibit periodontitis. Moreover, this research identified DCIR (dendritic cell immunoreceptor) as a potential novel target for regulating macrophage polarization. These findings provide new insights into the treatment of periodontitis and other immune-related diseases.
Collapse
Affiliation(s)
- Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tiange Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
Junxian L, Mehrabanian M, Mivehchi H, Banakar M, Etajuri EA. The homeostasis and therapeutic applications of innate and adaptive immune cells in periodontitis. Oral Dis 2023; 29:2552-2564. [PMID: 36004490 DOI: 10.1111/odi.14360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Periodontitis (PD) is one of the most common dental disorders. This chronic oral inflammation is caused by complicated interrelations between bacterial infections, dysregulated immune reactions, and environmental risk factors. A dysregulated immune response can lead to inflammatory bone resorption by allowing the recruitment of pro-inflammatory immune cells to the periodontal tissues. SUBJECTS The recruitment of innate and adaptive immune cells in PD initiates the acute and following chronic inflammatory processes. The inflamed tissues, on the other hand, can be restored if the anti-inflammatory lineages are predominantly established in the periodontal tissues. Therefore, we aimed to review the published literature to provide an overview of the existing knowledge about the role of immune cells in PD, as well as their possible therapeutic applications. RESULTS Experimental studies showed that drugs/systems that negatively regulate inflammatory cells in the body, as well as interventions aimed at increasing the number of anti-inflammatory cells such as Tregs and Bregs, can both help in the healing process of PD. CONCLUSION Targeting immune cells or their positive/negative manipulations has been demonstrated to be an effective therapeutic method. However, to use this sort of immunotherapy in humans, further pre-clinical investigations, as well as randomized clinical trials, are required.
Collapse
Affiliation(s)
- Li Junxian
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Mojtaba Mehrabanian
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Hassan Mivehchi
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Morteza Banakar
- Saveetha Dental College, Chennai, India
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Malaya, Malaysia
| |
Collapse
|
9
|
Kou Y, Jiang Y, Liu S, Yang P, Lu Y, Liu H, Li M. Regulatory T cells showed characteristics of T helper-17(Th17) cells in mice periodontitis model. Oral Dis 2023; 29:1149-1162. [PMID: 34741371 DOI: 10.1111/odi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study aimed to clarify the regulatory role of Th17-Treg balance in periodontitis and further reveal Treg plasticity. MATERIALS AND METHODS An experimental periodontitis model was established by ligation and injection of Pg-LPS. Inflammatory factors were measured by ELISA and RT-PCR. Alveolar bone absorption was evaluated by micro-CT and histomorphology. Quantities of Treg and Th17 cell and their related gene expression were examined. Furthermore, after magnetic bead-sorting spleen Treg cells, Treg/Th17 characteristic genes were explored. Immunofluorescence double staining of Foxp3 and IL-17 was conducted to further reveal Treg plasticity. RESULTS Inflammatory cytokines in serum and gingival tissue increased significantly in periodontitis, which revealed obvious crestal bone loss. Further analysis showed that the number of Th17 cells and expression of related genes increased more significantly than Treg cells, demonstrating Treg-Th17 imbalance. Flow cytometry showed that the proportions of Treg cells in the blood and spleen were lower in periodontitis group. Furthermore, Foxp3 was downregulated, and Rorc/ IL-17A were increased in Treg cells of periodontitis group. Immunofluorescence double staining showed significantly increased number of IL-17+Foxp3+ cells in periodontitis. CONCLUSIONS These results provided evidence that Treg cells showed characteristics of Th17 cells in mice with periodontitis, although its mechanisms require further study.
Collapse
Affiliation(s)
- Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
10
|
Zhu YN, Gu XL, Wang LY, Guan N, Li CG. All-Trans Retinoic Acid Promotes M2 Macrophage Polarization in Vitro by Activating the p38MAPK/STAT6 Signaling Pathway. Immunol Invest 2023; 52:298-318. [PMID: 36731128 DOI: 10.1080/08820139.2023.2173077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND M2-type macrophages are inflammation-suppressing cells that are differentiated after induction by cytokines such as IL-4 or IL-13, which play an important regulatory role in inflammation and influence the regression of inflammation-related diseases. All-trans retinoic acid (ATRA) has an important role in suppressing immune-mediated inflammatory responses but the effect and underlying mechanism of ATRA on the polarization of M2 macrophages remains unclear. METHODS Macrophages were isolated from peritoneal wash fluid, and IL-4 (20 ng/mL) was used to construct a m2-type macrophage polarization model. The model was incubated with different concentrations of ATRA (15 µg/ml, 30 µg/ml, 45 µg/ml) for 24 h, and pretreated macrophages with p38MAPKα inhibitor SB202190 (20 μM). MTT, Trypan blue staining, Annexin V-PE/7-AAD staining, flow cytometry, real-time PCR and western blotting were used to investigate the effect and mechanism of ATRA on the polarization of M2 macrophages. RESULTS Compared with the IL-4 group, the proportion of F4/80+CD206+ M2-type macrophages was significantly higher in the ATRA group (P < 0.01). mRNA and protein expression levels of Arg-1, IL-10 and TGF-β1 were as significantly higher (P < 0.01) in the ATRA group as phosphorylation levels of STAT6 and p38MAPK (P < 0.01). After pretreatment with the addition of the inhibitor SB202190, M2-type macrophages proportion and their associated factors expression were significantly (P < 0.01) reduced, as compared with those in the ATRA group, but they were comparable (P > 0.05) with the IL-4 group. CONCLUSION The combination of ATRA and IL-4 activated the p38MAPK/STAT6-signaling pathway to promote polarization of M2 macrophages.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xiao-Li Gu
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Lin-Yuan Wang
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Ning Guan
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chen-Guang Li
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
11
|
Association between retinol intake and periodontal health in US adults. BMC Oral Health 2023; 23:61. [PMID: 36726080 PMCID: PMC9893551 DOI: 10.1186/s12903-023-02761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Inflammation and oxidative stress are two hallmarks of periodontitis. Retinol is an antioxidant and suppresses expression of pro-inflammatory factors. However, the evidence for an association between retinol intake and periodontitis is limited. Thus, the aim of this study is to assess the association between retinol intake and periodontal health. METHODS Data used in this cross-sectional study from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 (n = 9081). Dietary intake of retinol was measured based on two 24-h dietary recall interviews. The category of periodontitis was defined by the CDC/AAP according to clinical periodontal parameters. Univariate and multivariate logistic regression analyses were applied to investigate the relationship between retinol intake and the risk of periodontitis. RESULTS Compared with the lowest tertile, individuals in the highest tertile of retinol intake were less likely to be periodontitis (ORtertile3vs1 = 0.79, 95% CI: 0.65-0.96). The association was still significant in populations who were less than 60 years old (ORtertile3vs1 = 0.80, 95% CI: 0.65-0.97), non-Hispanic black (ORtertile3vs1 = 0.62, 95% CI: 0.42-0.94), PI ≤ 1.3 (ORtertile3vs1 = 0.72, 95% CI: 0.55-0.93), 1.3 < PI ≤ 3.5 (ORtertile3vs1 = 0.70, 95% CI: 0.55-0.89), non-smoker (ORtertile3vs1 = 0.63, 95% CI: 0.48-0.81), obesity (ORtertile3vs1 = 0.68, 95% CI: 0.49-0.94) and who had not diabetes mellitus (ORtertile3vs1 = 0.79, 95% CI: 0.65-0.95) or had hypertension (ORtertile3vs1 = 0.63, 95% CI: 0.47-0.84). CONCLUSION Retinol intake is inversely associated with poor periodontal health in US adults.
