1
|
Madhu, Kaur A, Singh K, Upadhyay SK. Ascorbate oxidases in bread wheat: gene regulatory network, transcripts profiling, and interaction analyses provide insight into their role in plant development and stress response. PLANT GROWTH REGULATION 2024; 103:209-224. [DOI: 10.1007/s10725-023-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/24/2023] [Indexed: 10/09/2024]
|
2
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
3
|
Zheng X, Gong M, Zhang Q, Tan H, Li L, Tang Y, Li Z, Peng M, Deng W. Metabolism and Regulation of Ascorbic Acid in Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121602. [PMID: 35736753 PMCID: PMC9228137 DOI: 10.3390/plants11121602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Huaqiang Tan
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Liping Li
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Youwan Tang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Mingchao Peng
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| |
Collapse
|
4
|
Metabolic Profiling of Sugars and Organic Acids, and Expression Analyses of Metabolism-Associated Genes in Two Yellow-Peel Pitaya Species. PLANTS 2022; 11:plants11050694. [PMID: 35270164 PMCID: PMC8912497 DOI: 10.3390/plants11050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Sugar and organic acids are important factors determining pitaya fruit quality. However, changes in sugars and acids, and expressions of metabolism-associated genes during fruit maturation of yellow-peel pitayas are not well-documented. In this study, metabolic and expression analyses in pulps of different fruit developmental stages of ‘Wucihuanglong’ (‘WCHL’, Hylocereus undatus) and ‘Youcihuanglong’ pitaya (‘YCHL’, Hylocereus megalanthus) were used to explore the sugar and organic acid metabolic process. Total phenols and flavonoids were mainly accumulated at S1 in pitaya pulps. Ascorbic acid contents of ‘WCHL’ pitaya were higher than that of ‘YCHL’ pitaya during fruit maturation. Starch was mainly accumulated at early fruit development stages while soluble sugars were rich in late stages. Sucrose, fructose, and glucose were the main sugar components of ‘YCHL’ pitaya while glucose was dominant in ‘WCHL’ pitaya. Malic and citric acids were the main organic acids in ‘WCHL’ and ‘YCHL’ pitayas, respectively. Based on the transcriptome analyses, 118 genes involved in pitaya sugar and organic acid metabolism were obtained. Results from the correlation analyses between the expression profiling of candidate genes and the contents of sugar and organic acid showed that 51 genes had a significant correlation relationship and probably perform key role in pitaya sugar and organic acid metabolism processes. The finding of the present study provides new information for quality regulation of pitayas.
Collapse
|
5
|
Aboobucker SI, Showman LJ, Lübberstedt T, Suza WP. Maize Zmcyp710a8 Mutant as a Tool to Decipher the Function of Stigmasterol in Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:732216. [PMID: 34804084 PMCID: PMC8597121 DOI: 10.3389/fpls.2021.732216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sterols are integral components of membrane lipid bilayers in eukaryotic organisms and serve as precursors to steroid hormones in vertebrates and brassinosteroids (BR) in plants. In vertebrates, cholesterol is the terminal sterol serving both indirect and direct roles in cell signaling. Plants synthesize a mixture of sterols including cholesterol, sitosterol, campesterol, and stigmasterol but the signaling role for the free forms of individual plant sterols is unclear. Since stigmasterol is the terminal sterol in the sitosterol branch and produced from a single enzymatic step, modifying stigmasterol concentration may shed light on its role in plant metabolism. Although Arabidopsis has been the model of choice to study sterol function, the functional redundancy of AtCYP710A genes and the presence of brassicasterol may hinder our ability to test the biological function of stigmasterol. We report here the identification and characterization of ZmCYP710A8, the sole maize C-22 sterol desaturase involved in stigmasterol biosynthesis and the identification of a stigmasterol-free Zmcyp710a8 mutant. ZmCYP710A8 mRNA expression pattern correlated with transcripts for several sterol biosynthesis genes and loss of stigmasterol impacted sterol composition. Exogenous stigmasterol also had a stimulatory effect on mRNA for ZmHMGR and ZmSMT2. This demonstrates the potential of Zmcyp710a8 in understanding the role of stigmasterol in modulating sterol biosynthesis and global cellular metabolism. Several amino acids accumulate in the Zmcyp710a8 mutant, offering opportunity for genetic enhancement of nutritional quality of maize. Other cellular metabolites in roots and shoots of maize and Arabidopsis were also impacted by genetic modification of stigmasterol content. Yet lack of obvious developmental defects in Zmcyp710a8 suggest that stigmasterol might not be essential for plant growth under normal conditions. Nonetheless, the Zmcyp710a8 mutant reported here is of great utility to advance our understanding of the additional roles of stigmasterol in plant metabolism. A number of biological and agronomic questions can be interrogated using this tool such as gene expression studies, spatio-temporal localization of sterols, cellular metabolism, pathway regulation, physiological studies, and crop improvement.
