1
|
Zimmerman AJ, Serrano-Rodriguez A, Sun M, Wilson SJ, Linsenbardt DN, Brigman JL, Weick JP. Knockout of AMPA receptor binding protein Neuron-specific gene 2 (NSG2) enhances associative learning and cognitive flexibility. Mol Brain 2024; 17:95. [PMID: 39695712 DOI: 10.1186/s13041-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
- Present Address: Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonio Serrano-Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Melody Sun
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Sandy J Wilson
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Niu T, Li Z, Huang Y, Ye Y, Liu Y, Ye Z, Jiang L, He X, Wang L, Li J. LFA-1 knockout inhibited the tumor growth and is correlated with treg cells. Cell Commun Signal 2023; 21:233. [PMID: 37723552 PMCID: PMC10506322 DOI: 10.1186/s12964-023-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/19/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer immunotherapy has been proven to be clinically effective in multiple types of cancers. Lymphocyte function-associated antigen 1 (LFA-1), a member of the integrin family of adhesion molecules, is expressed mainly on αβ T cells. LFA-1 is associated with tumor immune responses, but its exact mechanism remains unknown. Here, two kinds of mice tumor model of LFA-1 knockout (LFA-1-/-) mice bearing subcutaneous tumor and Apc Min/+;LFA-1-/- mice were used to confirm that LFA-1 knockout resulted in inhibition of tumor growth. Furthermore, it also demonstrated that the numbers of regulatory T cells (Treg cells) in the spleen, blood, mesenteric lymph nodes were decreased in LFA-1-/- mice, and the numbers of Treg cells in mesenteric lymph nodes were also decreased in Apc Min/+;LFA-1-/- mice compared with Apc Min/+ mice. LFA-1 inhibitor (BIRT377) was administered to subcutaneous tumor-bearing LFA-1+/+ mice, and the results showed that the tumor growth was inhibited and the number of Treg cells was reduced. The analysis of TIMER tumor database indicated that LFA-1 expression is positively associated with Treg cells and TNM stage. Conclusively, this suggests that LFA-1 knockout would inhibit tumor growth and is correlated with Treg cells. LFA-1 may be one potential target for cancer immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Ting Niu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Zhengyang Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yiting Huang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yuxiang Ye
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yilong Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Zhijin Ye
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Lingbi Jiang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Xiaodong He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China.
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China.
| |
Collapse
|
3
|
Ruffaner-Hanson CD, Fernandez-Oropeza AK, Sun MS, Caldwell KK, Allan AM, Savage DD, Valenzuela CF, Noor S, Milligan ED. Prenatal alcohol exposure alters mRNA expression for stress peptides, glucocorticoid receptor function and immune factors in acutely stressed neonatal brain. Front Neurosci 2023; 17:1203557. [PMID: 37425005 PMCID: PMC10326286 DOI: 10.3389/fnins.2023.1203557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Background The amygdala, hippocampus and hypothalamus are critical stress regulatory areas that undergo functional maturation for stress responding initially established during gestational and early postnatal brain development. Fetal alcohol spectrum disorder (FASD), a consequence of prenatal alcohol exposure (PAE), results in cognitive, mood and behavioral disorders. Prenatal alcohol exposure negatively impacts components of the brain stress response system, including stress-associated brain neuropeptides and glucocorticoid receptors in the amygdala, hippocampus and hypothalamus. While PAE generates a unique brain cytokine expression pattern, little is known about the role of Toll-like receptor 4 (TLR4) and related proinflammatory signaling factors, as well as anti-inflammatory cytokines in PAE brain stress-responsive regions. We hypothesized that PAE sensitizes the early brain stress response system resulting in dysregulated neuroendocrine and neuroimmune activation. Methods A single, 4-h exposure of maternal separation stress in male and female postnatal day 10 (PND10) C57Bl/6 offspring was utilized. Offspring were from either prenatal control exposure (saccharin) or a limited access (4 h) drinking-in-the-dark model of PAE. Immediately after stress on PND10, the hippocampus, amygdala and hypothalamus were collected, and mRNA expression was analyzed for stress-associated factors (CRH and AVP), glucocorticoid receptor signaling regulators (GAS5, FKBP51 and FKBP52), astrocyte and microglial activation, and factors associated with TLR4 activation including proinflammatory interleukin-1β (IL-1β), along with additional pro- and anti-inflammatory cytokines. Select protein expression analysis of CRH, FKBP and factors associated with the TLR4 signaling cascade from male and female amygdala was conducted. Results The female amygdala revealed increased