Collapse
|
12
|
Yuan X, Zhou F, Wang H, Xu X, Xu S, Zhang C, Zhang Y, Lu M, Zhang Y, Zhou M, Li H, Zhang X, Zhang T, Song J. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int J Oral Sci 2023; 15:4. [PMID: 36631439 PMCID: PMC9834248 DOI: 10.1038/s41368-022-00212-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice.
Collapse
Affiliation(s)
- Xulei Yuan
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fuyuan Zhou
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - He Wang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xinxin Xu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shihan Xu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chuangwei Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Lu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ximu Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Deng DK, Zhang JJ, Gan D, Zou JK, Wu RX, Tian Y, Yin Y, Li X, Chen FM, He XT. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J Nanobiotechnology 2022; 20:545. [PMID: 36585740 PMCID: PMC9801622 DOI: 10.1186/s12951-022-01757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, leading to proinflammatory periodontal diseases. Bacteria-bacteria and cell-bacteria interactions play pivotal roles in periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles (EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifically, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunctional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical perspectives for the clinical translation of EV-based therapies for periodontitis.
Collapse
Affiliation(s)
- Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiu-Jiu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie-Kang Zou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
14
|
Atalay N, Balci N, Toygar HU, Yardimci G, Gürsoy UK. Serum, saliva, and gingival tissue human β-defensin levels in relation to retinoic acid use. J Periodontol 2022; 94:597-605. [PMID: 36440958 DOI: 10.1002/jper.22-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Retinoic acid is an active derivative of vitamin A and regulates the differentiation, proliferation, and antimicrobial peptide expression profiles of human cells. The aim of the present study was to analyze the effect of systemic retinoic acid use on serum, saliva, and gingival tissue levels of human β-defensin (hBD)-1, hBD-2, and hBD-3. METHODS A total of 69 participants (34 systemic retinoic acid users and 35 healthy controls) were enrolled in this study. Plaque index, probing pocket depth, bleeding on probing (BOP), and clinical attachment loss were measured. Saliva and serum hBD-1, hBD-2, and hBD-3 levels were quantified by enzyme-linked immunosorbent assay. Gingival tissue hBD-1, hBD-2, and hBD-3 levels were determined by immunohistochemistry. A univariate general linear model was used in adjusted comparisons of hBD1, hBD-2, and hBD-3. P values of < 0.05 were considered statistically significant. RESULTS Reduced salivary levels of hBD-2 (P = 0.042), but not hBD-1 or hBD-3, were detected in systemic retinoic acid users compared to non-user controls. There was a significant difference in the adjusted (for BOP%) salivary hBD-2 concentrations between retinoic acid and control groups (P = 0.031). No difference was observed in serum or tissue levels of hBD-1, hBD-2, or hBD-3 between the two study groups. CONCLUSION Systemic retinoic acid use was associated with suppressed salivary hBD-2 level, which was independent of gingival inflammation. KEY FINDINGS Systemic retinoic acid use associates with suppressed salivary hBD-2 levels.
Collapse
Affiliation(s)
- Nur Atalay
- Faculty of Dentistry, Department of Periodontology, Medipol University, Istanbul, Turkey.,Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nur Balci
- Faculty of Dentistry, Department of Periodontology, Medipol University, Istanbul, Turkey
| | - Hilal Uslu Toygar
- Faculty of Dentistry, Department of Periodontology, Medipol University, Istanbul, Turkey
| | - Gurkan Yardimci
- Department of Dermatology, Medipol University Esenler Hospital, Istanbul, Turkey
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Tabe S, Nakayama Y, Kobayashi R, Oyama K, Kitano D, Ogihara J, Senpuku H, Ogata Y. Association between Dietary Habit and Clinical Parameters in Patients with Chronic Periodontitis Undergoing Supportive Periodontal Therapy. Nutrients 2022; 14:nu14234993. [PMID: 36501023 PMCID: PMC9741307 DOI: 10.3390/nu14234993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The recurrence risk evaluation has been emphasized in periodontal stabilization during supportive periodontal therapy (SPT). However, nutritional factors, e.g., dietary habits such as the frequency of eating vegetables, are rarely included in the evaluation. In this study, the effect of nutritional factors on clinical periodontal parameters was examined in a lifestyle-related investigation and a periodontal examination in patients with periodontitis undergoing SPT. A total of 106 patients were recruited. Tendencies toward a negative correlation were found between rate of a probing depth (PD) of 4-5 mm, rate of PD ≥ 6 mm, the bleeding on probing (BOP) rate, periodontal inflamed surface area (PISA), and various nutritional factors. The number of teeth was a clinical parameter with a significantly high R2 (≥0.10) influenced by environmental factors, whereas PD, PD of 4-5 mm, the BOP rate, and PISA were influenced by nutritional factors. These results suggested that environmental factors reflected clinical parameters showing long-term pathophysiology, such as the PD rate. Nutritional factors tended to affect the current inflammatory pathophysiology, such as the BOP rate, PISA, and PISA/periodontal epithelial surface area. Therefore, environmental and nutritional factors appear to be useful for evaluating the risk of periodontitis during SPT.
Collapse
Affiliation(s)
- Shinichi Tabe
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
- Correspondence: (Y.N.); (Y.O.); Tel.: +81-47-360-9363 (Y.N.); +81-47-360-9362 (Y.O.)
| | - Ryoki Kobayashi
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 71-8587, Japan
| | - Kstsunori Oyama
- Department of Computer Science, College of Engineering, Nihon University, 1 Tamuramachi, Tokusada, Nakagawara, Koriyama 963-8642, Japan
| | - Daisuke Kitano
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Jun Ogihara
- Laboratory of Applied Microbiology and Biotechnology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
| | - Hidenobu Senpuku
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 71-8587, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan
- Correspondence: (Y.N.); (Y.O.); Tel.: +81-47-360-9363 (Y.N.); +81-47-360-9362 (Y.O.)
| |
Collapse
|
16
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Identification of Key Gene Targets for Periodontitis Treatment by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7992981. [PMID: 36212719 PMCID: PMC9536999 DOI: 10.1155/2022/7992981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Background. Periodontitis is considered to be the leading cause of tooth loss in adults, and it interacts with some serious systemic diseases. Periodontal basic therapy is the cornerstone of periodontal disease treatment and long-term maintenance and has a positive impact on the treatment of systemic diseases. Aim. To explore the potential gene targets of periodontitis therapies by bioinformatics method. Methods. We analyzed the expression database (GSE6751) downloaded from the Gene Expression Omnibus (GEO) with weighted gene coexpression network analysis (WGCNA) to confirm the functional gene modules. Pathway enrichment network analyses the key genes in functional modules and verified the candidate genes from the samples in peripheral blood sources of GSE43525. Moreover, we confirmed the expression of target protein in the periodontal tissues of experimental periodontitis-afflicted mice using western blotting. Results. The functional gene modules were found to have biological processes, and ARRB2, BIRC3, CD14, DYNLL1, FCER1G, FCGR1A, FCGR2B, FGR, HCK, and PRKCD were screened as candidates’ genes in functional modules. The 921 DEG from GSE43525 and 418 DEG is from the green module of GSE6751 and identified AMICA1, KDELR1, DHRS7B, LMNB1, CTSA, S100A12, and FCGR1A as target genes. Finally, FCGR1A (CD64) was confirmed as the key gene that affects periodontal treatment. Western blot analysis showed an increasing trend in the expression level of FCGR1A protein in the periodontal tissues of experimental periodontitis mice compared to normal mice. Conclusions. FCGR1A (CD64) may be a key gene target for periodontal therapy in patients with periodontitis and other systemic diseases.