Collapse
Affiliation(s)
| | - Lucas J. Showman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA, United States
| | | | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
A Transcriptional Analysis of the Genes Involved in the Ascorbic Acid Pathways Based on a Comparison of the Juice and Leaves of Navel and Anthocyanin-Rich Sweet Orange Varieties. PLANTS 2021; 10:plants10071291. [PMID: 34202884 PMCID: PMC8309047 DOI: 10.3390/plants10071291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022]
Abstract
Sweet oranges are an important source of ascorbic acid (AsA). In this study, the content of AsA in the juice and leaves of four orange clonal selections, different in terms of maturity time and the presence/absence of anthocyanins, was correlated with the transcription levels of the main genes involved in the biosynthesis, recycling, and degradation pathways. Within each variety, differences in the above pathways and the AsA amount were found between the analysed tissues. Variations were also observed at different stages of fruit development and maturation. At the beginning of fruit development, AsA accumulation was attributable to the synergic action of l-galactose and Myo-inositol, while the l-gulose pathway was predominant between the end of fruit development and the beginning of ripening. In leaves, the l-galactose pathway appeared to play a major role in AsA accumulation, even though higher GalUr isoform expression suggests a synergistic contribution of both pathways in this tissue. In juice, the trend of the AsA content may be related to the decrease in the transcription levels of the GME, GDH, MyoOx, and GalUr12 genes. Newhall was the genotype that accumulated the most AsA. The difference between Newhall and the other varieties seems to be attributable to the GLDH, GalUr12, APX2, and DHAR3 genes.
Collapse
|
7
|
Lodde V, Morandini P, Costa A, Murgia I, Ezquer I. cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes (Basel) 2021; 12:525. [PMID: 33916807 PMCID: PMC8067062 DOI: 10.3390/genes12040525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.
Collapse
Affiliation(s)
- Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, 20133 Milan, Italy;
| | - Piero Morandini
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Alex Costa
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Irene Murgia
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| |
Collapse
|
8
|
Broad RC, Bonneau JP, Hellens RP, Johnson AA. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E1790. [PMID: 32150968 PMCID: PMC7084844 DOI: 10.3390/ijms21051790] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, are major limiting factors in global crop productivity and are predicted to be exacerbated by climate change. The overproduction of reactive oxygen species (ROS) is a common consequence of many abiotic stresses. Ascorbate, also known as vitamin C, is the most abundant water-soluble antioxidant in plant cells and can combat oxidative stress directly as a ROS scavenger, or through the ascorbate-glutathione cycle-a major antioxidant system in plant cells. Engineering crops with enhanced ascorbate concentrations therefore has the potential to promote broad abiotic stress tolerance. Three distinct strategies have been utilized to increase ascorbate concentrations in plants: (i) increased biosynthesis, (ii) enhanced recycling, or (iii) modulating regulatory factors. Here, we review the genetic pathways underlying ascorbate biosynthesis, recycling, and regulation in plants, including a summary of all metabolic engineering strategies utilized to date to increase ascorbate concentrations in model and crop species. We then highlight transgene-free strategies utilizing genome editing tools to increase ascorbate concentrations in crops, such as editing the highly conserved upstream open reading frame that controls translation of the GDP-L-galactose phosphorylase gene.