mRNA expression in stress-associated factors, glucocorticoid receptor signaling regulators and all of the factors critical in the TLR4 activation cascade, while the hypothalamus revealed blunted mRNA expression of all of these factors in PAE following stress. Conversely, far fewer mRNA changes were observed in males, notably in the hippocampus and hypothalamus, but not the amygdala. Statistically significant increases in CRH protein, and a strong trend in increased IL-1β were observed in male offspring with PAE independent of stressor exposure. Conclusion Prenatal alcohol exposure creates stress-related factors and TLR-4 neuroimmune pathway sensitization observed predominantly in females, that is unmasked in early postnatal life by a stress challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
4
|
Luo X, Chen O, Wang Z, Bang S, Ji J, Lee SH, Huh Y, Furutani K, He Q, Tao X, Ko MC, Bortsov A, Donnelly CR, Chen Y, Nackley A, Berta T, Ji RR. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021; 109:2691-2706.e5. [PMID: 34473953 DOI: 10.1016/j.neuron.2021.06.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jasmine Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
5
|
Molecular Mechanisms of Sex-Related Differences in Arthritis and Associated Pain. Int J Mol Sci 2020; 21:ijms21217938. [PMID: 33114670 PMCID: PMC7663489 DOI: 10.3390/ijms21217938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical conditions leading to chronic pain show important sex-related differences in the prevalence, severity, and degree of functional disability. Decades of epidemiological and clinical studies have demonstrated that women are more sensitive to pain than men. Arthritis, including rheumatoid arthritis (RA) and osteoarthritis (OA), is much more prevalent in females and accounts for the majority of pain arising from musculoskeletal conditions. It is therefore important to understand the mechanisms governing sex-dependent differences in chronic pain, including arthritis pain. However, research into the mechanisms underlying the sex-related differences in arthritis-induced pain is still in its infancy due to the bias in biomedical research performed largely in male subjects and animals. In this review, we discuss current advances in both clinical and preclinical research regarding sex-related differences in the development or severity of arthritis and associated pain. In addition, sex-related differences in biological and molecular mechanisms underlying the pathogenesis of arthritis pain, elucidated based on clinical and preclinical findings, are reviewed.
Collapse
|
6
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Vanderwall AG, Milligan ED. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front Immunol 2019; 10:3009. [PMID: 31921220 PMCID: PMC6935995 DOI: 10.3389/fimmu.2019.03009] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Current pain therapeutics offer inadequate relief to patients with chronic pain. A growing literature supports that pro-inflammatory cytokine signaling between immune, glial, and neural cells is integral to the development of pathological pain. Modulation of these communications may hold the key to improved pain management. In this review we first offer an overview of the relationships between pro-inflammatory cytokine and chemokine signaling and pathological pain, with a focus on the actions of cytokines and chemokines in communication between glia (astrocytes and microglia), immune cells (macrophages and T cells), and neurons. These interactions will be discussed in relation to both peripheral and central nervous system locations. Several novel non-neuronal drug targets for controlling pain are emerging as highly promising, including non-viral IL-10 gene therapy, which offer the potential for substantial pain relief through localized modulation of targeted cytokine pathways. Preclinical investigation of the mechanisms underlying the success of IL-10 gene therapy revealed the unexpected discovery of the powerful anti-nociceptive anti-inflammatory properties of D-mannose, an adjuvant in the non-viral gene therapeutic formulation. This review will include gene therapeutic approaches showing the most promise in controlling pro-inflammatory signaling via increased expression of anti-inflammatory cytokines like interleukin-10 (IL-10) or IL-4, or by directly limiting the bioavailability of specific pro-inflammatory cytokines, as with tumor necrosis factor (TNF) by the TNF soluble receptor (TNFSR). Approaches that increase endogenous anti-inflammatory signaling may offer additional opportunities for pain therapeutic development in patients not candidates for gene therapy. Promising novel avenues discussed here include the disruption of lymphocyte function-associated antigen (LFA-1) activity, antagonism at the cannabinoid 2 receptor (CB2R), and toll-like receptor 4 (TLR4) antagonism. Given the partial efficacy of current drugs, new strategies to manipulate neuroimmune and cytokine interactions hold considerable promise.
Collapse
Affiliation(s)
- Arden G. Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Anesthesiology and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|