Collapse
|
19
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
20
|
Shen X, Yang Y, Li J, Zhang B, Wei W, Lu C, Yan C, Wei H, Li Y. Immune Responses Regulated by Key Periodontal Bacteria in Germ-Free Mice. Pathogens 2022; 11:pathogens11050513. [PMID: 35631034 PMCID: PMC9146732 DOI: 10.3390/pathogens11050513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The immune dysregulation induced by periodontal bacteria has important roles in the development of periodontitis. However, the role of key periodontal bacteria in local and systemic immunity has not been comprehensively studied. Herein, to explore immunoregulation maps of key periodontal bacteria, a mono-colonized germ-free mice model with P. gingivalis, F. nucleatum, and T. denticola for two weeks was designed in this study. The alveolar bone loss was determined by micro-CT. A total of 14 types of innate and adaptive immune cells of the gingiva, spleen, and colon were detected by multi-color flow cytometry. P. gingivalis induced the strongest innate immune response in gingiva and mononuclear phagocytes (MNPs) changed most significantly, compared to F. nucleatum and T. denticola. Immune dysregulation of the colon was widely induced by F. nucleatum. T. denticola mainly induced immune disorder in spleen. ILC3s, Tregs, CD11B+ dendritic cells s, MNPs, macrophages, and plasmacytoid dendritic cells were the main types in response to key periodontal bacteria. However, the alveolar bone loss was not induced by key periodontal bacteria. In conclusion, the overall immunoregulation of monomicrobial stimuli to decipher the complexities of periodontitis was provided in this study. P. gingivalis, F. nucleatum, and T. denticola have different effects on local and systemic immunity in gingiva, colon, and spleen of germ-free mice.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.S.); (Y.Y.); (W.W.); (C.Y.)
| | - Yutao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.S.); (Y.Y.); (W.W.); (C.Y.)
| | - Jian Li
- Institute of Immunology, PLA, Army Medical University, Chongqing 400038, China;
| | - Bo Zhang
- Department of Stomatology, Minda Hospital of Hubei Minzu University, Enshi 445000, China;
| | - Wei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.S.); (Y.Y.); (W.W.); (C.Y.)
| | - Changqing Lu
- Department of Anatomy, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Caixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.S.); (Y.Y.); (W.W.); (C.Y.)
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200435, China
- Correspondence: (H.W.); (Y.L.)
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.S.); (Y.Y.); (W.W.); (C.Y.)
- Correspondence: (H.W.); (Y.L.)
| |
Collapse
|
21
|
Zou J, Zeng Z, Xie W, Zeng Z. Immunotherapy with regulatory T and B cells in periodontitis. Int Immunopharmacol 2022; 109:108797. [PMID: 35487085 DOI: 10.1016/j.intimp.2022.108797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023]
Abstract
Periodontitis (PD), also known as gum disease, is a condition causing inflammatory bone resorption and tooth loss. Regulatory T cells (Tregs) and regulatory B cells (Bregs) are vital in controlling the immune response and hence play a role in infections and peripheral tolerance adjustment. These cells have immunosuppressive and tissue-repairing capabilities that are important for periodontal health; however, in inflammatory circumstances, Tregs may become unstable and dysfunctional, accelerating tissue deterioration. In recent years, Regulatory cell-mediated immunotherapy has been shown to be effective in many inflammatory diseases. Considering the roles of Tregs and Bregs in shaping immune responses, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the role of regulatory T and B cells, as well as their therapeutic applications in PD.
Collapse
Affiliation(s)
- Juan Zou
- Department of stomatology, Maternal and Child Health Centre, Ganzhou, Jiangxi 341000, China
| | - Zijun Zeng
- Anesthesia surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Wen Xie
- Health Management Center, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Zhimei Zeng
- The First Affiliated Hospital of Gannan Medical College Dental Department Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
22
|
Peng Q, Zhao B, Lin J, Liu H, Zhou R, Lan D, Yao C, Cong S, Tao S, Zhu Y, Wang R, Qi S. SPRC Suppresses Experimental Periodontitis by Modulating Th17/Treg Imbalance. Front Bioeng Biotechnol 2022; 9:737334. [PMID: 35087796 PMCID: PMC8787365 DOI: 10.3389/fbioe.2021.737334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Object: The aims of the study were to explore the protective effects of S-propargyl-cysteine (SPRC) on periodontitis and to determine the underlying mechanisms. Methods: A rat periodontitis model was constructed by injecting LPS and SPRC (0, 25, and 50 mg/kg/d) was administered intraperitoneally. H2S and CSE level were detected. The alveolar bone level was evaluated by micro-CT, HE staining and methylene blue staining analysis. Inflammation-related factors, Treg and Th17 cells were detected by immunohistochemistry, RT-PCR, immunofluorescence, Western blot and flow cytometry. Phosphorylation levels of ERK1/2 and CREB were analysed. Results: The administration of SPRC significantly increased the expression of CSE in the gingival tissue and the concentration of endogenous H2S in the peripheral blood. Simultaneously, SPRC significantly inhibited the resorption of alveolar bone based on the H&E staining, micro-CT and methylene blue staining analysis. Compared with the periodontitis group, the levels of IL-17A, IL-10 were downregulated and IL-6,TGF-β1 were upregulated in the SPRC groups. In the SPRC group, the percentage of TH17 cells and the expression of ROR-γt were downregulated, while the percentage of Tregs and the expression of Foxp3 were upregulated accompanied with inhibition of phosphorylation ERK1/2 and CREB. Conclusion: SPRC can prevent the progression of periodontitis by regulating the Th17/Treg balance by inhibition of the ERK/CREB signalling pathway.
Collapse
Affiliation(s)
- Qian Peng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Bingkun Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lin
- Pharmacy Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongmei Lan
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Chao Yao
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Shaohua Cong
- Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shen Tao
- The First People's Hospital of KunShan, Kunshan, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Prothodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation. Clin Oral Investig 2022; 26:3747-3764. [PMID: 35029749 DOI: 10.1007/s00784-021-04346-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/11/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Improper orthodontic force often causes root resorption or destructive bone resorption. There is evidence that T helper 17 (Th17) cells and regulatory T (Treg) cells may be actively involved in bone remodeling during tooth movement. In a combination of in vitro and in vivo studies, we investigated the effect of human periodontal ligament cells (hPDLCs) on Th17/Treg cells under different orthodontic forces and corticotomy. MATERIAL AND METHODS hPDLCs were cultured in vitro and subjected to different mechanical forces. The expression of interleukin (IL)-6 and transforming growth factor (TGF)-β in the supernatant and the mRNA levels of hypoxia inducible factor (HIF)-1α, Notch1, and TGF-β in hPDLCs were investigated. Supernatants were collected and co-cultured with activated CD4+T cells, and the differentiation of Th17/Treg cells was analyzed by flow cytometry. We also established an animal model of tooth movement with or without corticotomy. The tooth movement distance, alveolar bone height, and root resorption were analyzed using micro-computed tomography. Expression of interleukin (IL)-17A, forkhead Box P3 (Foxp3), and IL-6 were analyzed using immunohistochemistry, while osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of IL-17A, IL-6, Foxp3, IL-10, HIF-1α, notch1, and C-X-C motif chemokine ligand 12 (CXCL12) in alveolar bone and gingiva were investigated. RESULTS Heavy force repressed cell viability and increased the mortality rate of hPDLCs; it also improved the expression of IL-6, declined the expression of TGF-β, and promoted the mRNA expression level of HIF-1α. The expression of TGF-β and Notch1 mRNA decreased and then increased. The supernatant of hPDLCs under heavy force promotes the polarization of Th17 cells. The heavy force caused root resorption and decreased alveolar bone height and increased the positive area of IL-17A immunohistochemical staining and the expression of IL-17A, IL-6, HIF-1α, and Notch1 mRNA. Corticotomy accelerated tooth movement, increased the proportion of Foxp3-positive cells, and up-regulated the expression of Foxp3, IL-10, and CXCL12 mRNA. CONCLUSIONS During orthodontic tooth movement, the heavy force causes root resorption and inflammatory bone destruction, which could be associated with increased expression of Th17 cells and IL-6. Corticotomy can accelerate tooth movement without causing root resorption and periodontal bone loss, which may be related to the increased expression of Treg cells. CLINICAL RELEVANCE Altogether, this report provides a new perspective on the prevention of inflammatory injury via the regulation of Th17/Treg cells in orthodontics.