Collapse
Affiliation(s)
- Ronan C. Broad
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Julien P. Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | |
Collapse
|
9
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
10
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
11
|
Ivanov Kavkova E, Blöchl C, Tenhaken R. The Myo-inositol pathway does not contribute to ascorbic acid synthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:95-102. [PMID: 30102814 PMCID: PMC6492119 DOI: 10.1111/plb.12898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 05/07/2023]
Abstract
Ascorbic acid (AsA) biosynthesis in plants predominantly occurs via a pathway with d-mannose and l-galactose as intermediates. One alternative pathway for AsA synthesis, which is similar to the biosynthesis route in mammals, is controversially discussed for plants. Here, myo-inositol is cleaved to glucuronic acid and then converted via l-gulonate to AsA. In contrast to animals, plants have an effective recycling pathway for glucuronic acid, being a competitor for the metabolic rate. Recycling involves a phosphorylation at C1 by the enzyme glucuronokinase. Two previously described T-DNA insertion lines in the gene coding for glucuronokinase1 show wild type-like expression levels of the mRNA in our experiments and do not accumulate glucuronic acid in labelling experiments disproving that these lines are true knockouts. As suitable T-DNA insertion lines were not available, we generated frameshift mutations in the major expressed isoform glucuronokinase1 (At3g01640) to potentially redirect metabolites to AsA. However, radiotracer experiments with 3 H-myo-inositol revealed that the mutants in glucuronokinase1 accumulate only glucuronic acid and incorporate less metabolite into cell wall polymers. AsA was not labelled, suggesting that Arabidopsis cannot efficiently use glucuronic acid for AsA biosynthesis. All four mutants in glucuronokinase as well as the wild type have the same level of AsA in leaves.
Collapse
Affiliation(s)
| | - C. Blöchl
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - R. Tenhaken
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
12
|
Zhou HX, Milne RI, Ma XL, Song YQ, Fang JY, Sun H, Zha HG. Characterization of a L-Gulono-1,4-Lactone Oxidase Like Protein in the Floral Nectar of Mucuna sempervirens, Fabaceae. FRONTIERS IN PLANT SCIENCE 2018; 9:1109. [PMID: 30105046 PMCID: PMC6077269 DOI: 10.3389/fpls.2018.01109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Floral nectar plays important roles in the interaction between animal-pollinated plants and pollinators. Its components include water, sugars, amino acids, vitamins, and proteins. Growing empirical evidence shows that most of the proteins secreted in nectar (nectarines) are enzymes that can tailor nectar chemistry for their animal mutualists or reduce the growth of microorganisms in nectar. However, to date, the function of many nectarines remains unknown, and very few plant species have had their nectar proteome thoroughly investigated. Mucuna sempervirens (Fabaceae) is a perennial woody vine native to China. Nectarines from this species were separated using two-dimensional gel electrophoresis, and analyzed using mass spectrometry. A L-gulonolactone oxidase like protein (MsGulLO) was detected, and the full length cDNA was cloned: it codes for a protein of 573 amino acids with a predicted signal peptide. MsGulLO has high similarity to L-gulonolactone oxidase 5 (AtGulLO5) in Arabidopsis thaliana, which was suggested to be involved in the pathway of ascorbate biosynthesis; however, both MsGulLO and AtGulLO5 are divergent from animal L-gulonolactone oxidases. MsGulLO was expressed mainly in flowers, and especially in nectary before blooming. However, cloning and gene expression analysis showed that L-galactonolactone dehydrogenase (MsGLDH), a vital enzyme in plant ascorbate biosynthesis, was expressed in all of flowers, roots, stems, and especially leaves. MsGulLO was purified to near homogeneity from raw MS nectar by gel filtration chromatography. The enzyme was determined to be a neutral monomeric protein with an apparent molecular mass of 70 kDa. MsGulLO is not a flavin-containing protein, and has neither L-galactonolactone dehydrogenase activity, nor the L-gulonolactone activity that is usual in animal GulLOs. However, it has weak oxidase activity with the following substrates: L-gulono-1,4-lactone, L -galactono-1,4-lactone, D-gluconic acid-δ-lactone, glucose, and fructose. MsGulLO is suggested to function in hydrogen peroxide generation in nectar but not in plant ascorbate biosynthesis.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue-Long Ma
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Jian-Yu Fang
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| |
Collapse
|