Collapse
|
24
|
Jafari N, Khoradmehr A, Moghiminasr R, Seyed Habashi M. Mesenchymal Stromal/Stem Cells-Derived Exosomes as an Antimicrobial Weapon for Orodental Infections. Front Microbiol 2022; 12:795682. [PMID: 35058912 PMCID: PMC8764367 DOI: 10.3389/fmicb.2021.795682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
Collapse
Affiliation(s)
- Nazanin Jafari
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Moghiminasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
25
|
Fawzy El-Sayed KM, Bittner A, Schlicht K, Mekhemar M, Enthammer K, Höppner M, Es-Souni M, Schulz J, Laudes M, Graetz C, Dörfer CE, Schulte DM. Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells. Cells 2021; 10:cells10123310. [PMID: 34943818 PMCID: PMC8699152 DOI: 10.3390/cells10123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.
Collapse
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| | - Amira Bittner
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Martha Es-Souni
- Department of Orthodontics, School of Dental Medicine, University Clinic Schleswig-Holstein (UKSH), Christian-Albrechts University of Kiel, 24105 Kiel, Germany;
| | - Juliane Schulz
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
26
|
Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase. Int J Oral Sci 2021; 13:31. [PMID: 34593756 PMCID: PMC8484350 DOI: 10.1038/s41368-021-00136-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/09/2022] Open
Abstract
Ulcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0-40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31-40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.
Collapse
|
27
|
Ilango P, Kumar D, Mahalingam A, Thanigaimalai A, Reddy VK. Evidence revealing the role of T cell regulators (Tregs) in periodontal diseases: A review. J Indian Soc Periodontol 2021; 25:278-282. [PMID: 34393396 PMCID: PMC8336777 DOI: 10.4103/jisp.jisp_308_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory disease of the periodontium, which is a reflection of the overgrowth of oral commensals. This alteration in the oral microbiota initiates inflammation of the gingiva, which when left untreated, terminates with the resorption of the alveolar bone that may lead to a poor and hopeless prognosis. With upcoming trends in modulating the host's immunity, the role of regulatory T-cells has gained importance. These T-cells defend against inflammation and autoimmunity as they suppress both. However, in both the conditions, the regulatory cells are invariably reduced in number. Novel methods to enhance the function of Tregs have made their way in dentistry, as a promising approach to cure periodontitis. This article discusses various significant tests and trials of Tregs in the recent years.
Collapse
Affiliation(s)
- Paavai Ilango
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Dhanapriya Kumar
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Arulpari Mahalingam
- Department of Pedodontics, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Abirami Thanigaimalai
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Vineela Katam Reddy
- Department of Periodontics, Indira Gandhi Dental College and Hospital, Puducherry, India
| |
Collapse
|
28
|
Wang W, Wang X, Lu S, Lv H, Zhao T, Xie G, Du Y, Fan Y, Xu L. Metabolic Disturbance and Th17/Treg Imbalance Are Associated With Progression of Gingivitis. Front Immunol 2021; 12:670178. [PMID: 34234776 PMCID: PMC8257051 DOI: 10.3389/fimmu.2021.670178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Objective This study sought to explore the role of metabolic disturbance in immunoregulation of gingivitis targeting T helper 17 cells (Th17)/regulatory T cell (Treg). Materials and Methods A total of 20 gingivitis patients and 19 healthy volunteers were recruited. Quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate expression patterns of Forkhead box protein P3 (Foxp3), transforming growth factor-β (TGF-β), retinoid-related orphan receptor-gammat (RORγt) and interleukin 17A (IL-17A) in the peripheral blood lymphocytes of subjects across the two groups. Moreover, the enzyme-linked immunosorbent assay (ELISA) technique was used to detect levels of TGF-β, IL-4, IL-6,TL-10 and L-17A secreted in the plasma as well as the SIgA secreted in saliva. Flow cytometry was used to detect the percentage of CD4+CD25+ Foxp3+Treg cells and the percentage of CD4+IL-17A+ Th17 cells in whole blood of subjects in both groups. Gas chromatography-mass spectrometry (GC-MS) was employed to analyze the plasma metabolites in the gingivitis patient group. Statistical analysis was applied to determine whether the plasma metabolites and related metabolic pathways significantly differed between gingivitis patients and healthy controls. Ingenuity pathway analysis (IPA) was employed to identify the potential relation between the metabolites and the Th17 and Treg related pathway. Results The percentages of CD4+IL17A+Th17 cells and IL-17 significantly increased in the peripheral blood in the gingivitis group. Moreover, the upregulation of IL-17A mRNA and RORγt mRNA were also found in the gingivitis group. However, the percentage of CD4+CD25+ Foxp3+Treg cells and Foxp3 mRNA in the whole blood did not significantly change. However, TGF-β mRNA as well as TGF-β, IL-4, IL-6, IL-10 in the periperial blood and SIgA in the saliva were higher in the gingivitis group. Notably, that the ratio of Th17/Treg cells was significantly increased during peripheral circulation. Furthermore, we identified 18 different metabolites which were differentially expressed in plasma between the gingivitis and healthy control groups. Notably, the levels of cholesterol, glycerol 1-octadecanoate, d-glucose, uric acid, cyclohexaneacetic acid, 3-pyridine, tryptophan, and undecane 2,4-dimethyl were significantly up-regulated. whereas the levels of lactic acid, glycine, linoleic acid, monopalmitic acid, glycerol, palmitic acid, pyruvate, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, 1 5-anhydro d-altrol, and boric acid were down-regulated in the gingivitis group, relative to healthy controls. IPA showed that these metabolites are connected to IL17 signaling, TGF-B signaling, and IL10 signaling, which are related closely to Th17 and Treg pathway. Conclusion Overall, these results showed that disturbance to glycolysis as well as amino and fatty acid metabolism are associated with Th17/Treg balance in gingivitis. Impaired immunometabolism may influence some periodontally involved systemic diseases, hence it is a promising strategy in targeted development of treatment therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuhao Lu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiqing Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanqun Xie
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Du
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
29
|
Zhang Y, Guo J, Jia R. Treg: A Promising Immunotherapeutic Target in Oral Diseases. Front Immunol 2021; 12:667862. [PMID: 34177907 PMCID: PMC8222692 DOI: 10.3389/fimmu.2021.667862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
With the pandemic of COVID-19, maintenance of oral health has increasingly become the main challenge of global health. Various common oral diseases, such as periodontitis and oral cancer, are closely associated with immune disorders in the oral mucosa. Regulatory T cells (Treg) are essential for maintaining self-tolerance and immunosuppression. During the process of periodontitis and apical periodontitis, two typical chronic immune-inflammatory diseases, Treg contributes to maintain host immune homeostasis and minimize tissue damage. In contrast, in the development of oral precancerous lesions and oral cancer, Treg is expected to be depleted or down-regulated to enhance the anti-tumor immune response. Therefore, a deeper understanding of the distribution, function, and regulatory mechanisms of Treg cells may provide a prospect for the immunotherapy of oral diseases. In this review, we summarize the distribution and multiple roles of Treg in different oral diseases and discuss the possible mechanisms involved in Treg cell regulation, hope to provide a reference for future Treg-targeted immunotherapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Yujing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Zou H, Zhou N, Huang Y, Luo A, Sun J. Phenotypes, roles, and modulation of regulatory lymphocytes in periodontitis and its associated systemic diseases. J Leukoc Biol 2021; 111:451-467. [PMID: 33884656 DOI: 10.1002/jlb.3vmr0321-027rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a common chronic inflammatory disease that can result in tooth loss and poses a risk to systemic health. Lymphocytes play important roles in periodontitis through multiple mechanisms. Regulatory lymphocytes including regulatory B cells (Bregs) and T cells (Tregs) are the main immunosuppressive cells that maintain immune homeostasis, and are critical to our understanding of the pathogenesis of periodontitis and the development of effective treatments. In this review, we discuss the phenotypes, roles, and modulating strategies of regulatory lymphocytes including Bregs and Tregs in periodontitis and frequently cooccurring inflammatory diseases such as rheumatoid arthritis, Alzheimer disease, diabetes mellitus, and stroke. The current evidence suggests that restoring immune balance through therapeutic targeting of regulatory lymphocytes is a promising strategy for the treatment of periodontitis and other systemic inflammatory diseases.
Collapse
Affiliation(s)
- Hang Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Niu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangzhou Zoo, Guangzhou, China
| | - Yilian Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aoxiang Luo
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
31
|
Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, Martínez-Pérez LA, Guzmán-Flores JM. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis 2021; 28:1441-1447. [PMID: 33884712 DOI: 10.1111/odi.13884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Periodontal disease refers to inflammation of the tissues that support the tooth. It is of multifactorial etiology. Innate and adaptive immune cells participate jointly through the release of their molecules and mechanisms of action in order to maintain homeostasis in periodontal tissues, so the host's immune response plays an essential role in defense against microorganisms. However, bacterial persistence and the dysregulation of the immune system as an exaggerated response can lead to the worsening of periodontal disease, leading to loss of gingival tissue and alveolar bone and thereby loss of teeth. Therefore, a better understanding of the cellular mechanisms involved in the development of periodontal disease is necessary to design new treatments and prophylactic measures in order to decrease the prevalence of this disease that afflicts a large part of the world population.
Collapse
Affiliation(s)
- Julieta Saraí Becerra-Ruiz
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Celia Guerrero-Velázquez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Luz Andrea Martínez-Pérez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
32
|
Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of Periodontal/Periapical Lesion Stability and Progression. J Dent Res 2020; 100:29-36. [PMID: 32866421 DOI: 10.1177/0022034520952341] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal and periapical lesions are infectious inflammatory osteolitytic conditions in which a complex inflammatory immune response mediates bone destruction. However, the uncertainty of a lesion's progressive or stable phenotype complicates understanding of the cellular and molecular mechanisms triggering lesion activity. Evidence from clinical and preclinical studies of both periodontal and periapical lesions points to a high receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio as the primary determinant of osteolytic activity, while a low RANKL/OPG ratio is often observed in inactive lesions. Proinflammatory cytokines directly modulate RANKL/OPG expression and consequently drive lesion progression, along with pro-osteoclastogenic support provided by Th1, Th17, and B cells. Conversely, the cooperative action between Th2 and Tregs subsets creates an anti-inflammatory and proreparative milieu associated with lesion stability. Interestingly, the trigger for lesion status switch from active to inactive can originate from an unanticipated RANKL immunoregulatory feedback, involving the induction of Tregs and a host response outcome with immunological tolerance features. In this context, dendritic cells (DCs) appear as potential determinants of host response switch, since RANKL imprint a tolerogenic phenotype in DCs, described to be involved in both Tregs and immunological tolerance generation. The tolerance state systemically and locally suppresses the development of exacerbated and pathogenic responses and contributes to lesions stability. However, immunological tolerance break by comorbidities or dysbiosis could explain lesions relapse toward activity. Therefore, this article will provide a critical review of the current knowledge concerning periodontal and periapical lesions activity and the underlying molecular mechanisms associated with the host response. Further studies are required to unravel the role of immunological responsiveness or tolerance in the determination of lesion status, as well as the potential cooperative and/or inhibitory interplay among effector cells and their impact on RANKL/OPG balance and lesion outcome.
Collapse
Affiliation(s)
- F Cavalla
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - A Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - R M Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,Department of Endodontics, University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, SP, Brazil
| |
Collapse
|
33
|
Yetkin Ay Z, Bakır B, Bozkurt ŞB, Kayis SA, Hakki SS. Positive effect of curcumin on experimental peridontitis via suppression of IL-1-beta and IL-6 expression level. INT J VITAM NUTR RES 2020; 92:231-239. [PMID: 32718217 DOI: 10.1024/0300-9831/a000672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study examined the effect of curcumin on T-helper (Th17) and T-regulatory (Treg) cells regarding the mRNA of cytokines/mediators in the gingiva. Thirty-five male albino Wistar rats were divided into four groups: Group 1: periodontitis (n = 9); Group 2: periodontitis with curcumin treatment (n = 8); Group 3: periodontally healthy with curcumin treatment (n = 10); and Group 4: periodontally healthy (n = 8). Curcumin was administered via oral gavage (30 mg/kg/day) for a total of 15 days. The gingival tissues were investigated regarding mRNA expressions of Th17/Treg cytokines with qRT-PCR. The distributional properties of the data were evaluated using the Anderson-Darling normality test. Kruskal-Wallis and Mann-Whitney U tests were employed for multiple group comparisons. Partial least squares regression discriminant analysis (PLS-DA) was used to evaluate the degree of contribution of each mRNA to the separation of treatment groups. When the periodontitis groups were compared, curcumin treatment resulted in lower IL-1β (Group 2 median: 0.002, Group 1 median: 0.12) and IL-6 (Group 2 median: 0.031, Group 1 median: 0.078) and higher IL-17 (Group 2 median: 1.07, Group 1 median: 0.583) relative mRNA expression in Group 2 than in Group 1 (p < 0.001). Group 3 also had higher IL-10 relative expression (median: 0.067) than Groups 1 and 4 (median: 0.028, 0.007, respectively. p < 0.001). These results indicate that curcumin might be a promising agent for the prevention and/or treatment of periodontal diseases due to its decreasing effect on IL-1β and IL-6 mRNA expression.
Collapse
Affiliation(s)
- Zuhal Yetkin Ay
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Burcu Bakır
- Department of Periodontology, Faculty of Dentistry, Mehmet Akif Ersoy University, Burdur, Turkey
| | | | - Seyit Ali Kayis
- Department of Biostatistics, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Sema Sezgin Hakki
- Research Center, Faculty of Dentistry, Selçuk University, Konya, Turkey.,Department of Periodontology, Faculty of Dentistry, Selçuk University, Konya, Turkey
| |
Collapse
|
34
|
Cafferata EA, Terraza-Aguirre C, Barrera R, Faúndez N, González N, Rojas C, Melgar-Rodríguez S, Hernández M, Carvajal P, Cortez C, González FE, Covarrubias C, Vernal R. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. J Clin Periodontol 2020; 47:676-688. [PMID: 32160331 DOI: 10.1111/jcpe.13282] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
AIM T lymphocytes play a central role during the pathogenesis of periodontitis, and the imbalance between the pathogenic T-helper type 17 (Th17) and protective T-regulatory (Treg) lymphocytes determines the tooth-supporting alveolar bone resorption. Interleukin (IL)-35 is a novel anti-inflammatory cytokine with therapeutic properties in diseases whose pathogenesis is associated with the Th17/Treg imbalance; however, its role during periodontitis has not been established yet. This study aimed to elucidate whether IL-35 inhibits the alveolar bone resorption during periodontitis by modulating the Th17/Treg imbalance. MATERIALS AND METHODS Mice with ligature-induced periodontitis were treated with locally or systemically administrated IL-35. As controls, periodontitis-affected mice without IL-35 treatment and non-ligated mice were used. Alveolar bone resorption was measured by micro-computed tomography and scanning electron microscopy. The Th17/Treg pattern of the immune response was analysed by qPCR, ELISA, and flow cytometry. RESULTS IL-35 inhibited alveolar bone resorption in periodontitis mice. Besides, IL-35 induced less detection of Th17 lymphocytes and production of Th17-related cytokines, together with higher detection of Treg lymphocytes and production of Treg-related cytokines in periodontitis-affected tissues. CONCLUSION IL-35 is beneficial in the regulation of periodontitis; particularly, IL-35 inhibited alveolar bone resorption and this inhibition was closely associated with modulation of the periodontal Th17/Treg imbalance.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | | | - Romina Barrera
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nicolás Faúndez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nicolás González
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Fermín E González
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Laboratory of Experimental Immunology and Cancer, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Sun L, Girnary M, Wang L, Jiao Y, Zeng E, Mercer K, Zhang J, Marchesan JT, Yu N, Moss K, Lei YL, Offenbacher S, Zhang S. IL-10 Dampens an IL-17-Mediated Periodontitis-Associated Inflammatory Network. THE JOURNAL OF IMMUNOLOGY 2020; 204:2177-2191. [PMID: 32169848 DOI: 10.4049/jimmunol.1900532] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Emerging evidence suggests comprehensive immune profiling represents a highly promising, yet insufficiently tapped approach to identify potentially prognostic signatures for periodontitis. In this report, we agnostically identified a periodontitis-associated inflammatory expression network with multiple biomarkers identified within gingival crevicular fluid samples from study participants by applying principal component analysis. We identified an IL-17-dominated trait that is associated with periodontal disease and is inversely modified by the level of IL-10. IL-10 mitigated chemokine CXCL5 and CXCL1 expressions in IL-17-stimulated peripheral blood monocytic cells and peripheral blood monocytic cell-derived macrophages. Il10-deficient mice presented more bone loss, which was associated with more Il17 and IL-17-mediated chemokine and cytokine expression at the transcriptional levels in comparison with control wild-type mice in both the Porphyromonas gingivalis-induced experimental murine periodontitis and ligature-induced alveolar bone-loss models. The dampening effect of IL-10 on the excessive signaling of IL-17 appeared to be mediated by innate immune cells populations rather than by gingival epithelial cells, which are the major cell target for IL-17 signaling. Additionally, elevated IL-17 response in Il10-deficient mice specifically elicited an M1-skewing macrophage phenotype in the gingiva that was associated with the advanced bone loss in the ligature model. In summary, IL-17 dominated an inflammatory network characteristic of periodontitis, and IL-10 dampens this excessive IL-17-mediated periodontitis trait.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mustafa Girnary
- Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lufei Wang
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yizu Jiao
- Doctor of Dental Surgery Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, IA 52242
| | - Kyle Mercer
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA 52242.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242
| | - Jinmei Zhang
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Julie T Marchesan
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ning Yu
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142
| | - Kevin Moss
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Dental Ecology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Steven Offenbacher
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA 52242; .,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242
| |
Collapse
|
36
|
Naruishi K. Carotenoids and Periodontal Infection. Nutrients 2020; 12:nu12010269. [PMID: 31968635 PMCID: PMC7019381 DOI: 10.3390/nu12010269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a polymicrobial infectious disease that leads to inflammation of the gingiva, resulting in teeth loss by various causes such as inflammation-mediated bone resorption. Recently, many investigators have reported that the periodontitis resulting from persistent low-grade infection of Gram-negative bacteria such as Porphyromonas gingivalis (Pg) is associated with increased atherosclerosis, diabetes mellitus, and other systemic diseases through blood stream. On the other hand, carotenoids belong among phytochemicals that are responsible for different colors of the foods. It is important to examine whether carotenoids are effective to the inhibition of periodontal infection/inflammation cascades. This review summarizes the advanced state of knowledge about suppression of periodontal infection by several carotenoids. A series of findings suggest that carotenoids intake may provide novel strategy for periodontitis treatment, although further study will be needed.
Collapse
Affiliation(s)
- Koji Naruishi
- Department of Periodontology and Endodontology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
37
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
38
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
39
|
Emecen-Huja P, Li HF, Ebersole JL, Lambert J, Bush H. Epidemiologic evaluation of Nhanes for environmental Factors and periodontal disease. Sci Rep 2019; 9:8227. [PMID: 31160648 PMCID: PMC6547714 DOI: 10.1038/s41598-019-44445-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
Periodontitis is a chronic inflammation that destroys periodontal tissues caused by the accumulation of bacterial biofilms that can be affected by environmental factors. This report describes an association study to evaluate the relationship of environmental factors to the expression of periodontitis using the National Health and Nutrition Examination Study (NHANES) from 1999-2004. A wide range of environmental variables (156) were assessed in patients categorized for periodontitis (n = 8884). Multiple statistical approaches were used to explore this dataset and identify environmental variable patterns that enhanced or lowered the prevalence of periodontitis. Our findings indicate an array of environmental variables were different in periodontitis in smokers, former smokers, or non-smokers, with a subset of specific environmental variables identified in each population subset. Discriminating environmental factors included blood levels of lead, phthalates, selected nutrients, and PCBs. Importantly, these factors were found to be coupled with more classical risk factors (i.e. age, gender, race/ethnicity) to create a model that indicated an increased disease prevalence of 2-4 fold across the sample population. Targeted environmental factors are statistically associated with the prevalence of periodontitis. Existing evidence suggests that these may contribute to altered gene expression and biologic processes that enhance inflammatory tissue destruction.
Collapse
Affiliation(s)
- P Emecen-Huja
- Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - H-F Li
- Providence St. Joseph Health of Oregon, Medical Data and Research Center, Portland, OR, USA
| | - J L Ebersole
- School of Dental Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - J Lambert
- College of Nursing, University of Cincinnati, Cincinnati, OH, USA
| | - H Bush
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
40
|
Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, Liang Y, Bao L, Feng G, Ji J, Feng X, Gu Z. Exosomal microRNA‐155‐5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin‐1 in chronic periodontitis. J Cell Physiol 2019; 234:20662-20674. [PMID: 31016751 DOI: 10.1002/jcp.28671] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ya Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chen Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Jin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Ji
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
41
|
Hays A, Duan X, Zhu J, Zhou W, Upadhyayula S, Shivde J, Song L, Wang H, Su L, Zhou X, Liang S. Down-regulated Treg cells in exacerbated periodontal disease during pregnancy. Int Immunopharmacol 2019; 69:299-306. [PMID: 30753969 PMCID: PMC6411422 DOI: 10.1016/j.intimp.2019.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Pregnancy is a special period marked with complicated changes in various immune responses. Although pregnant women are prone to developing gingival inflammation, its immunological mechanism remains to be clarified. In a modified ligature-induced periodontal disease murine model, pregnant mice developed more severe alveolar bone loss. Using this model, we investigated the Treg responses during exacerbated periodontal disease in pregnant mice. We tested Treg-associated molecules in gingival tissues by quantitative real-time PCR and found decreased gingival expression of Foxp3, TGFβ, CTLA-4, and CD28 in pregnant mice after periodontal disease induction. We further confirmed that lower number of Treg cells were present in the cervical lymph nodes of pregnant periodontitis mice. Treg cells from the cervical lymph nodes of ligated pregnant mice and non-pregnant mice were tested for their suppressive function in vitro. We manifested that Treg suppressive function was also down-regulated in the pregnant mice. Additionally, we demonstrated that more inflammatory Th17 cells were present in the cervical lymph nodes of ligated pregnant mice. Therefore, impaired Treg development and function, together with upregulated Th17 response, may contribute to the exacerbated periodontal disease during pregnancy.
Collapse
Affiliation(s)
- Aislinn Hays
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Xingyu Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jianxin Zhu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Wei Zhou
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Satya Upadhyayula
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Juili Shivde
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Song
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
42
|
Fawzy El-Sayed KM, Hein D, Dörfer CE. Retinol/inflammation affect stemness and differentiation potential of gingival stem/progenitor cells via Wnt/β-catenin. J Periodontal Res 2019; 54:413-423. [PMID: 30830694 DOI: 10.1111/jre.12643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Inflammatory cytokines impact the course of periodontal disease, repair, and regeneration. Vitamin A and its metabolites are inflammation-modulatory biomolecules, affecting cellular pluripotency. The aim of this study was to investigate the effect of retinol and periodontal inflammatory cytokines (IL-1β/TNF-α/IFN-γ) on pluripotency and proliferative properties of gingival mesenchymal stem/progenitor cells (G-MSCs), for the first time. MATERIAL AND METHODS Human G-MSCs (n = 5) were STRO-1 immuno-magnetically sorted, characterized and expanded in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL), and IFN-γ (100 ng/mL) (inflammatory group), in basic medium with retinol (20 μmol/L) (retinol group) and with retinol added to the inflammatory group (inflammatory/retinol group). β-catenin levels at 1 hour, cellular proliferation over 14 days, and colony-forming units (CFUs) at 14 days were investigated. Pluripotency gene expressions were examined at 1, 3, and 5 days via reverse transcription-polymerase chain reaction (RT-PCR). Multilineage differentiation potential was evaluated, following 5 days priming, using qualitative and quantitative histochemistry and RT-PCR. RESULTS G-MSCs were CD14- , CD34- , CD45- , CD73+ , CD90+ , CD105+ , and showed mesenchymal stem/progenitor cells' hallmarks, CFUs, and multilineage differentiation potential. Intracellular β-catenin significantly declined in the stimulated groups (P < 0.001, Friedman test). Cellular proliferation at 72 hours was most prominent in the control and inflammatory group [Median cell numbers (Q25/Q75); 6806 (4983/7312) and 5414 (4457/7230), respectively], followed by an upsurge in the retinol group. At 14 days, the retinol group exhibited the highest CFUs [Median CFUs (Q25/Q75); 35 (20/58), P = 0.043, Wilcoxon signed-rank]. Nanog was most expressed in the inflammatory and retinol group [Median gene expression/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0014) and 0.0005 (0.0003/0.0008)]. Inflammation significantly upregulated Sox2 expression [0.0002 (0.0008/0.0005)], while its expression was diminished in the retinol and inflammatory/retinol group (P < 0.001, Friedman test). Inflammatory/retinol group exhibited the highest multilineage differentiation potential. CONCLUSION Controlled short-term inflammatory/retinol stimuli activate the Wnt/β-catenin pathway, affecting G-MSCs' pluripotency, proliferation, and differentiation. The present findings provide further insights into the inflammatory-regenerative interactions and their modulation potential for G-MSCs-mediated periodontal repair/regeneration.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.,Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-University, Kiel, Germany
| | - Daniela Hein
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-University, Kiel, Germany
| |
Collapse
|
43
|
Cafferata EA, Jerez A, Vernal R, Monasterio G, Pandis N, Faggion CM. The therapeutic potential of regulatory T lymphocytes in periodontitis: A systematic review. J Periodontal Res 2018; 54:207-217. [DOI: 10.1111/jre.12629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Emilio Alfredo Cafferata
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de Chile Santiago Chile
- Faculty of DentistryUniversidad Peruana Cayetano Heredia Lima Perú
| | - Alfredo Jerez
- Department of Oral SurgerySection of PeriodontologySchool of DentistryUniversidad de Concepción Concepción Chile
| | - Rolando Vernal
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de Chile Santiago Chile
- Dentistry UnitFaculty of Health SciencesUniversidad Autónoma de Chile Santiago Chile
| | - Gustavo Monasterio
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de Chile Santiago Chile
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial OrthopedicsDental School/Medical FacultyUniversity of Bern Bern Switzerland
| | - Clovis M. Faggion
- Department of Periodontology and Operative DentistryFaculty of DentistryUniversity of Münster Münster Germany
| |
Collapse
|
44
|
Lv K, Wang G, Shen C, Zhang X, Yao H. Role and mechanism of the nod-like receptor family pyrin domain-containing 3 inflammasome in oral disease. Arch Oral Biol 2018; 97:1-11. [PMID: 30315987 DOI: 10.1016/j.archoralbio.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To summarize evidence and data from experimental studies regarding the role and mechanism of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of several representative oral diseases. MATERIALS AND METHODS A literature search of PubMed and EBSCO was performed. The literature was searched using a combination of keywords, e.g., NLRP3 inflammasome, inflammation, microorganisms, oral inflammatory diseases, and oral immunological diseases. RESULTS The initiation and activation of the NLRP3 inflammasome are associated with the pathogenesis and progression of several representative oral diseases, including periodontitis, oral lichen planus, dental pulp disease, and oral cavity squamous cell carcinoma. CONCLUSIONS The NLRP3 inflammasome plays a crucial role in the progression of inflammatory and adaptive immune responses. The possible role of the NLRP3 inflammasome in several oral diseases, including not only periodontitis and pulpitis but also mucosal diseases and oral cavity squamous cell carcinoma, may involve the aberrant regulation of inflammatory and immune responses. Understanding the cellular and molecular biology of the NLRP3 inflammasome is necessary because the NLRP3 inflammasome may be a potential therapeutic target for the treatment and prevention of oral inflammatory and immunological diseases.
Collapse
Affiliation(s)
- Kejia Lv
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Guohua Wang
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Chenlu Shen
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xia Zhang
- Department of Stomatology, Affiliated Yinzhou People Hospital, College of Medicine, Ningbo University, China
| | - Hua Yao
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| |
Collapse
|
45
|
Regulatory T Lymphocytes in Periodontitis: A Translational View. Mediators Inflamm 2018; 2018:7806912. [PMID: 29805313 PMCID: PMC5901475 DOI: 10.1155/2018/7806912] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 01/10/2023] Open
Abstract
Periodontitis is a chronic immuno-inflammatory disease in which the disruption of the balance between host and microbiota interactions is key to the onset and progression of the disease. The immune homeostasis associated with periodontal health requires a regulated immuno-inflammatory response, during which the presence of regulatory T cells (Tregs) is essential to ensure a controlled response that minimizes collateral tissue damage. Since Tregs modulate both innate and adaptive immunity, pathological conditions that may resolve by the acquisition of immuno-tolerance, such as periodontitis, may benefit by the use of Treg immunotherapy. In recent years, many strategies have been proposed to take advantage of the immuno-suppressive capabilities of Tregs as immunotherapy, including the ex vivo and in vivo manipulation of the Treg compartment. Ongoing research in both basic and translational studies let us gain a better understanding of the diversity of Treg subsets, their phenotypic plasticity, and suppressive functions, which can be used as a substrate for new immunotherapies. Certainly, as our knowledge of Treg biology increases, we will be capable to develop new therapies designed to enhance the stability and function of Tregs during periodontitis.
Collapse
|
46
|
Potential of iPSC-Derived Mesenchymal Stromal Cells for Treating Periodontal Disease. Stem Cells Int 2018; 2018:2601945. [PMID: 29731776 PMCID: PMC5872653 DOI: 10.1155/2018/2601945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cell-like populations have been derived from mouse-induced pluripotent stem cells (miPSC-MSC) with the capability for tissue regeneration. In this study, murine iPSC underwent differentiation towards an MSC-like immunophenotype. Stable miPSC-MSC cultures expressed the MSC-associated markers, CD73, CD105, and Sca-1, but lacked expression of the pluripotency marker, SSEA1, and hematopoietic markers, CD34 and CD45. Functionally, miPSC-MSC exhibited the potential for trilineage differentiation into osteoblasts, adipocytes, and chondrocytes and the capacity to suppress the proliferation of mitogen-activated splenocytes. The efficacy of miPSC-MSC was assessed in an acute inflammation model following systemic or local delivery into mice with subcutaneous implants containing heat-inactivated P. gingivalis. Histological analysis revealed less inflammatory cellular infiltrate within the sponges in mice treated with miPSC-MSC cells delivered locally rather than systemically. Assessment of proinflammatory cytokines in mouse spleens found that CXCL1 transcripts and protein were reduced in mice treated with miPSC-MSC. In a periodontitis model, mice subjected to oral inoculation with P. gingivalis revealed less bone tissue destruction and inflammation within the jaws when treated with miPSC-MSC compared to PBS alone. Our results demonstrated that miPSC-MSC derived from iPSC have the capacity to control acute and chronic inflammatory responses associated with the destruction of periodontal tissue. Therefore, miPSC-MSC present a promising novel source of stromal cells which could be used in the treatment of periodontal disease and other inflammatory systemic diseases such as rheumatoid arthritis.
Collapse
|
47
|
Jin Y, Liu D, Lin X. IL-35 may maintain homeostasis of the immune microenvironment in periodontitis. Exp Ther Med 2017; 14:5605-5610. [PMID: 29285099 DOI: 10.3892/etm.2017.5255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
T lymphocyte cells, including regulatory T (Treg) and T helper 17 cells, have important roles in the human periodontium. However, the basis for Treg cytokine expression in various compartments of the periodontium remains unclear. The aim of the present study was to investigate the expression of interleukin (IL)-35 in the peripheral blood mononuclear cells (PBMCs) and periodontal tissues of patients with chronic periodontitis (CP), with a view to understanding its role in this disease, and ultimately providing improved treatments. Peripheral blood, periodontal tissues and gingival crevicular fluids (GCFs) were collected from patients with CP or impacted teeth, the latter serving as healthy controls. The expression levels of IL-35 subunit mRNAs in PBMCs and periodontal tissues were determined using reverse transcription-quantitative polymerase chain reaction, while the IL-35 protein expression in GCFs and sera was quantified by ELISA. The relative expression of IL-35 subunit mRNAs in the affected tissues of patients with CP was significantly higher compared with that in samples from healthy controls (P<0.05). The mean concentration of IL-35 protein in the GCFs and sera of patients with periodontitis was also significantly higher compared with that in samples from healthy controls (P<0.001). IL-35 protein and periodontal clinical indicators were negatively correlated. It was hypothesized that the increased level of IL-35 plays a protective role in periodontal disease by maintaining immune system homeostasis and dampening the inflammatory response, and highlights IL-35 as a potential new therapy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dixin Liu
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
48
|
Park JA, Lee JH, Lee HJ, Jin BH, Bae KH. Association of Some Vitamins and Minerals with Periodontitis in a Nationally Representative Sample of Korean Young Adults. Biol Trace Elem Res 2017; 178:171-179. [PMID: 28035581 DOI: 10.1007/s12011-016-0914-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/13/2016] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to investigate whether the intakes of some kinds of vitamins and minerals are associated with periodontitis in a nationally representative sample of young adults. This study comprised 2049 young adults aged 19-39 years who took both periodontal examination and nutrition survey. The vitamin and mineral intakes were calculated from dietary intake data gained by complete one-day 24-h recall interviews, and the intake levels for each nutrient were classified by the Recommended Nutrient Intake (RNI) in Dietary Reference Intakes for Koreans and median values. Periodontitis was assessed using Community Periodontal Index (CPI). Multivariate logistic regression analyses were performed in a whole sample and subgroups with the strata of gender or smoking, following a complex sampling design. In analyses according to RNI, a lower intake of niacin was significantly associated with periodontitis in young adults (odd ratio [OR] 1.47, 95% confidential interval [CI] 1.09-2.00) and in its subgroup of women (OR 1.70; 95% CI 1.10-2.64) and current non-smokers (OR 1.75; 95% CI 1.22-2.51). Whereas, in analyses according to median intake values, there were significant associations of periodontitis with a lower intake of niacin in women (OR 1.58; 95% CI 1.02-2.46) and current non-smokers (OR 1.50; 95% CI 1.01-2.22), with lower intake of vitamin C in women (OR 1.66; 95% CI 1.04-2.64) and in current non-smokers (OR 1.49; 95% CI 1.04-2.14), with lower intake of iron in women (OR 1.85; 95% CI 1.11-3.07), and with lower intake of vitamin A marginally in women (OR 1.56; 95% CI 1.00-2.44). In young adults, periodonitis is significantly associated with the lower intakes of niacin, vitamin C, and iron, especially in women and current non-smokers.
Collapse
Affiliation(s)
- Ji-A Park
- Department of Preventive and Public Health Dentistry, School of Dentistry, Seoul National University, Seoul, South Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung-Hwa Lee
- Department of Dental Hygiene, College of Nursing and Healthcare Sciences, Dong-Eui University, Busan, South Korea
| | - Hyo-Jin Lee
- Department of Preventive and Public Health Dentistry, School of Dentistry, Seoul National University, Seoul, South Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Bo-Hyoung Jin
- Department of Preventive and Public Health Dentistry, School of Dentistry, Seoul National University, Seoul, South Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Kwang-Hak Bae
- Oral Health Science Research Center, Apple tree Dental Hospital, Jungang-ro 1573, Goyang-si, Gyounggi-do, 10381, South Korea.
| |
Collapse
|
49
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Burcelin R. [Gut microbiota and immune crosstalk in metabolic disease]. Biol Aujourdhui 2017; 211:1-18. [PMID: 28682223 DOI: 10.1051/jbio/2017008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Indexed: 05/28/2023]
Abstract
The aim of the review is to discuss about the role played by the defence crosstalk between the gut microbiota and the intestinal immune system, in the development of metabolic disease focusing on obesity and diabetes. Starting from physiological and pathological stand points and based on the latest published data, this review is addressing how the concept of the hologenome theory of evolution can drive the fate of metabolic disease. The notion of "metabolic infection" to explain the "metabolic inflammation" is discussed. This imply comments about the process of bacterial translocation and impaired intestinal immune defense against commensals. Eventually this review sets the soil for personalized medicine. The monthly increase in the number of publications on the gut microbiota to intestinal immune defense and the control of metabolism demonstrate the importance of this field of investigation. The notion of commensal as "self or non-self" has to be reevaluated in the light of the current data. Furthermore, data demonstrate the major role played by short chain fatty acids, secondary bile acids, LPS, peptidoglycans, indole derivatives, and other bacteria-related molecules on the shaping of cells involved in the intestinal protection against commensals is now becoming a central player in the incidence of metabolic diseases. The literature demonstrates that the onset of metabolic diseases and some specific co-morbidities can be explained by a gut microbiota to intestinal immune system crosstalk. Therefore, one should now consider this avenue of investigation as a putative source of biomarkers and therapeutic targets to personalize the treatment of metabolic disease and its co-morbidities. Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, which induces inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France - Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Hôpital Rangueil, 31400 Toulouse, France - Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432 Toulouse Cedex 4, France
| |
Collapse
|